3.2.2 Phillips-Perron (PP) Test

The model is given by:

$$
y_{t}=\phi_{1} y_{t-1}+u_{t}, \quad u_{t}=\sum_{s=0}^{\infty} \psi_{s} \epsilon_{t-s}, \quad \epsilon_{t} \sim \operatorname{iid}\left(0, \sigma_{\epsilon}^{2}\right),
$$

where $\psi_{0}=0$ and $\sum_{s=0}^{\infty} s\left|\psi_{s}\right|<\infty$.
Note that the errors are serially correlated and heteroskedastic.
The autocovariance function of u_{t} is:

$$
\gamma(\tau)=\mathrm{E}\left(u_{t} u_{t-\tau}\right)=\sigma_{\epsilon}^{2} \sum_{s=0}^{\infty} \psi_{s} \psi_{s+\tau}, \quad \tau=0,1,2, \cdots .
$$

Define the long-run variance of u_{t} as:

$$
\lambda^{2}=\lim _{T \rightarrow \infty} \frac{1}{T} \mathrm{E}\left(\left(\sum_{t=1}^{T} u_{t}\right)^{2}\right)=\sum_{\tau=-\infty}^{\infty} \gamma(\tau)=\gamma(0)+2 \sum_{\tau=1}^{\infty} \gamma(\tau)=\sigma_{\epsilon}^{2}\left(\sum_{j=0}^{\infty} \psi_{j}\right)^{2} .
$$

The PP test statistic \tilde{t}_{T} is:

$$
\tilde{t}_{T}=\left(\frac{\gamma(0)}{\lambda^{2}}\right)^{1 / 2} t_{T}-\frac{1}{2 \lambda} \frac{T s_{\phi}}{s_{T}}\left(\lambda^{2}-\gamma(0)\right),
$$

where
t_{T} denotes the t statistic of $\hat{\phi}_{1}, \quad s_{\phi}$ is the standard error of $\hat{\phi}_{1}$, and $s_{T}^{2}=\frac{1}{T-1} \sum_{t=1}^{T}\left(y_{t}-\hat{\phi}_{1} y_{t-1}\right)^{2}$.

Estimate λ by:

$$
\hat{\lambda}=\hat{\gamma}(0)+2 \sum_{\tau=1}^{q} k_{1}\left(\frac{\tau}{q+1}\right) \hat{\gamma}(\tau)
$$

which is called Newey-West estimator, where $k_{1}(x)=1-|x|$ for $x \leq 1$ and $k_{1}(x)=0$ for $x>1$, which is called Bartlett kernel, or

$$
\hat{\lambda}=\hat{\gamma}(0)+2 \sum_{\tau=1}^{q} k_{2}\left(\frac{\tau}{q+1}\right) \hat{\gamma}(\tau)
$$

where $k_{2}(x)=1-6 x^{2}+6 x^{3}$ for $0 \leq x \leq \frac{1}{2}, k_{2}(x)=2(1-x)^{3}$ for $\frac{1}{2} \leq x \leq 1$ and $k_{2}(x)=0$ for $x>1$, which is called Parzen kernel, or

$$
\hat{\lambda}=\frac{T}{T-1}\left(\hat{\gamma}(0)+\sum_{\tau=1}^{T-1} k_{3}\left(\frac{\tau}{q+1}\right) \hat{\gamma}(\tau)\right)
$$

where $k_{3}(x)=\frac{3}{(6 \pi x / 5)^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (6 \pi x / 5)\right)$, which is called the secondorder spectrum kernel.

We need to choose the bandwidth q.

Use the same statistical tables as before to test $H_{0}: \phi_{1}=1$ against $H_{1}: \phi_{1}<1$.

Some Formulas:

For proof, we use following formulas.

Let $u_{t}=\psi(L) \epsilon_{t}=\sum_{j=0}^{\infty} \psi_{j} \epsilon_{t-j}$, where $\sum_{j=0}^{\infty} j\left|\psi_{j}\right|<\infty$ and $\left\{\epsilon_{t}\right\}$ is an i.i.d. sequence with mean zero, variance σ^{2} and finite fourth moment.

