15．3 Cointegration（共和分）

1．For a scalar y_{t} ，when $(1-L)^{d} y_{t}$ is stationary，we write $y_{t} \sim I(d)$ ．
When $\Delta y_{t}=y_{t}-y_{t-1}$ is stationary，we write $\Delta y_{t} \sim I(0)$ or $y_{t} \sim I(1)$ ．

2．Definition of Cointegration：

Suppose that each series in a $g \times 1$ vector y_{t} is $I(1)$ ，i．e．，each series has unit root，and that a linear combination of each series（i．e，$a^{\prime} y_{t}$ for a nonzero vector $a)$ is $I(0)$ ，i．e．，stationary．

Then，we say that y_{t} has a cointegration．

3. Example:

Suppose that $y_{t}=\left(y_{1, t}, y_{2, t}\right)^{\prime}$ is the following vector autoregressive process:

$$
\begin{aligned}
& y_{1, t}=\gamma y_{2, t}+\epsilon_{1, t}, \\
& y_{2, t}=y_{2, t-1}+\epsilon_{2, t} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \Delta y_{1, t}=\gamma \epsilon_{2, t}+\epsilon_{1, t}-\epsilon_{1, t-1}, \quad(\mathrm{MA}(1) \text { process }) \\
& \Delta y_{2, t}=\epsilon_{2, t}
\end{aligned}
$$

where both $y_{1, t}$ and $y_{2, t}$ are $I(1)$ processes.

The linear combination $y_{1, t}-\gamma y_{2, t}$ is $I(0)$ ．
In this case，we say that $y_{t}=\left(y_{1, t}, y_{2, t}\right)^{\prime}$ is cointegrated with $a=(1,-\gamma)$ ．
$a=(1,-\gamma)$ is called the cointegrating vector（共和分ベクトル），which is not unique．Therefore，the first element of a is set to be one．

4．Suppose that $y_{t} \sim I(1)$ and $x_{t} \sim I(1)$ ．
For the regression model $y_{t}=x_{t} \beta+u_{t}$ ，OLS does not work well if we do not have the β which satisfies $u_{t} \sim I(0)$ ．
\Longrightarrow Spurious regression（見せかけの回帰）
5. Suppose that $y_{t} \sim I(1), y_{t}$ is a $g \times 1$ vector and $y_{t}=\binom{y_{1, t}}{y_{2, t}}$. $y_{2, t}$ is a $k \times 1$ vector, where $k=g-1$.

Consider the following regression model:

$$
y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}, \quad t=1,2, \cdots, T
$$

OLSE is given by:

$$
\binom{\hat{\alpha}}{\hat{\gamma}}=\left(\begin{array}{cc}
T & \sum y_{2, t}^{\prime} \\
\sum y_{2, t} & \sum y_{2, t} y_{2, t}^{\prime}
\end{array}\right)^{-1}\binom{\sum y_{1, t}}{\sum y_{1, t} y_{2, t}}
$$

Next, consider testing the null hypothesis $H_{0}: R \gamma=d$, where R is a $G \times k$
matrix $(G \leq k)$ and r is a $G \times 1$ vector. $\quad G$ denotes the number of the linear restrictions.

The F statistic, denoted by F, is given by:

$$
F=\frac{1}{G}(R \hat{\gamma}-d)^{\prime}\left(\begin{array}{ll}
\left.s^{2}\left(\begin{array}{ll}
0 & R
\end{array}\right)\left(\begin{array}{cc}
T & \sum y_{2, t}^{\prime} \\
\sum y_{2, t} & \sum y_{2, t} y_{2, t}^{\prime}
\end{array}\right)^{-1}\binom{0}{R^{\prime}}\right)^{-1}(R \hat{\gamma}-d), ~
\end{array}\right.
$$

where

$$
s^{2}=\frac{1}{T-g} \sum_{t=1}^{T}\left(y_{1, t}-\hat{\alpha}-\hat{\gamma}^{\prime} y_{2, t}\right)^{2} .
$$

When we have the γ such that $y_{1, t}-\gamma y_{2, t}$ is stationary, OLSE of γ, i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_{0} is rejected by the F test.
6. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," Journal of Econometrics, Vol.33, pp. 95 - 131.

