5.4 On Prior Distribution
5.4.1 Non-informative Prior

fg(6) = const.
In this case, the posterior distribution is:

fay(6ly) o< fye(Y16),

which is proportional to the likelihood function.

240

However, we have the case where the integration of prior diverges, i.e.,

f £,(6)d0 = oo.

In this casefy(0) is called an improper prior.

241

5.4.2 Jdfreys’ Prior

fo(6) < 13(O)I*,

where

0% log fye(y16) 92 log fy6(yi6)
30 =~ [2 vy = ().

which is Fisher’s information matrix.

242

5.5 Evaluation of Expectation

Posterior distributiorfyy(6ly)

J 0%(y16) f5(0)d0
J fu(v6) fa(6)d6
In the case where it is not easy to evaluaté{yf(how do we do?

E@ly) = f 0y (0ly)do =

Bayesian Method= Evaluation of Integration (Too much to say?)
e Numerical Integration
e Monte Carlo Integration

e Random Number Generation frofy,(6ly)

243

5.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a functiof(x).
Suppose that is a scalar.

Let g, X1, X2, - - -, Xy bEN NOdeES, which are sorted by order of size but not necessarily

equal intervals betweex_; andx fori =1,2,---,n.

Rectangular Approximation:

n

[o9k Y f0006 =% or Y 106 - 1)

i=1 i=1

244

Trapezoid Approximation:

n
1
| fooax 375109+ 1069006 52
Bivariate Case: Consider integration of a functiof(x, y).

Suppose that botkandy are scalars.

Let Xo, X1, X2, - - -, X, beN nodes, which are sorted by order of size not necessarily

equal intervals betweex_; andx; fori =1,2,---,n.

245

Letyo, V1, Y2, - - -, Ym DEMNOdes.

Rectangular Approximation:

[[oy Y 0y - %0 - o

i=1 j=1

Trapezoid Approximation:

f f f(x.y)dxdy

< D7D 200 + F06Yia) + F06ca i) + F06a Yl — %)) — i)

i=1 j=1

246

Applying to Bayes Method (Rectangular Approximation):

_ SO0 008 _ B, 6 fu(y16) f6)E - 6)
[fo(vO)fs0)de Zils fyo(¥16) Fo(6)(6: — 6i-1)
2t 6 fye (Y1) To (6 .

)
- = Giwi, for constan®; — 6;_4,
Yita fyo(¥16:) To(6)) ; o -

E@ly)

where
o = fye(Y16:) To(6))
LY freV0) fa(6)

247

Problem of Numerical Integration:
1. Choice of initial and terminal values= Truncation errors
2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

= k dimension, anah nodes for each dimensiog= nK

248

5.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a functiof(x).
Suppose that is a scalar.

Let Xq, X, - - -, X, benrandom draws generated fragx).

e () 1 ()
| tooex= 900 9090 = E(g55) = nzg(m)'

— Importance Sampling @R #H > T v 45)

249

Multivariate Case: Consider integration of a functiof(x).
Suppose that is a vector.

Let Xq, X, - - -, X, benrandom draws generated fragx).

e () 1 ()
| tooex= 900 9090 = E(g55) = nzg(x)

which is exacly the same as the univariate case.

Computational burden= Univariate casen, Multivariate case:n

250

Precision of integration ?7?77?

Especially, wherg(x) is not close tof (X), approximation is prror.

Applying to Bayes Method:
fyio(¥16) fo(6)

ey < L0 TO® e T R
e [fy0(y16) f5(6)do - ffyle(wé’)fe(@)g(g)dg OO ON
9(6)
where
fyia(Y16:) To (6

251

Choice of g() — One Solution: Definel(0) = fy,(y16) f¢(6).

1 01()
1) 66 56 @0
1, ., 1 3@)a@ 1 64®)
309 (_|(é)2 96 96 " 1(9) 0000"
1 8(6)
1(8) 0606

logl(6) ~ logl(d) +

)@ - 6)

= -%(9 - 0y(-)J©-8), whendisamode of(6).

1 8A(@6)\-1, . . .
@8989’)) might be taken as the importance dengif).

