
5.4 On Prior Distribution

5.4.1 Non-informative Prior

fθ(θ) = const.

In this case, the posterior distribution is:

fθ|y(θ|y) ∝ fy|θ(y|θ),

which is proportional to the likelihood function.

240

However, we have the case where the integration of prior diverges, i.e.,∫
fθ(θ)dθ = ∞.

In this case,fθ(θ) is called an improper prior.

241

5.4.2 Jeffreys’ Prior

fθ(θ) ∝ |J(θ)|1/2,

where

J(θ) = −
∫
∂2 log fy|θ(y|θ)
∂θ∂θ′

fy|θ(y|θ)dy = −E
(∂2 log fy|θ(y|θ)

∂θ∂θ′

)
,

which is Fisher’s information matrix.

242

5.5 Evaluation of Expectation

Posterior distributionfθ|y(θ|y)

E(θ|y) =
∫
θ fθ|y(θ|y)dθ =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

.

In the case where it is not easy to evaluate E(θ|y), how do we do?

Bayesian Method= Evaluation of Integration (Too much to say?)

• Numerical Integration

• Monte Carlo Integration

• Random Number Generation fromfθ|y(θ|y)

243

5.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a functionf (x).

Suppose thatx is a scalar.

Let x0, x1, x2, · · ·, xn ben nodes, which are sorted by order of size but not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.

Rectangular Approximation:∫
f (x)dx ≈

n∑
i=1

f (xi)(xi − xi−1) or
n∑

i=1

f (xi−1)(xi − xi−1).

244

Trapezoid Approximation:∫
f (x)dx ≈

n∑
i=1

1
2

(f (xi) + f (xi−1))(xi − xi−1).

Bivariate Case: Consider integration of a functionf (x, y).

Suppose that bothx andy are scalars.

Let x0, x1, x2, · · ·, xn ben nodes, which are sorted by order of size not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.

245

Let y0, y1, y2, · · ·, ym bem nodes.

Rectangular Approximation:∫ ∫
f (x, y)dxdy ≈

n∑
i=1

m∑
j=1

f (xi , yj)(xi − xi−1)(yj − y j−1).

Trapezoid Approximation:∫ ∫
f (x.y)dxdy

≈
n∑

i=1

m∑
j=1

1
4

(f (xi , y j) + f (xi , y j−1) + f (xi−1, y j) + f (xi−1, yj−1))(xi − xi−1)(y j − yj−1).

246

Applying to Bayes Method (Rectangular Approximation):

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)(θi − θi−1)∑n
i=1 fy|θ(y|θi) fθ(θi)(θi − θi−1)

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)∑n
i=1 fy|θ(y|θi) fθ(θi)

=

n∑
i=1

θiωi , for constantθi − θi−1,

where

ωi =
fy|θ(y|θi) fθ(θi)∑n

i=1 fy|θ(y|θi) fθ(θi)
.

247

Problem of Numerical Integration:

1. Choice of initial and terminal values=⇒ Truncation errors

2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

=⇒ k dimension, andn nodes for each dimension=⇒ nk

248

5.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a functionf (x).

Suppose thatx is a scalar.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
(f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

.

=⇒ Importance Sampling (重点的サンプリング)

249

Multivariate Case: Consider integration of a functionf (x).

Suppose thatx is a vector.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
(f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

,

which is exacly the same as the univariate case.

Computational burden:=⇒ Univariate case:n, Multivariate case:n

250

Precision of integration ???

Especially, wheng(x) is not close tof (x), approximation is prror.

Applying to Bayes Method:

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∫
θ

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ∫

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ

=
(1/n)

∑n
i=1 θiω(θi)

(1/n)
∑n

i=1ω(θi)
,

where

ω(θi) =
fy|θ(y|θi) fθ(θi)

g(θi)
.

251

Choice of g(θ) — One Solution: Definel(θ) ≡ fy|θ(y|θ) fθ(θ).

log l(θ) ≈ log l(θ̃) +
1

l(θ̃)

∂l(θ̃)
∂θ

(θ − θ̃)

+
1
2

(θ − θ̃)′
(
− 1

l(θ̃)2

∂l(θ̃)
∂θ

∂l(θ̃)
∂θ′
+

1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃)

= −1
2

(θ − θ̃)′
(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃), whenθ̃ is a mode ofl(θ).