Consider a $g \times 1$ vector y_{t} whose first difference is described by:

$$
\Delta y_{t}=\Psi(L) \epsilon_{t}=\sum_{s=0}^{\infty} \Psi_{s} \epsilon_{t-s},
$$

for ϵ_{t} an i.i.d. $g \times 1$ vector with mean zero, variance $\mathrm{E}\left(\epsilon_{t} \epsilon_{t}^{\prime}\right)=P P^{\prime}$, and finite fourth moments and where $\left\{s \Psi_{s}\right\}_{s=0}^{\infty}$ is absolutely summable.

Let $k=g-1$ and $\Lambda=\Psi(1) P$.
Partition y_{t} as $y_{t}=\binom{y_{1, t}}{y_{2, t}}$ and $\Lambda \Lambda^{\prime}$ as $\Lambda \Lambda^{\prime}=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{21}^{\prime} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$, where $y_{1, t}$ and Σ_{11} are scalars, $y_{2, t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda \Lambda^{\prime}$ is nonsingular, and define $\sigma_{1}^{2}=\Sigma_{11}-\Sigma_{21}^{\prime} \Sigma_{22}^{-1} \Sigma_{21}$.
Let L_{22} denote the Cholesky factor of Σ_{22}^{-1}, i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1}=L_{22} L_{22}^{\prime}$.

Then, (a) - (c) hold.
(a) OLSEs of α and γ in the regression model $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$, denoted by $\hat{\alpha}_{T}$ and $\hat{\gamma}_{T}$, are characterized by:

$$
\binom{T^{-1 / 2} \hat{\alpha}_{T}}{\hat{\gamma}_{T}-\Sigma_{22}^{-1} \Sigma_{21}} \longrightarrow\binom{\sigma_{1} h_{1}}{\sigma_{1} L_{22} h_{2}}
$$

where

$$
\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
1 & \int_{0}^{1} W_{2}(r)^{\prime} \mathrm{d} r \\
\int_{0}^{1} W_{2}(r) \mathrm{d} r & \int_{0}^{1} W_{2}(r) W_{2}(r)^{\prime} \mathrm{d} r
\end{array}\right)^{-1}\binom{\int_{0}^{1} W_{1}(r) \mathrm{d} r}{\int_{0}^{1} W_{2}(r) W_{1}(r) \mathrm{d} r}
$$

where $W_{1}(r)$ and $W_{2}(r)$ denote scalar and g-dimensional standard Brownian motions, and $W_{1}(r)$ is independent of $W_{2}(r)$.
(b) The sum of squared residuals, denoted by $\operatorname{RSS}_{T}=\sum_{t=1}^{T} \hat{u}_{t}^{2}$, satisfies

$$
T^{-2} \mathrm{RSS}_{T} \longrightarrow \sigma_{1}^{2} H,
$$

where

$$
H=\int_{0}^{1}\left(W_{1}(r)\right)^{2} \mathrm{~d} r-\left(\binom{\int_{0}^{1} W_{1}(r) \mathrm{d} r}{\int_{0}^{1} W_{2}(r) W_{1}(r) \mathrm{d} r}^{\prime}\binom{h_{1}}{h_{2}}\right)^{-1} .
$$

(c) The F test satisfies:

$$
\begin{aligned}
T^{-1} F \longrightarrow & \frac{1}{G}\left(\sigma_{1} R^{*} h_{2}-d^{*}\right)^{\prime} \\
& \times\left(\begin{array}{cc}
\sigma_{1}^{2} H\left(\begin{array}{ll}
0 & R^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & \int_{0}^{1} W_{2}(r)^{\prime} \mathrm{d} r \\
\int_{0}^{1} W_{2}(r) \mathrm{d} r & \int_{0}^{1} W_{2}(r) W_{2}^{*}(r)^{\prime} \mathrm{d} r
\end{array}\right)^{-1}\left(\begin{array}{ll}
0 & \left.R^{*}\right)^{\prime}
\end{array}\right)^{-1} \\
& \times\left(\sigma_{1} R^{*} h_{2}-d^{*}\right),
\end{array}\right.
\end{aligned}
$$

where $R^{*}=R L_{22}$ and $d^{*}=d-R \Sigma_{22}^{-1} \Sigma_{21}$.
（a）indicates that $\operatorname{OLSE} \hat{\gamma}_{T}$ is not consistent．
（b）indicates that $s^{2}=\frac{1}{T-g} \sum_{t=1}^{T} \hat{u}_{t}^{2}$ diverges．
（c）indicates that F diverges．