Define:

$$
\begin{aligned}
& \gamma(j)=\mathrm{E}\left(u_{t} u_{t-j}\right)=\sigma^{2} \sum_{s=0}^{\infty} \psi_{s} \psi_{s+j} \quad \text { for } j=0,1,2, \cdots, \\
& \lambda=\sigma \sum_{j=0}^{\infty} \psi_{j}=\sigma \psi(1) \\
& \xi_{t}=\sum_{i=1}^{t} u_{i} \text { for } t=1,2, \cdots, T \quad \text { and } \quad \xi_{0}=0 .
\end{aligned}
$$

Then,

1. $T^{-1 / 2} \sum_{t=1}^{T} u_{t} \longrightarrow \lambda W(1)$
2. $T^{-1 / 2} \sum_{t=1}^{T} u_{t-j} \epsilon_{t} \longrightarrow N\left(0, \sigma^{2} \gamma(0)\right), \quad$ for $j=1,2, \cdots$
3. $T^{-1} \sum_{t=1}^{T} u_{t} u_{t-j} \longrightarrow \gamma(j), \quad$ for $j=1,2, \cdots$
4. $T^{-1} \sum_{t=1}^{T} \xi_{t-1} \epsilon_{t} \longrightarrow \frac{1}{2} \sigma \lambda\left(W(1)^{2}-1\right)$
5. $T^{-1} \sum_{t=1}^{T} \xi_{t-1} u_{t-j} \longrightarrow \begin{cases}\frac{1}{2}\left(\lambda^{2} W(1)^{2}-\gamma(0)\right), & \text { for } j=0, \\ \frac{1}{2}\left(\lambda^{2} W(1)^{2}-\gamma(0)\right)+\sum_{i=0}^{j-1} \gamma(i), & \text { for } j=1,2, \cdots\end{cases}$
6. $T^{-3 / 2} \sum_{t=1}^{T} \xi_{t-1} \longrightarrow \lambda \int_{0}^{1} W(r) \mathrm{d} r$
7. $T^{-3 / 2} \sum_{t=1}^{T} t u_{t-j} \longrightarrow \lambda\left(W(1)-\int_{0}^{1} W(r) \mathrm{d} r\right)$, for $j=0,1,2, \cdots$
8. $T^{-2} \sum_{t=1}^{T} \xi_{t-1}^{2} \longrightarrow \lambda^{2} \int_{0}^{1}(W(r))^{-2} \mathrm{~d} r$
9. $T^{-5 / 2} \sum_{t=1}^{T} t \xi_{t-1} \longrightarrow \lambda \int_{0}^{1} r W(r) \mathrm{d} r$
10. $T^{-3} \sum_{t=1}^{T} t \xi_{t-1} \longrightarrow \lambda^{2} \int_{0}^{1} r(W(r))^{2} \mathrm{~d} r$
11. $T^{-(\mu-1)} \sum_{t=1}^{T} t^{\mu} \longrightarrow \frac{1}{\mu+1}$, for $\mu=0,1,2, \cdots$

3．3 Cointegration（共和分）

1．For a scalar y_{t} ，when $\Delta y_{t}=y_{t}-y_{t-1}$ is a white noise（i．e．，iid），we write $\Delta y_{t} \sim I(1)$.

2．Definition of Cointegration：

Suppose that each series in a $g \times 1$ vector y_{t} is $I(1)$ ，i．e．，each series has unit root，and that a linear combination of each series（i．e，$a^{\prime} y_{t}$ for a nonzero vector a）is $I(0)$ ，i．e．，stationary．

Then，we say that y_{t} has a cointegration．

3. Example:

Suppose that $y_{t}=\left(y_{1, t}, y_{2, t}\right)^{\prime}$ is the following vector autoregressive process:

$$
\begin{aligned}
& y_{1, t}=\phi_{1} y_{2, t}+\epsilon_{1, t}, \\
& y_{2, t}=y_{2, t-1}+\epsilon_{2, t} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \Delta y_{1, t}=\phi_{1} \epsilon_{2, t}+\epsilon_{1, t}-\epsilon_{1, t-1}, \quad(\mathrm{MA}(1) \text { process }) \\
& \Delta y_{2, t}=\epsilon_{2, t}
\end{aligned}
$$

where both $y_{1, t}$ and $y_{2, t}$ are $I(1)$ processes.

The linear combination $y_{1, t}-\phi_{1} y_{2, t}$ is $I(0)$ ．
In this case，we say that $y_{t}=\left(y_{1, t}, y_{2, t}\right)^{\prime}$ is cointegrated with $a=\left(1,-\phi_{1}\right)$ ．
$a=\left(1,-\phi_{1}\right)$ is called the cointegrating vector，which is not unique．
Therefore，the first element of a is set to be one．

4．Suppose that $y_{t} \sim I(1)$ and $x_{t} \sim I(1)$ ．
For the regression model $y_{t}=x_{t} \beta+u_{t}$ ，OLS does not work well if we do not have the β which satisfies $u_{t} \sim I(0)$ ．
\Longrightarrow Spurious regression（見せかけの回帰）
5. Suppose that $y_{t} \sim I(1), y_{t}$ is a $g \times 1$ vector and $y_{t}=\binom{y_{1, t}}{y_{2, t}}$. $y_{2, t}$ is a $k \times 1$ vector, where $k=g-1$.

