
3.2.2 Phillips-Perron (PP) Test

The model is given by:

yt = φ1yt−1 + ut, ut =

∞∑
s=0

ψsεt−s, εt ∼ iid(0, σ2
ε ),

where ψ0 = 0 and
∑∞

s=0 s|ψs| < ∞.

Note that the errors are serially correlated and heteroskedastic.

The autocovariance function of ut is:

γ(τ) = E(utut−τ) = σ2
ε

∞∑
s=0

ψsψs+τ, τ = 0, 1, 2, · · · .
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Define the long-run variance of ut as:

λ2 = lim
T→∞

1
T

E((
T∑

t=1

ut)2) =
∞∑

τ=−∞
γ(τ) = γ(0) + 2

∞∑
τ=1

γ(τ) = σ2
ε (
∞∑
j=0

ψ j)2.

The PP test statistic t̃T is:

t̃T =

(
γ(0)
λ2

)1/2

tT −
1

2λ
T sφ
sT

(λ2 − γ(0)),

where

tT denotes the t statistic of φ̂1, sφ is the standard error of φ̂1, and

s2
T =

1
T − 1

T∑
t=1

(yt − φ̂1yt−1)2.

165



Estimate λ by:

λ̂ = γ̂(0) + 2
q∑
τ=1

k1(
τ

q + 1
)γ̂(τ),

which is called Newey-West estimator, where k1(x) = 1−|x| for x ≤ 1 and k1(x) = 0

for x > 1, which is called Bartlett kernel, or

λ̂ = γ̂(0) + 2
q∑
τ=1

k2(
τ

q + 1
)γ̂(τ),

where k2(x) = 1 − 6x2 + 6x3 for 0 ≤ x ≤ 1
2 , k2(x) = 2(1 − x)3 for 1

2 ≤ x ≤ 1 and

k2(x) = 0 for x > 1, which is called Parzen kernel, or
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λ̂ =
T

T − 1

γ̂(0) +
T−1∑
τ=1

k3(
τ

q + 1
)γ̂(τ)

 ,
where k3(x) =

3
(6πx/5)2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
, which is called the second-

order spectrum kernel.

We need to choose the bandwidth q.

Use the same statistical tables as before to test H0 : φ1 = 1 against H1 : φ1 < 1.
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Some Formulas:

For proof, we use following formulas.

Let ut = ψ(L)εt =
∑∞

j=0 ψ jεt− j, where
∑∞

j=0 j|ψ j| < ∞ and {εt} is an i.i.d. sequence

with mean zero, variance σ2 and finite fourth moment.

Define:

γ( j) = E(utut− j) = σ2 ∑∞
s=0 ψsψs+ j for j = 0, 1, 2, · · ·,

λ = σ
∑∞

j=0 ψ j = σψ(1),

ξt =
∑t

i=1 ui for t = 1, 2, · · · ,T and ξ0 = 0.
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Then,

1. T−1/2
T∑

t=1

ut −→ λW(1)

2. T−1/2
T∑

t=1

ut− jεt −→ N(0, σ2γ(0)), for j = 1, 2, · · ·

3. T−1
T∑

t=1

utut− j −→ γ( j), for j = 1, 2, · · ·

4. T−1
T∑

t=1

ξt−1εt −→
1
2
σλ(W(1)2 − 1)
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5. T−1
T∑

t=1

ξt−1ut− j −→


1
2

(λ2W(1)2 − γ(0)), for j = 0,

1
2

(λ2W(1)2 − γ(0)) +
j−1∑
i=0

γ(i), for j = 1, 2, · · ·

6. T−3/2
T∑

t=1

ξt−1 −→ λ

∫ 1

0
W(r)dr

7. T−3/2
T∑

t=1

tut− j −→ λ

(
W(1) −

∫ 1

0
W(r)dr

)
, for j = 0, 1, 2, · · ·

8. T−2
T∑

t=1

ξ2
t−1 −→ λ2

∫ 1

0
(W(r))−2dr
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9. T−5/2
T∑

t=1

tξt−1 −→ λ

∫ 1

0
rW(r)dr

10. T−3
T∑

t=1

tξt−1 −→ λ2
∫ 1

0
r(W(r))2dr

11. T−(µ−1)
T∑

t=1

tµ −→ 1
µ + 1

, for µ = 0, 1, 2, · · ·
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3.3 Cointegration (共和分)

1. For a scalar yt, when ∆yt = yt − yt−1 is a white noise (i.e., iid), we write

∆yt ∼ I(1).

2. Definition of Cointegration:

Suppose that each series in a g × 1 vector yt is I(1), i.e., each series has unit

root, and that a linear combination of each series (i.e, a′yt for a nonzero vector

a) is I(0), i.e., stationary.

Then, we say that yt has a cointegration.
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3. Example:

Suppose that yt = (y1,t, y2,t)′ is the following vector autoregressive process:

y1,t = φ1y2,t + ε1,t,

y2,t = y2,t−1 + ε2,t.

Then,

∆y1,t = φ1ε2,t + ε1,t − ε1,t−1, (MA(1) process),

∆y2,t = ε2,t,

where both y1,t and y2,t are I(1) processes.
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The linear combination y1,t − φ1y2,t is I(0).

In this case, we say that yt = (y1,t, y2,t)′ is cointegrated with a = (1, −φ1).

a = (1, −φ1) is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

4. Suppose that yt ∼ I(1) and xt ∼ I(1).

For the regression model yt = xtβ + ut, OLS does not work well if we do not

have the β which satisfies ut ∼ I(0).

=⇒ Spurious regression (見せかけの回帰)
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5. Suppose that yt ∼ I(1), yt is a g × 1 vector and yt =

( y1,t

y2,t

)
.

y2,t is a k × 1 vector, where k = g − 1.