Thus,N
(
θ̃,

(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)−1)
might be taken as the importance densityg(θ).

252

5.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws ofθ from the posterior distributionfθ|y(θ|y).

Then, (1/n)
∑n

i=1 θi is taken as a consistent estimator of E(θ|y), whereθi indicates

the ith random draw generated fromfθ|y(θ|y).

Note that (1/n)
∑n

i=1 θi −→ E(θ|y) under the condition (1/n)
∑n

i=1 θi < ∞.

Bayesian confidence interval, median, quntiles and so on are obtained by sortingθ1,

θ2, · · ·, θn in order of size.

=⇒ Sampling methods

253

5.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and

Johnson (2000a, 2000b, 2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws

between zero and one.

5.6.1 Uniform Distribution: U(0,1)

Properties of Uniform Distribution: The most heuristic and simplest distribu-

tion is uniform.

254

Theuniform distribution between zero and one is given by:

f (x) =

1, for 0 < x < 1,

0, otherwise.

Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, φ(θ) =

eθ − 1
θ
.

Use L’Hospital’s theorem to derive E(X) and V(X) usingφ(θ).

In the next section, we introduce an idea of generating uniform random draws,

which in turn yield the other random draws by the transformation of variables, the

inverse transform algorithm and so on.

255

Uniform Random Number Generators: It is no exaggeration to say that all the

random draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as ex-

ponential, normal, logistic, Bernoulli and other distributions are obtained by trans-

forming the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.

However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears

at random is taken as a sequence of random numbers.

256

First, consider the following relation:

m= k− [k/n]n,

wherek, m andn are integers.

[k/n] denotes the largest integer less than or equal to the argument.

In Fortran 77, it is written asm=k-int(k/n)*n, where 0≤ m< n.

m indicates theremainder (余り) whenk is divided byn.

n is called themodulus (商).

We define the right hand side in the equation above as:

k− [k/n]n ≡ k modn.

257

Then, using the modular arithmetic we can rewrite the above equation as follows:

m= k modn,

which is represented by:m=mod(k,n) in Fortran 77 andm=k%n in C language.

A basic idea of the uniform random draw is as follows.

Givenxi−1, xi is generated by:

xi = (axi−1 + c) modn,

where 0≤ xi < n.

a andc are positive integers, called themultiplier and theincrement, respectively.

258

The generator above have to be started by an initial value, which is called theseed.

ui = xi/n is regarded as a uniform random number between zero and one.

This generator is called thelinear congruential generator (線形合同法).

Especially, whenc = 0, the generator is called themultiplicative linear congru-

ential generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a andc are properly chosen, the period of the generator isn.

However, when they are not chosen very carefully, there may be a lot of serial

correlation among the generated values.

259

Therefore, the performance of the congruential generators depend heavily on the

choice of (a, c).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980),

Law and Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casella

(1999), Rubinstein and Melamed (1998), Thompson (2000) and so on for the other

congruential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three

260

congruential generators for 16-bit computers.

The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

zi = 170zi−1 mod 30323,

and

ui =
(xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e.,x0, y0 andz0, for this random number generator.

261

ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95× 1012).

The source code of this generator is given byurnd16(ix,iy,iz,rn), whereix,

iy andiz are seeds andrn represents the uniform random number between zero

and one.

——— urnd16(ix,iy,iz,rn)———

1: subroutine urnd16(ix,iy,iz,rn)
2: c
3: c Input:
4: c ix, iy, iz: Seeds
5: c Output:

262

6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 ix=mod(171*ix,30269)
9: iy=mod(172*iy,30307)

10: iz=mod(170*iz,30323)
11: rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int(rn)
13: if(rn.le.0) go to 1
14: return
15: end

We exclude one in Line 12 and zero in Line 13 fromrn.

That is, 0< rn < 1 is generated inurnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier errors in

263

programming, when the other random draws are derived based on the transforma-

tion of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respect

to the higher order autocorrelations in sequences, and conclude that the Wichmann-

Hill generator performs well.