\Longrightarrow Spurious regression（見せかけの回帰）

7. Resolution for Spurious Regression:

Suppose that $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$ is a spurious regression.
(1) Estimate $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+\phi y_{1, t-1}+\delta y_{2, t-1}+u_{t}$.

Then, $\hat{\gamma}_{T}$ is \sqrt{T}-consistent, and the t test statistic goes to the standard normal distribution under $H_{0}: \gamma=0$.
(2) Estimate $\Delta y_{1, t}=\alpha+\gamma^{\prime} \Delta y_{2, t}+u_{t}$. Then, $\hat{\alpha}_{T}$ and $\hat{\beta}_{T}$ are \sqrt{T}-consistent, and the t test and F test make sense.
(3) Estimate $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$ by the Cochrane-Orcutt method, assuming that u_{t} is the first-order serially correlated error.

Usually, choose (2).
However, there are two exceptions.
(i) The true value of ϕ in (1) above is not one, i.e., less than one.
(ii) $y_{1, t}$ and $y_{2, t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

8．Cointegrating Vector：

Suppose that each element of y_{t} is $I(1)$ and that $a^{\prime} y_{t}$ is $I(0)$ ．
a is called a cointegrating vector（共和分ベクトル），which is not unique．
Set $z_{t}=a^{\prime} y_{t}$ ，where z_{t} is scalar，and a and y_{t} are $g \times 1$ vectors．

For $z_{t} \sim I(0)$ (i.e., stationary),

$$
T^{-1} \sum_{t=1}^{T} z_{t}^{2}=T^{-1} \sum_{t=1}^{T}\left(a^{\prime} y_{t}\right)^{2} \longrightarrow \mathrm{E}\left(z_{t}^{2}\right)
$$

For $z_{t} \sim I(1)$ (i.e., nonstationary, i.e., a is not a cointegrating vector),

$$
T^{-2} \sum_{t=1}^{T}\left(a^{\prime} y_{t}\right)^{2} \longrightarrow \lambda^{2} \int_{0}^{1}(W(r))^{2} \mathrm{~d} r
$$

where $W(r)$ denotes a standard Brownian motion and λ^{2} indicates variance of $(1-L) z_{t}$.

If a is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_{t}^{2}$ diverges.
\Longrightarrow We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_{t}^{2}$ with respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T-consistent).

Stock, J.H. (1987) "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," Econometrica, Vol.55, pp. 1035 - 1056.

Proposition:

Let $y_{1, t}$ be a scalar, $y_{2, t}$ be a $k \times 1$ vector, and $\left(y_{1, t}, y_{2, t}^{\prime}\right)^{\prime}$ be a $g \times 1$ vector, where $g=k+1$.

Consider the following model:

$$
\begin{aligned}
& y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{1, t} \\
& \Delta y_{2, t}=u_{2, t}
\end{aligned}
$$

$$
\binom{u_{1, t}}{u_{2, t}}=\Psi(L) \epsilon_{t}
$$

ϵ_{t} is a $g \times 1$ i.i.d. vector with $\mathrm{E}\left(\epsilon_{t}\right)=0$ and $\mathrm{E}\left(\epsilon_{t} \epsilon_{t}^{\prime}\right)=P P^{\prime}$.
OLSE is given by:

$$
\binom{\hat{\alpha}}{\hat{\gamma}}=\left(\begin{array}{cc}
T & \sum y_{2, t}^{\prime} \\
\sum y_{2, t} & \sum y_{2, t} y_{2, t}^{\prime}
\end{array}\right)^{-1}\binom{\sum y_{1, t}}{\sum y_{1, t} y_{2, t}}
$$

