3.2.2 Phillips-Perron (PP) Test

The model is given by:

$$y_t = \phi_1 y_{t-1} + u_t, \qquad u_t = \sum_{s=0}^{\infty} \psi_s \epsilon_{t-s}, \qquad \epsilon_t \sim \operatorname{iid}(0, \sigma_{\epsilon}^2),$$

where $\psi_0 = 0$ and $\sum_{s=0}^{\infty} s |\psi_s| < \infty$.

Note that the errors are serially correlated and heteroskedastic.

The autocovariance function of u_t is:

$$\gamma(\tau) = \mathrm{E}(u_t u_{t-\tau}) = \sigma_\epsilon^2 \sum_{s=0}^\infty \psi_s \psi_{s+\tau}, \qquad \tau = 0, 1, 2, \cdots.$$

Define the long-run variance of u_t as:

$$\lambda^2 = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}((\sum_{t=1}^T u_t)^2) = \sum_{\tau = -\infty}^{\infty} \gamma(\tau) = \gamma(0) + 2\sum_{\tau=1}^{\infty} \gamma(\tau) = \sigma_{\epsilon}^2 (\sum_{j=0}^{\infty} \psi_j)^2.$$

The PP test statistic \tilde{t}_T is:

$$\tilde{t}_T = \left(\frac{\gamma(0)}{\lambda^2}\right)^{1/2} t_T - \frac{1}{2\lambda} \frac{T s_{\phi}}{s_T} (\lambda^2 - \gamma(0)),$$

where

 t_T denotes the *t* statistic of $\hat{\phi}_1$, s_{ϕ} is the standard error of $\hat{\phi}_1$, and $s_T^2 = \frac{1}{T-1} \sum_{t=1}^T (y_t - \hat{\phi}_1 y_{t-1})^2$. Estimate λ by:

$$\hat{\lambda} = \hat{\gamma}(0) + 2\sum_{\tau=1}^{q} k_1(\frac{\tau}{q+1})\hat{\gamma}(\tau),$$

which is called **Newey-West estimator**, where $k_1(x) = 1 - |x|$ for $x \le 1$ and $k_1(x) = 0$ for x > 1, which is called **Bartlett kernel**, or

$$\hat{\lambda} = \hat{\gamma}(0) + 2\sum_{\tau=1}^{q} k_2(\frac{\tau}{q+1})\hat{\gamma}(\tau),$$

where $k_2(x) = 1 - 6x^2 + 6x^3$ for $0 \le x \le \frac{1}{2}$, $k_2(x) = 2(1 - x)^3$ for $\frac{1}{2} \le x \le 1$ and $k_2(x) = 0$ for x > 1, which is called **Parzen kernel**, or

$$\hat{\lambda} = \frac{T}{T-1} \left(\hat{\gamma}(0) + \sum_{\tau=1}^{T-1} k_3(\frac{\tau}{q+1}) \hat{\gamma}(\tau) \right),$$

where $k_3(x) = \frac{3}{(6\pi x/5)^2} \left(\frac{\sin(6\pi x/5)}{6\pi x/5} - \cos(6\pi x/5) \right)$, which is called the **second-order spectrum kernel**.

We need to choose the bandwidth q.

Use the same statistical tables as before to test H_0 : $\phi_1 = 1$ against H_1 : $\phi_1 < 1$.

Some Formulas:

For proof, we use following formulas.

Let $u_t = \psi(L)\epsilon_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}$, where $\sum_{j=0}^{\infty} j |\psi_j| < \infty$ and $\{\epsilon_t\}$ is an i.i.d. sequence with mean zero, variance σ^2 and finite fourth moment.

Define:

$$\gamma(j) = \mathcal{E}(u_t u_{t-j}) = \sigma^2 \sum_{s=0}^{\infty} \psi_s \psi_{s+j} \quad \text{for } j = 0, 1, 2, \cdots,$$
$$\lambda = \sigma \sum_{j=0}^{\infty} \psi_j = \sigma \psi(1),$$
$$\xi_t = \sum_{i=1}^t u_i \text{ for } t = 1, 2, \cdots, T \quad \text{and} \quad \xi_0 = 0.$$

Then,

1.
$$T^{-1/2} \sum_{t=1}^{T} u_t \longrightarrow \lambda W(1)$$

2. $T^{-1/2} \sum_{t=1}^{T} u_{t-j} \epsilon_t \longrightarrow N(0, \sigma^2 \gamma(0)), \text{ for } j = 1, 2, \cdots$

3.
$$T^{-1} \sum_{t=1}^{T} u_t u_{t-j} \longrightarrow \gamma(j)$$
, for $j = 1, 2, \cdots$

4.
$$T^{-1} \sum_{t=1}^{T} \xi_{t-1} \epsilon_t \longrightarrow \frac{1}{2} \sigma \lambda (W(1)^2 - 1)$$