For 32-bit computers, L’Ecuyer (1988) proposed a combination ofk congruential

generators that have prime modulinj, such that all values of (nj −1)/2 are relatively

prime, and with multipliers that yield full periods.

Let the sequence fromjth generator bexj,1, xj,2, x j,3, · · ·.

264

Consider the case where each individual generatorj is a maximum-period multi-

plicative linear congruential generator with modulusnj and multiplieraj, i.e.,

x j,i ≡ aj x j,i−1 modnj .

Assuming that the first generator is a relatively good one and thatn1 is fairly large,

we form theith integer in the sequence as:

xi =

k∑
j=1

(−1)j−1xj,i mod (n1 − 1),

where the other modulinj, j = 2,3, · · · , k, do not need to be large.

265

The normalization takes care of the possibility of zero occurring in this sequence:

ui =

xi

n1
, if xi > 0,

n1 − 1
n1
, if xi = 0.

As for each individual generatorj, note as follows.

Defineq = [n/a] andr ≡ n moda, i.e.,n is decomposed asn = aq+ r, wherer < a.

Therefore, for 0< x < n, we have:

ax modn = (ax− [x/q]n) modn

=
(
ax− [x/q](aq+ r)

)
modn

266

=
(
a(x− [x/q]q) − [x/q]r

)
modn

=
(
a(x modq) − [x/q]r

)
modn.

Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential

generators, wherek = 2, (a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and

(a2, n2, q2, r2) = (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown inurnd(ix,iy,rn), whereix andiy are inputs, i.e.,

seeds, andrn is an output, i.e., a uniform random number between zero and one.

267

——— urnd(ix,iy,rn)———

1: subroutine urnd(ix,iy,rn)
2: c
3: c Input:
4: c ix, iy: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 kx=ix/53668
9: ix=40014*(ix-kx*53668)-kx*12211

10: if(ix.lt.0) ix=ix+2147483563
11: c
12: ky=iy/52774
13: iy=40692*(iy-ky*52774)-ky*3791
14: if(iy.lt.0) iy=iy+2147483399
15: c
16: rn=ix-iy
17: if(rn.lt.1.) rn=rn+2147483562
18: rn=rn*4.656613e-10

268

19: if(rn.le.0.) go to 1
20: c
21: return
22: end

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018

(more precisely 2.31× 1018), which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where

the above generator performs well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit

computers.

269

Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988)

is combined with the shuffling method suggested by Bays and Durham (1976),

and it is introduced asran2 in Press, Teukolsky, Vetterling and Flannery (1992a,

1992b).

However, from relatively long period and simplicity of the source code, hereafter

the subroutineurnd(ix,iy,rn) is utilized for the uniform random number gen-

eration method, and we will obtain various random draws based on the uniform

random draws.

270

5.6.2 TransformingU(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density

functions are derived from the uniform distributionU(0,1) by transformation of

variables.

Normal Distribution: N(0,1): The normal distribution with mean zero and vari-

ance one, i.e, the standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.

271

Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, φ(θ) = exp
(1
2
θ2

)
.

The normal random variable is constructed using two independent uniform random

variables.

This transformation is well known as the Box-Muller (1958) transformation and is

shown as follows.

Let U1 andU2 be uniform random variables between zero and one.

Suppose thatU1 is independent ofU2.

272

Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).

where we have−∞ < X1 < ∞ and−∞ < X2 < ∞when 0< U1 < 1 and 0< U2 < 1.

Then, the inverse transformation is given by:

u1 = exp

(
−

x2
1 + x2

2

2

)
, u2 =

1
2π

arctan
x2

x1
.

We perform transformation of variables in multivariate cases.

273

From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp

(
−1

2
(x2

1 + x2
2)
)
.

Let fx(x1, x2) be the joint density ofX1 andX2 and fu(u1, u2) be the joint density of

U1 andU2.

SinceU1 andU2 are assumed to be independent, we have the following:

fu(u1,u2) = f1(u1) f2(u2) = 1,

274

where f1(u1) and f2(u2) are the density functions ofU1 andU2, respectively.