Define λ_{1}, which is a $g \times 1$ vector, and Λ_{2}, which is a $k \times g$ matrix, as follows:

$$
\Psi(1) P=\binom{\lambda_{1}{ }^{\prime}}{\Lambda_{2}}
$$

Then, we have the following results:

$$
\binom{T^{1 / 2}(\hat{\alpha}-\alpha)}{T(\hat{\gamma}-\gamma)} \rightarrow\left(\begin{array}{cc}
1 & \left(\Lambda_{2} \int W(r) \mathrm{d} r\right)^{\prime} \\
\Lambda_{2} \int W(r) \mathrm{d} r & \Lambda_{2}\left(\int(W(r))(W(r))^{\prime} \mathrm{d} r\right) \Lambda_{2}^{\prime}
\end{array}\right)^{-1}\binom{h_{1}}{h_{2}},
$$

where

$$
\binom{h_{1}}{h_{2}}=\binom{\lambda_{1}{ }^{\prime} W(1)}{\Lambda_{2}\left(\int W(r)(\mathrm{d} W(r))^{\prime}\right) \lambda_{1}+\sum_{\tau=0}^{\infty} \mathrm{E}\left(u_{2, t} u_{1, t+\tau}\right)}
$$

$W(r)$ denotes a g-dimensional standard Brownian ${ }^{\tau=0}$ motion.

1) OLSE of the cointegrating vector is consistent even though u_{t} is serially correlated.
2) The consistency of OLSE implies that $T^{-1} \sum \hat{u}_{t}^{2} \longrightarrow \sigma^{2}$.
3) Because $T^{-1} \sum\left(y_{1, t}-\bar{y}_{1}\right)^{2}$ goes to infinity, a coefficient of determination, R^{2}, goes to one.

15.4 Testing Cointegration

15.4.1 Engle-Granger Test

$y_{t} \sim I(1)$
$y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$

- $u_{t} \sim I(0) \Longrightarrow$ Cointegration
- $u_{t} \sim I(1) \Longrightarrow$ Spurious Regression

Estimate $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$ by OLS, and obtain \hat{u}_{t}.

Estimate $\hat{u}_{t}=\rho \hat{u}_{t-1}+\delta_{1} \Delta \hat{u}_{t-1}+\delta_{2} \Delta \hat{u}_{t-2}+\cdots+\delta_{p-1} \Delta \hat{u}_{t-p+1}+e_{t}$ by OLS.

ADF Test:

- $H_{0}: \rho=1$ (Sprious Regression)
- $H_{1}: \rho<1$ (Cointegration)

\Longrightarrow Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).

Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

\# of Refressors,	(a) Regressors have no drift			(b) Some regressors have drift				
excluding constant	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	-3.96	-3.64	-3.37	-3.07	-3.96	-3.67	-3.41	-3.13
2	-4.31	-4.02	-3.77	-3.45	-4.36	-4.07	-3.80	-3.52
3	-4.73	-4.37	-4.11	-3.83	-4.65	-4.39	-4.16	-3.84
4	-5.07	-4.71	-4.45	-4.16	-5.04	-4.77	-4.49	-4.20
5	-5.28	-4.98	-4.71	-4.43	-5.36	-5.02	-4.74	-4.46

J.D. Hamilton (1994), Time Series Analysis, p. 766.

The Other Topics

－Generalized Method of Moments（一般化積率法，GMM）
－System of Equations（Seemingly Unrelated Regression（SUR），Simultaneous Equation（連立方程式），and etc．）
－Panel Data（パネル・データ）
－Discrete Dependent Variable，and Limited Dependent Variable
－Bayesian Estimation（ベイズ推定）
－Semiparametric and Nonparametric Regressions and Tests（セミパラメトリッ ク，ノンパラメトリック推定•検定）
－．．．

Exam－Jan．29， 2014 （AM8：50－10：20），and \＃ 509

- 60－70\％from two homeworks（2 つの宿題から 60－70\％）
- 30－40\％of new questions（30－40\％の新しい問題）
－Questions are written in English，and answers should be in English or Japanese．
（出題は英語，解答は英語または日本語）
－With no carrying in（持ち込みなし）