5.
$$T^{-1} \sum_{t=1}^{T} \xi_{t-1} u_{t-j} \longrightarrow \begin{cases} \frac{1}{2} (\lambda^2 W(1)^2 - \gamma(0)), & \text{for } j = 0, \\ \\ \frac{1}{2} (\lambda^2 W(1)^2 - \gamma(0)) + \sum_{i=0}^{j-1} \gamma(i), & \text{for } j = 1, 2, \cdots \end{cases}$$

6.
$$T^{-3/2} \sum_{t=1}^{T} \xi_{t-1} \longrightarrow \lambda \int_0^1 W(r) \mathrm{d}r$$

7.
$$T^{-3/2} \sum_{t=1}^{T} t u_{t-j} \longrightarrow \lambda \left(W(1) - \int_{0}^{1} W(r) dr \right), \text{ for } j = 0, 1, 2, \cdots$$

8.
$$T^{-2} \sum_{t=1}^{T} \xi_{t-1}^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^{-2} dr$$

9.
$$T^{-5/2} \sum_{t=1}^{T} t\xi_{t-1} \longrightarrow \lambda \int_{0}^{1} rW(r) dr$$

10. $T^{-3} \sum_{t=1}^{T} t\xi_{t-1} \longrightarrow \lambda^{2} \int_{0}^{1} r(W(r))^{2} dr$

11.
$$T^{-(\mu-1)} \sum_{t=1}^{T} t^{\mu} \longrightarrow \frac{1}{\mu+1}$$
, for $\mu = 0, 1, 2, \cdots$

3.3 Cointegration (共和分)

1. For a scalar y_t , when $\Delta y_t = y_t - y_{t-1}$ is a white noise (i.e., iid), we write $\Delta y_t \sim I(1)$.

2. Definition of Cointegration:

Suppose that each series in a $g \times 1$ vector y_t is I(1), i.e., each series has unit root, and that a linear combination of each series (i.e, $a'y_t$ for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that y_t has a cointegration.

3. Example:

Suppose that $y_t = (y_{1,t}, y_{2,t})'$ is the following vector autoregressive process:

 $y_{1,t} = \phi_1 y_{2,t} + \epsilon_{1,t},$ $y_{2,t} = y_{2,t-1} + \epsilon_{2,t}.$

Then,

$$\Delta y_{1,t} = \phi_1 \epsilon_{2,t} + \epsilon_{1,t} - \epsilon_{1,t-1}, \quad (MA(1) \text{ process}),$$
$$\Delta y_{2,t} = \epsilon_{2,t},$$

where both $y_{1,t}$ and $y_{2,t}$ are I(1) processes.

The linear combination $y_{1,t} - \phi_1 y_{2,t}$ is I(0).

In this case, we say that $y_t = (y_{1,t}, y_{2,t})'$ is cointegrated with $a = (1, -\phi_1)$.

 $a = (1, -\phi_1)$ is called the cointegrating vector, which is not unique.

Therefore, the first element of *a* is set to be one.

4. Suppose that $y_t \sim I(1)$ and $x_t \sim I(1)$.

For the regression model $y_t = x_t\beta + u_t$, OLS does not work well if we do not have the β which satisfies $u_t \sim I(0)$.

⇒ Spurious regression (見せかけの回帰)

5. Suppose that $y_t \sim I(1)$, y_t is a $g \times 1$ vector and $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$.

 $y_{2,t}$ is a $k \times 1$ vector, where k = g - 1.

Consider the following regression model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t, \qquad t = 1, 2, \cdots, T.$$

OLSE is given by:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Next, consider testing the null hypothesis H_0 : $R\gamma = r$, where *R* is a $m \times k$ matrix ($m \le k$) and *r* is a $m \times 1$ vector.

The F statistic, denoted by F_T , is given by:

$$F_{T} = \frac{1}{m} (R\hat{\gamma} - r)' \left(s_{T}^{2} (0 \quad R) \left(\frac{T \quad \sum y'_{2,t}}{\sum y_{2,t} \quad \sum y_{2,t} y'_{2,t}} \right)^{-1} \begin{pmatrix} 0 \\ R' \end{pmatrix} \right)^{-1} (R\hat{\gamma} - r),$$

where

$$s_T^2 = \frac{1}{T-g} \sum_{t=1}^T (y_{1,t} - \hat{\alpha} - \hat{\gamma}' y_{2,t})^2.$$

When we have the γ such that $y_{1,t} - \gamma y_{2,t}$ is stationary, OLSE of γ , i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_0 is rejected by the F test.

6. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," *Journal of Econometrics*, Vol.33, pp.95 – 131.

Consider a $g \times 1$ vector y_t whose first difference is described by:

$$\Delta y_t = \Psi(L)\epsilon_t = \sum_{s=0}^{\infty} \Psi_s \epsilon_{t-s},$$

for ϵ_t an i.i.d. $g \times 1$ vector with mean zero, variance $E(\epsilon_t \epsilon'_t) = PP'$, and finite fourth moments and where $\{s\Psi_s\}_{s=0}^{\infty}$ is absolutely summable.