Note that f1(u1) = f2(u2) = 1 becauseU1 andU2 are uniform random variables

between zero and one.

Accordingly, the joint density ofX1 andX2 is:

fx(x1, x2) = |J| fu
(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp

(
−1

2
x2

1

)
× 1
√

2π
exp

(
−1

2
x2

2

)
,

which is a product of two standard normal distributions.

275

Thus,X1 andX2 are mutually independently distributed as normal random variables

with mean zero and variance one.

See Hogg and Craig (1995, pp.177 – 178).

The source code of the standard normal random number generator shown above is

given bysnrnd(ix,iy,rn).

——— snrnd(ix,iy,rn)———

1: subroutine snrnd(ix,iy,rn)
2: c
3: c Use "snrnd(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c

276

6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Standard Normal Random Draw N(0,1)

10: c
11: pi= 3.1415926535897932385
12: call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn=sqrt(-2.0*log(rn1))*sin(2.0*pi*rn2)
15: return
16: end

snrnd(ix,iy,rn) should be used together with the uniform random number gen-

eratorurnd(ix,iy,rn) shown in Section 5.6.1 (p.267).

rn in snrnd(ix,iy,rn) corresponds toX2.

277

Conventionally, one ofX1 andX2 is taken as the random number which we use.

Here,X1 is excluded from consideration.

snrnd(ix,iy,rn) includes the sine, which takes a lot of time computationally.

Therefore, to avoid computation of the sine, various algorithms have been invented

(Ahrens and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLaren

and Bray (1964) and so on).

Standard Normal Probabilities WhenX ∼ N(0,1), we have the case where we

want to approximatep such thatp = F(x) given x, whereF(x) =
∫ x

−∞ f (t) dt =

278

P(X < x).

Adams (1969) reports that

P(X > x) =
∫ ∞

x

1
√

2π
e−

1
2 t2 dt =

1
√

2π
e−

1
2 x2(1

x+
1
x+

2
x+

3
x+

4
x+
· · ·

)
,

for x > 0, where the form in the parenthesis is called the continued fraction, which

is defined as follows:

a1

x1+

a2

x2+

a3

x3+
· · · = a1

x1 +
a2

x2 +
a3

x3 + · · ·

.

A lot of approximations on the continued fraction shown above have been proposed.

279

See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (1994).

Here, we introduce the following approximation (see Takeuchi (1989)):

P(X > x) =
1
√

2π
e−

1
2 x2

(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5), t =
1

1+ a0x
,

a0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782,

b3 = 1.781477937, b4 = −1.821255978, b5 = 1.330274429.

In snprob(x,p) below,P(X < x) is shown.

That is,p up to Line 19 is equal toP(X > x) in snprob(x,p).

In Line 20,P(X < x) is obtained.

280

——— snprob(x,p)———

1: subroutine snprob(x,p)
2: c
3: c Input:
4: c x: N(0,1) Percent Point
5: c Output:
6: c p: Probability corresponding to x
7: c
8: pi= 3.1415926535897932385
9: a0= 0.2316419

10: b1= 0.319381530
11: b2=-0.356563782
12: b3= 1.781477937
13: b4=-1.821255978
14: b5= 1.330274429
15: c
16: z=abs(x)
17: t=1.0/(1.0+a0*z)
18: pr=exp(-.5*z*z)/sqrt(2.0*pi)

281

19: p=pr*t*(b1+t*(b2+t*(b3+t*(b4+b5*t))))
20: if(x.gt.0.0) p=1.0-p
21: c
22: return
23: end

The maximum error of approximation ofp is 7.5× 10−8, which practically gives us

enough precision.

Standard Normal Percent Points When X ∼ N(0,1), we approximatex such

that p = F(x) given p, whereF(x) indicates the standard normal cumulative distri-

bution function, i.e.,F(x) = P(X < x), andp denotes probability.

282

As shown in Odeh and Evans (1974), the approximation of a percent point is of the

form:

x = y+
S4(y)
T4(y)

= y+
p0 + p1y+ p2y2 + p3y3 + p4y4

q0 + q1y+ q2y2 + q3y3 + q4y4
,

wherey =
√
−2 log(p).