Consider the following regression model:

$$
y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}, \quad t=1,2, \cdots, T .
$$

OLSE is given by:

$$
\binom{\hat{\alpha}}{\hat{\gamma}}=\left(\begin{array}{cc}
T & \sum y_{2, t}^{\prime} \\
\sum y_{2, t} & \sum y_{2, t}^{\prime} y_{2, t}^{\prime}
\end{array}\right)^{-1}\binom{\sum y_{1, t}}{\sum y_{1, t} y_{2, t}}
$$

Next, consider testing the null hypothesis $H_{0}: R \gamma=r$, where R is a $m \times k$ matrix $(m \leq k)$ and r is a $m \times 1$ vector.

The F statistic, denoted by F_{T}, is given by:

$$
F_{T}=\frac{1}{m}(R \hat{\gamma}-r)^{\prime}\left(\begin{array}{ll}
\left.s_{T}^{2}\left(\begin{array}{ll}
0 & R
\end{array}\right)\left(\begin{array}{cc}
T & \sum y_{2, t}^{\prime} \\
\sum y_{2, t} & \sum y_{2, t} y_{2, t}^{\prime}
\end{array}\right)^{-1}\binom{0}{R^{\prime}}\right)^{-1}(R \hat{\gamma}-r), ~
\end{array}\right.
$$

where

$$
s_{T}^{2}=\frac{1}{T-g} \sum_{t=1}^{T}\left(y_{1, t}-\hat{\alpha}-\hat{\gamma}^{\prime} y_{2, t}\right)^{2}
$$

When we have the γ such that $y_{1, t}-\gamma y_{2, t}$ is stationary, OLSE of γ, i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_{0} is rejected by the F test.
6. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," Journal of Econometrics, Vol.33, pp. 95 - 131.

Consider a $g \times 1$ vector y_{t} whose first difference is described by:

$$
\Delta y_{t}=\Psi(L) \epsilon_{t}=\sum_{s=0}^{\infty} \Psi_{s} \epsilon_{t-s},
$$

for ϵ_{t} an i.i.d. $g \times 1$ vector with mean zero, variance $\mathrm{E}\left(\epsilon_{t} \epsilon_{t}^{\prime}\right)=P P^{\prime}$, and finite fourth moments and where $\left\{s \Psi_{s}\right\}_{s=0}^{\infty}$ is absolutely summable.

Let $k=g-1$ and $\Lambda=\Psi(1) P$.
Partition y_{t} as $y_{t}=\binom{y_{1, t}}{y_{2, t}}$ and $\Lambda \Lambda^{\prime}$ as $\Lambda \Lambda^{\prime}=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{21}^{\prime} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$, where $y_{1, t}$ and Σ_{11} are scalars, $y_{2, t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda \Lambda^{\prime}$ is nonsingular, and define $\sigma_{1}^{* 2}=\Sigma_{11}-\Sigma_{21}^{\prime} \Sigma_{22}^{-1} \Sigma_{21}$.
Let L_{22} denote the Cholesky factor of Σ_{22}^{-1}, i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1}=L_{22} L_{22}^{\prime}$.

Then, (a) - (c) hold.
(a) OLSEs of α and γ in the regression model $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$, denoted by $\hat{\alpha}_{T}$ and $\hat{\gamma}_{T}$, are characterized by:

$$
\binom{T^{-1 / 2} \hat{\alpha}_{T}}{\hat{\gamma}_{T}-\Sigma_{22}^{-1} \Sigma_{21}} \longrightarrow\binom{\sigma_{1}^{*} h_{1}}{\sigma_{1}^{*} L_{22} h_{2}}
$$

where

$$
\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
1 & \int_{0}^{1} W_{2}^{*}(r)^{\prime} \mathrm{d} r \\
\int_{0}^{1} W_{2}^{*}(r) \mathrm{d} r & \int_{0}^{1} W_{2}^{*}(r) W_{2}^{*}(r)^{\prime} \mathrm{d} r
\end{array}\right)^{-1}\binom{\int_{0}^{1} W_{1}^{*}(r) \mathrm{d} r}{\int_{0}^{1} W_{2}^{*}(r) W_{1}^{*}(r) \mathrm{d} r}
$$