Consider the following regression model:

y1,t = α + γ
′y2,t + ut, t = 1, 2, · · · ,T.

OLSE is given by:(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t∑

y1,ty2,t

)
.
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Next, consider testing the null hypothesis H0 : Rγ = r, where R is a m × k

matrix (m ≤ k) and r is a m × 1 vector.

The F statistic, denoted by FT , is given by:

FT =
1
m

(Rγ̂ − r)′
s2

T ( 0 R )
( T

∑
y′2,t∑

y2,t
∑

y2,ty′2,t

)−1 ( 0

R′

)−1

(Rγ̂ − r),

where

s2
T =

1
T − g

T∑
t=1

(y1,t − α̂ − γ̂′y2,t)2.

When we have the γ such that y1,t − γy2,t is stationary, OLSE of γ, i.e., γ̂, is

not statistically equal to zero.
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When the sample size T is large enough, H0 is rejected by the F test.

6. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Economet-

rics,” Journal of Econometrics, Vol.33, pp.95 – 131.

Consider a g × 1 vector yt whose first difference is described by:

∆yt = Ψ(L)εt =

∞∑
s=0

Ψsεt−s,

for εt an i.i.d. g × 1 vector with mean zero , variance E(εtε
′
t ) = PP′, and finite

fourth moments and where {sΨs}∞s=0 is absolutely summable.
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Let k = g − 1 and Λ = Ψ(1)P.

Partition yt as yt =

( y1,t

y2,t

)
and ΛΛ′ as ΛΛ′ =

(
Σ11 Σ′21

Σ21 Σ22

)
, where y1,t and Σ11

are scalars, y2,t and Σ21 are k × 1 vectors, and Σ22 is a k × k matrix.

Suppose that ΛΛ′ is nonsingular,and define σ∗21 = Σ11 − Σ′21Σ
−1
22Σ21.

Let L22 denote the Cholesky factor of Σ−1
22 , i.e., L22 is the lower triangular

matrix satisfying Σ−1
22 = L22L′22.

Then, (a) – (c) hold.

178



(a) OLSEs of α and γ in the regression model y1,t = α + γ
′y2,t + ut, denoted

by α̂T and γ̂T , are characterized by:( T−1/2α̂T

γ̂T − Σ−1
22Σ21

)
−→

(
σ∗1h1

σ∗1L22h2

)
,

where( h1

h2

)
=

( 1
∫ 1

0
W∗

2(r)′dr∫ 1

0
W∗

2(r)dr
∫ 1

0
W∗

2(r)W∗
2(r)′dr

)−1 ( ∫ 1

0
W∗

1(r)dr∫ 1

0
W∗

2(r)W∗
1(r)dr

)
,

where W∗
1(r) and W∗

2(r) denote scalar and g-dimensional standard Brow-

nian motions, and W∗
1(r) is independent of W∗

2(r).
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(b) The sum of squared residuals, denoted by RSST =
∑T

t=1 û2
t , satisfies

T−2RSST −→ σ∗21 H,

where

H =
∫ 1

0
(W∗

1(r))2dr −
(

∫ 1

0
W∗

1(r)dr∫ 1

0
W∗

2(r)W∗
1(r)dr

)′ ( h1

h2

)−1

.
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(c) The FT test satisfies:

T−1FT −→
1
m

(σ∗1R∗h2 − r∗)′

×
σ∗21 H ( 0 R∗ )

( 1
∫ 1

0
W∗

2(r)′dr∫ 1

0
W∗

2(r)dr
∫ 1

0
W∗

2(r)W∗
2(r)′dr

)−1

( 0 R∗ )′
−1

×(σ∗1R∗h2 − r∗),

where R∗ = RL22 and r∗ = r − RΣ−1
22Σ21.
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(a) indicates that OLSE γ̂T is not consistent.

(b) indicates that s2
T =

1
T − g

T∑
t=1

û2
t diverges.

(c) indicates that FT diverges.

=⇒ Spurious regression (見せかけの回帰)
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7. Resolution for Spurious Regression:

Suppose that y1,t = α + γ
′y2,t + ut is a spurious regression.

(1) Estimate y1,t = α + γ
′y2,t + φy1,t−1 + δy2,t−1 + ut.

Then, γ̂T is
√

T -consistent, and the t test statistic goes to the standard normal

distribution under H0 : γ = 0.

(2) Estimate ∆y1,t = α+ γ
′∆y2,t + ut. Then, α̂T and β̂T are

√
T -consistent, and

the t test and F test make sense.
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(3) Estimate y1,t = α + γ
′y2,t + ut by the Cochrane-Orcutt method, assuming

that ut is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of φ is not one, i.e., less than one.

(ii) y1,t and y2,t are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regres-

sion.
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8. Cointegrating Vector:

Suppose that each element of yt is I(1) and that a′yt is I(0).

a is called a cointegrating vector (共和分ベクトル), which is not unique.

Set zt = a′yt, where zt is scalar, and a and yt are g × 1 vectors.
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For zt ∼ I(0) (i.e., stationary)，

T−1
T∑

t=1

z2
t = T−1

T∑
t=1

(a′yt)2 −→ E(z2
t ).

For zt ∼ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),

T−2
T∑

t=1

(a′yt)2 −→ λ2
∫ 1

0
(W(r))2 dr,

where W(r) denotes a standard Brownian motion and λ2 indicates variance of

(1 − L)zt.

If a is not a cointegrating vector, T−1 ∑T
t=1 z2

t diverges.
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=⇒ We can obtain a consistent estimate of a cointegrating vector by mini-

mizing
∑T

t=1 z2
t with respect to a, where a normalization condition on a has to

be imposed.

The estimator of the a including the normalization condition is super-consistent

(T -consistent).
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