S4(y) andT4(y) denote polynomials degree 4.

The source code is shown insnperpt(p,x), wherex is obtained within 10−20 <

p < 1− 10−20.

283

——— snperpt(p,x)———

1: subroutine snperpt(p,x)
2: c
3: c Input:
4: c p: Probability
5: c (err<p<1-err, where err=1e-20)
6: c Output:
7: c x: N(0,1) Percent Point corresponding to p
8: c
9: p0=-0.322232431088

10: p1=-1.0
11: p2=-0.342242088547
12: p3=-0.204231210245e-1
13: p4=-0.453642210148e-4
14: q0= 0.993484626060e-1
15: q1= 0.588581570495

284

16: q2= 0.531103462366
17: q3= 0.103537752850
18: q4= 0.385607006340e-2
19: ps=p
20: if(ps.gt.0.5) ps=1.0-ps
21: if(ps.eq.0.5) x=0.0
22: y=sqrt(-2.0*log(ps))
23: x=y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)
24: & /((((y*q4+q3)*y+q2)*y+q1)*y+q0)
25: if(p.lt.0.5) x=-x
26: return
27: end

The maximum error of approximation ofx is 1.5× 10−8 if the function is evaluated

in double precision and 1.8× 10−6 if it is evaluated in single precision.

285

The approximation of the formx = y + S2(y)/T3(y) by Hastings (1955) gives a

maximum error of 4.5× 10−4.

To improve accuracy of the approximation, Odeh and Evans (1974) proposed the

algorithm above.

Normal Distribution: N(µ, σ2): The normal distribution denoted byN(µ, σ2) is

represented as follows:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2

,

for −∞ < x < ∞.

286

µ is called alocation parameterandσ2 is ascale parameter.

Mean, variance and the moment-generating function of the normal distribution

N(µ, σ2) are given by:

E(X) = µ, V(X) = σ2, φ(θ) = exp
(
µθ +

1
2
σ2θ2

)
.

When µ = 0 andσ2 = 1 are taken, the above density function reduces to the

standard normal distribution in Section 5.6.2.

X = σZ+µ is normally distributed with meanµ and varianceσ2, whenZ ∼ N(0,1).

Therefore, the source code is represented bynrnd(ix,iy,ave,var,rn), where

ave andvar correspond toµ andσ2, respectively.

287

——— nrnd(ix,iy,ave,var,rn)———

1: subroutine nrnd(ix,iy,ave,var,rn)
2: c
3: c Use "nrnd(ix,iy,ave,var,rn)"
4: c together with "urnd(ix,iy,rn)"
5: c and "snrnd(ix,iy,rn)".
6: c
7: c Input:
8: c ix, iy: Seeds
9: c ave: Mean

10: c var: Variance
11: c Output:
12: c rn: Normal Random Draw N(ave,var)
13: c
14: call snrnd(ix,iy,rn1)
15: rn=ave+sqrt(var)*rn1

288

16: return
17: end

nrnd(ix,iy,ave,var,rn) should be used together withurnd(ix,iy,rn) on

p.267 andsnrnd(ix,iy,rn) on p.276. It is possible to replacesnrnd(ix,iy,rn)

by snrnd2(ix,iy,rn) or snrnd3(ix,iy,rn).

289

Exponential Distribution: The exponential distribution with parameterβ is

written as:

f (x) =

1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.

Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, φ(θ) =
1

1− βθ .

290

The relation between the exponential random variable the uniform random variable

is shown as follows:

WhenU ∼ U(0,1), consider the following transformation:

X = −β log(U).

Then,X is an exponential distribution with parameterβ.

Because the transformation is given byu = exp(−x/β), the Jacobian is:

J =
du
dx
= −1
β

exp
(
−1
β

x
)
.

291

By transforming the variables, the density function ofX is represented as:

f (x) = |J| fu
(
exp(−1

β
x)

)
=

1
β

exp
(
−1
β

x
)
,

where f (·) and fu(·) denote the probability density functions ofX andU, respec-

tively.

Note that 0< x < ∞ because ofx = −β log(u) and 0< u < 1.