where $W_{1}^{*}(r)$ and $W_{2}^{*}(r)$ denote scalar and g-dimensional standard Brownian motions, and $W_{1}^{*}(r)$ is independent of $W_{2}^{*}(r)$.
(b) The sum of squared residuals, denoted by $\operatorname{RSS}_{T}=\sum_{t=1}^{T} \hat{u}_{t}^{2}$, satisfies

$$
T^{-2} \mathrm{RSS}_{T} \longrightarrow \sigma_{1}^{* 2} H,
$$

where

$$
H=\int_{0}^{1}\left(W_{1}^{*}(r)\right)^{2} \mathrm{~d} r-\left(\binom{\int_{0}^{1} W_{1}^{*}(r) \mathrm{d} r}{\int_{0}^{1} W_{2}^{*}(r) W_{1}^{*}(r) \mathrm{d} r}^{\prime}\binom{h_{1}}{h_{2}}\right)^{-1} .
$$

(c) The F_{T} test satisfies:

$$
\begin{aligned}
T^{-1} F_{T} \longrightarrow & \frac{1}{m}\left(\sigma_{1}^{*} R^{*} h_{2}-r^{*}\right)^{\prime} \\
& \times\left(\begin{array}{cc}
\sigma_{1}^{* 2} H\left(\begin{array}{ll}
0 & R^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & \int_{0}^{1} W_{2}^{*}(r)^{\prime} \mathrm{d} r \\
\int_{0}^{1} W_{2}^{*}(r) \mathrm{d} r & \int_{0}^{1} W_{2}^{*}(r) W_{2}^{*}(r)^{\prime} \mathrm{d} r
\end{array}\right)^{-1}\left(\begin{array}{ll}
0 & \left.R^{*}\right)^{\prime}
\end{array}\right)^{-1} \\
& \times\left(\sigma_{1}^{*} R^{*} h_{2}-r^{*}\right),
\end{array}\right.
\end{aligned}
$$

where $R^{*}=R L_{22}$ and $r^{*}=r-R \Sigma_{22}^{-1} \Sigma_{21}$.
（a）indicates that $\operatorname{OLSE} \hat{\gamma}_{T}$ is not consistent．
（b）indicates that $s_{T}^{2}=\frac{1}{T-g} \sum_{t=1}^{T} \hat{u}_{t}^{2}$ diverges．
（c）indicates that F_{T} diverges．

\Longrightarrow Spurious regression（見せかけの回帰）

7. Resolution for Spurious Regression:

Suppose that $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$ is a spurious regression.
(1) Estimate $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+\phi y_{1, t-1}+\delta y_{2, t-1}+u_{t}$.

Then, $\hat{\gamma}_{T}$ is \sqrt{T}-consistent, and the t test statistic goes to the standard normal distribution under $H_{0}: \gamma=0$.
(2) Estimate $\Delta y_{1, t}=\alpha+\gamma^{\prime} \Delta y_{2, t}+u_{t}$. Then, $\hat{\alpha}_{T}$ and $\hat{\beta}_{T}$ are \sqrt{T}-consistent, and the t test and F test make sense.
(3) Estimate $y_{1, t}=\alpha+\gamma^{\prime} y_{2, t}+u_{t}$ by the Cochrane-Orcutt method, assuming that u_{t} is the first-order serially correlated error.

Usually, choose (2).
However, there are two exceptions.
(i) The true value of ϕ is not one, i.e., less than one.
(ii) $y_{1, t}$ and $y_{2, t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

8．Cointegrating Vector：

Suppose that each element of y_{t} is $I(1)$ and that $a^{\prime} y_{t}$ is $I(0)$ ．
a is called a cointegrating vector（共和分ベクトル），which is not unique．
Set $z_{t}=a^{\prime} y_{t}$ ，where z_{t} is scalar，and a and y_{t} are $g \times 1$ vectors．

For $z_{t} \sim I(0)$ (i.e., stationary),

$$
T^{-1} \sum_{t=1}^{T} z_{t}^{2}=T^{-1} \sum_{t=1}^{T}\left(a^{\prime} y_{t}\right)^{2} \longrightarrow \mathrm{E}\left(z_{t}^{2}\right)
$$

For $z_{t} \sim I(1)$ (i.e., nonstationary, i.e., a is not a cointegrating vector),

$$
T^{-2} \sum_{t=1}^{T}\left(a^{\prime} y_{t}\right)^{2} \longrightarrow \lambda^{2} \int_{0}^{1}(W(r))^{2} \mathrm{~d} r
$$

where $W(r)$ denotes a standard Brownian motion and λ^{2} indicates variance of $(1-L) z_{t}$.

If a is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_{t}^{2}$ diverges.
\Longrightarrow We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_{t}^{2}$ with respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T-consistent).