Let
$$k = g - 1$$
 and $\Lambda = \Psi(1)P$.
Partition y_t as $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$ and $\Lambda\Lambda'$ as $\Lambda\Lambda' = \begin{pmatrix} \Sigma_{11} & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, where $y_{1,t}$ and Σ_{11} are scalars, $y_{2,t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda\Lambda'$ is nonsingular, and define $\sigma_1^{*2} = \Sigma_{11} - \Sigma'_{21}\Sigma_{22}^{-1}\Sigma_{21}$.

Let L_{22} denote the Cholesky factor of Σ_{22}^{-1} , i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1} = L_{22}L'_{22}$.

Then, (a) - (c) hold.

(a) OLSEs of α and γ in the regression model $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$, denoted by $\hat{\alpha}_T$ and $\hat{\gamma}_T$, are characterized by:

$$\binom{T^{-1/2}\hat{\alpha}_T}{\hat{\gamma}_T - \Sigma_{22}^{-1}\Sigma_{21}} \longrightarrow \binom{\sigma_1^*h_1}{\sigma_1^*L_{22}h_2},$$

where

$$\binom{h_1}{h_2} = \begin{pmatrix} 1 & \int_0^1 W_2^*(r)' dr \\ \int_0^1 W_2^*(r) dr & \int_0^1 W_2^*(r) W_2^*(r)' dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r) dr \\ \int_0^1 W_2^*(r) W_1^*(r) dr \end{pmatrix},$$

where $W_1^*(r)$ and $W_2^*(r)$ denote scalar and *g*-dimensional standard Brownian motions, and $W_1^*(r)$ is independent of $W_2^*(r)$.

(b) The sum of squared residuals, denoted by $RSS_T = \sum_{t=1}^T \hat{u}_t^2$, satisfies

$$T^{-2}$$
RSS_T $\longrightarrow \sigma_1^{*2}H$,

where

$$H = \int_0^1 (W_1^*(r))^2 \mathrm{d}r - \left(\left(\int_0^1 W_1^*(r) \mathrm{d}r \right)' \binom{h_1}{h_2} \right)^{-1}$$

٠

(c) The F_T test satisfies:

$$T^{-1}F_T \longrightarrow \frac{1}{m} (\sigma_1^* R^* h_2 - r^*)' \\ \times \left(\sigma_1^{*2} H (0 \ R^*) \left(\begin{array}{cc} 1 & \int_0^1 W_2^*(r)' dr \\ \int_0^1 W_2^*(r) dr & \int_0^1 W_2^*(r) W_2^*(r)' dr \end{array} \right)^{-1} (0 \ R^*)' \right)^{-1} \\ \times (\sigma_1^* R^* h_2 - r^*),$$

where $R^* = RL_{22}$ and $r^* = r - R\Sigma_{22}^{-1}\Sigma_{21}$.

(a) indicates that OLSE $\hat{\gamma}_T$ is not consistent.

(b) indicates that
$$s_T^2 = \frac{1}{T-g} \sum_{t=1}^T \hat{u}_t^2$$
 diverges.

(c) indicates that F_T diverges.

⇒ Spurious regression (見せかけの回帰)

7. Resolution for Spurious Regression:

Suppose that $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ is a spurious regression.

(1) Estimate
$$y_{1,t} = \alpha + \gamma' y_{2,t} + \phi y_{1,t-1} + \delta y_{2,t-1} + u_t$$
.

Then, $\hat{\gamma}_T$ is \sqrt{T} -consistent, and the *t* test statistic goes to the standard normal distribution under H_0 : $\gamma = 0$.

(2) Estimate $\Delta y_{1,t} = \alpha + \gamma' \Delta y_{2,t} + u_t$. Then, $\hat{\alpha}_T$ and $\hat{\beta}_T$ are \sqrt{T} -consistent, and the *t* test and *F* test make sense.

(3) Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by the Cochrane-Orcutt method, assuming that u_t is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of ϕ is not one, i.e., less than one.

(ii) $y_{1,t}$ and $y_{2,t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression. 8. Cointegrating Vector:

Suppose that each element of y_t is I(1) and that $a'y_t$ is I(0).

a is called a **cointegrating vector** (共和分ベクトル), which is not unique.

Set $z_t = a'y_t$, where z_t is scalar, and a and y_t are $g \times 1$ vectors.

For $z_t \sim I(0)$ (i.e., stationary),

$$T^{-1}\sum_{t=1}^{T} z_t^2 = T^{-1}\sum_{t=1}^{T} (a'y_t)^2 \longrightarrow E(z_t^2).$$

For $z_t \sim I(1)$ (i.e., nonstationary, i.e., *a* is not a cointegrating vector),

$$T^{-2}\sum_{t=1}^{T} (a'y_t)^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^2 \,\mathrm{d}r,$$

where W(r) denotes a standard Brownian motion and λ^2 indicates variance of $(1 - L)z_t$.

If *a* is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_t^2$ diverges.

 \implies We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_t^2$ with respect to *a*, where a normalization condition on *a* has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T-consistent).