Thus, the exponential distribution with parameterβ is obtained from the uniform

random draw between zero and one.

292

——— exprnd(ix,iy,beta,rn)———

1: subroutine exprnd(ix,iy,beta,rn)
2: c
3: c Use "exprnd(ix,iy,beta,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c beta: Parameter
9: c Output:

10: c rn: Exponential Random Draw
11: c with Parameter beta
12: c
13: call urnd(ix,iy,rn1)
14: rn=-beta*log(rn1)
15: return
16: end

293

exprnd(ix,iy,beta,rn) should be used together withurnd(ix,iy,rn) on p.267.

Whenβ = 2, the exponential distribution reduces to the chi-square distribution with

2 degrees of freedom.

Gamma Distribution: G(α, β): The gamma distribution with parametersα and

β, denoted byG(α, β), is represented as follows:

f (x) =

1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,

294

for α > 0 andβ > 0, whereα is called ashape parameterandβ denotes a scale

parameter.

Γ(·) is called thegamma function, which is the following function ofα:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ
(1
2

)
= 2Γ

(3
2

)
=
√
π.

Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, φ(θ) =
1

(1− βθ)α .

295

The gamma distribution withα = 1 is equivalent to the exponential distribution

shown in Section 5.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parame-

tersα andβ are derived as follows.

The derivation shown in this section deals with the case whereα is a positive integer,

i.e.,α = 1,2,3, · · ·.

The random variablesZ1, Z2, · · ·, Zα are assumed to be mutually independently

distributed as exponential random variables with parameterβ, which are shown in

296

Section 5.6.2.

DefineX =
∑α

i=1 Zi.

Then,X has distributed as a gamma distribution with parametersα andβ, whereα

should be an integer, which is proved as follows:

φx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi) =
α∏

i=1

E(eθZi) =
α∏

i=1

φi(θ) =
α∏

i=1

1
1− βθ

=
1

(1− βθ)α ,

whereφx(θ) andφi(θ) represent the moment-generating functions ofX andZi, re-

spectively.

297

Thus, sum of theα exponential random variables yields the gamma random variable

with parametersα andβ.

Therefore, the source code which generates gamma random numbers is shown in

gammarnd(ix,iy,alpha,beta,rn).

——— gammarnd(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd(ix,iy,alpha,beta,rn)"
4: c together with "exprnd(ix,iy,beta,rn)"
5: c and "urnd(ix,iy,rn)".
6: c
7: c Input:

298

8: c ix, iy: Seeds
9: c alpha: Shape Parameter (which should be an integer)

10: c beta: Scale Parameter
11: c Output:
12: c rn: Gamma Random Draw with alpha and beta
13: c
14: rn=0.0
15: do 1 i=1,nint(alpha)
16: call exprnd(ix,iy,beta,rn1)
17: 1 rn=rn+rn1
18: return
19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together withurnd(ix,iy,rn)

on p.267 andexprnd(ix,iy,rn) on p.292.

299

As pointed out above,α should be an integer in the source code.

Whenα is large, we have serious problems computationally in the above algorithm,

becauseα exponential random draws have to be generated to obtain one gamma

random draw with parametersα andβ.

Whenα = k/2 andβ = 2, the gamma distribution reduces to the chi-square distri-

bution withk degrees of freedom.

300

Chi-Square Distribution: χ2(k): The chi-square distribution withk degrees of

freedom, denoted byχ2(k), is written as follows:

f (x) =

1

2k/2Γ(k
2)

x
k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

wherek is a positive integer.

The chi-square distribution is equivalent to the gamma distribution withβ = 2 and

α = k/2.

The chi-square distribution withk = 2 reduces to the exponential distribution with

β = 2, shown in Section 5.6.2.

301

Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, φ(θ) =
1

(1− 2θ)k/2
.

F Distribution: F(m,n): The F distribution withm andn degrees of freedom,

denoted byF(m, n), is represented as:

f (x) =

Γ(m+n

2)

Γ(m
2)Γ(n

2)

(m
n

)m
2 x

m
2 −1

(
1+

m
n

x
)−m+n

2
, for 0 < x < ∞,

0, otherwise,

wherem andn are positive integers.

302

Mean and variance are given by:

E(X) =
n

n− 2
, for n > 2,

V(X) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, for n > 4.

The moment-generating function ofF distribution does not exist.

OneF random variable is derived from two chi-square random variables.

Suppose thatU andV are independently distributed as chi-square random variables,

i.e.,U ∼ χ2(m) andV ∼ χ2(n).

Then, it is shown thatX =
U/m
V/n

has aF distribution with (m, n) degrees of freedom.

303

t Distribution: t(k): Thet distribution (or Student’st distribution) withk degrees

of freedom, denoted byt(k), is given by:

f (x) =
Γ(k+1

2)

Γ(k
2)

1
√

kπ

(
1+

x2

k

)− k+1
2
,

for −∞ < x < ∞, wherek does not have to be an integer but conventionally it is a

positive integer.

Whenk is small, thet distribution has fat tails.

Thet distribution withk = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, thet distribution approaches the standard normal distribution,

304

i.e., t(∞) = N(0,1), which is easily shown by using the definition ofe, i.e.,(
1+

x2

k

)− k+1
2
=

(
1+

1
h

)− hx2+1
2
=

(
(1+

1
h

)h
)− 1

2 x2(
1+

1
h

)− 1
2 −→ e−

1
2 x2
,

whereh = k/x2 is set andh goes to infinity (equivalently,k goes to infinity).

Thus, a kernel of thet distribution is equivalent to that of the standard normal dis-

tribution.

Therefore, it is shown that ask is large thet distribution approaches the standard

normal distribution.

Mean and variance of thet distribution withk degrees of freedom are obtained as:

E(X) = 0, for k > 1,

305

V(X) =
k

k− 2
, for k > 2.

In the case of thet distribution, the moment-generating function does not exist,

because all the moments do not necessarily exist.

For thet random variableX, we have the fact that E(Xp) exists whenp is less than

k.

Therefore, all the moments exist only whenk is infinity.

One t random variable is obtained from chi-square and standard normal random

variables.

Suppose thatZ ∼ N(0,1) is independent ofU ∼ χ2(k).

306

Then,X = Z/
√

U/k has at distribution withk degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generatingt random draws, which

is based on a transformed acceptance/rejection method, which will be discussed

later.

307

5.6.3 Inverse Transform Method

In Section 5.6.2, we have introduced the probability density functions which can be

derived by transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transform

method are presented and the corresponding random number generators are shown.

The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution functionF(·).

WhenU ∼ U(0,1), F−1(U) is equal toX.

308

The proof is obtained from the following fact:

P(X < x) = P(F−1(U) < x) = P(U < F(x)) = F(x).

In other words, letu be a random draw ofU, whereU ∼ U(0,1), andF(·) be a

distribution function ofX.

When we perform the following inverse transformation:

x = F−1(u),

x implies the random draw generated fromF(·).

309

The inverse transform method shown above is useful whenF(·) can be computed

easily and the inverse distribution function, i.e.,F−1(·), has a closed form.

For example, recall thatF(·) cannot be obtained explicitly in the case of the normal

distribution because the integration is included in the normal cumulative distribu-

tion (conventionally we approximate the normal cumulative distribution when we

want to evaluate it).

If no closed form ofF−1(·) is available butF(·) is still computed easily, an iterative

method such as the Newton-Raphson method can be applied.

Definek(x) = F(x) − u.

310

The first order Taylor series expansion aroundx = x∗ is:

0 = k(x) ≈ k(x∗) + k′(x∗)(x− x∗).

Then, we obtain:

x = x∗ − k(x∗)
k′(x∗)

= x∗ − F(x∗) − u
f (x∗)

.

Replacingx andx∗ by x(i) andx(i−1), we have the following iteration:

x(i) = x(i−1) − F(x(i−1)) − u
f (x(i−1))

,

for i = 1, 2, · · ·.

311

The convergence value ofx(i) is taken as a solution of equationu = F(x).

Thus, based onu, a random drawx is derived fromF(·).

However, we should keep in mind that this procedure takes a lot of time computa-

tionally, because we need to repeat the convergence computation shown above as

many times as we want to generate.

312