Thus,N(é, (—

252

5.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws @from the posterior distributioffy(6ly).

Then, (In) 3L, 6 is taken as a consistent estimator of|§, whereg; indicates

theith random draw generated frofi,(6ly).
Note that (In) >, 6 — E(0ly) under the condition (&) >, 6 < .

Bayesian confidence interval, median, quntiles and so on are obtained by 8grting

6,, ---, 8, in order of size.

= Sampling methods

253

5.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and
Johnson (2000a, 2000b, 2000c, 2000d, 2000e).
The random draws discussed in this section are based on uniform random dra

between zero and one.

5.6.1 Uniform Distribution: U(0, 1)

Properties of Uniform Distribution: ~ The most heuristic and simplest distribu-

tion is uniform.

254

Theuniform distribution between zero and one is given by:

1, forO<x<1,
f(x) =
0, otherwise.

Mean, variance and the moment-generating function are given by:

Q=2 V0= e0)=1

Use L'Hospital’s theorem to derive Ef and V(X) using¢(6).
In the next section, we introduce an idea of generating uniform random draws
which in turn yield the other random draws by the transformation of variables, the

inverse transform algorithm and so on.

255

Uniform Random Number Generators: Itis no exaggeration to say that all the
random draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as
ponential, normal, logistic, Bernoulli and other distributions are obtained by trans
forming the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.
However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appes

at random is taken as a sequence of random numbers.

256

First, consider the following relation:
m =k — [k/n]n,

wherek, mandn are integers.

[k/n] denotes the largest integer less than or equal to the argument.
In Fortran 77, it is written ag=k-int (k/n)*n, where O< m< n.
mindicates theemainder (5k Y) whenk is divided byn.

nis called themodulus (7).

We define the right hand side in the equation above as:
k — [k/n]n = k modn.

257

Then, using the modular arithmetic we can rewrite the above equation as follows:
m =k modn,

which is represented byt=mod (k,n) in Fortran 77 aneh=k%n in C language.
A basic idea of the uniform random draw is as follows.

Givenx_y, X is generated by:
X = (a%_1 + €) modn,

where 0< X, < n.

aandc are positive integers, called thaultiplier and theincrement, respectively.

258

The generator above have to be started by an initial value, which is calleddie

U = X /nis regarded as a uniform random number between zero and one.

This generator is called tHmear congruential generator ({2 & Ei%).

Especially, whert = 0, the generator is called tmaultiplicative linear congru-
ential generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, aandc are properly chosen, the period of the generatar is

However, when they are not chosen very carefully, there may be a lot of seric

correlation among the generated values.

259

Therefore, the performance of the congruential generators depend heavily on t
choice of g, ¢).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (198C
Law and Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casell
(1999), Rubinstein and Melamed (1998), Thompson (2000) and so on for the oth
congruential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of thre

260

congruential generators for 16-bit computers.

The generator is given by:

% = 171%_, mod 30269
yi = 172, mod 30307
z = 170z_, mod 30323

and

X; Yi Z
= dl
U = (30260" 30307 3033 ™
We need to set three seeds, iXg,,Yo andz, for this random number generator.

261

u; is regarded as a uniform random draw within the interval between zero and one
The period is of the order of 13®(more precisely the period is3b x 10'?).
The source code of this generator is givenumnd16(ix,iy,iz,rn), whereix,

iy andiz are seeds angn represents the uniform random number between zero

and one.
———urnd16(@ix,iy,iz,rn) ——
1: subroutine urndl16(ix,iy,iz,rn)
2: C
3: ¢ Input:
4: C ix, iy, iz: Seeds
5. ¢ Output:

262

6: C rn: Uniform Random Draw U(®,1)
7. C

8: 1 ix=mod(171%*ix,30269)

9: iy=mod(172%iy,30307)

10: iz=mod(170%iz,30323)

11 rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int (rn)

13: if(rn.le.®) go to 1

14 return

15: end

We exclude one in Line 12 and zero in Line 13 fram
Thatis, O< rn < 1 is generated inrnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier errors

263

programming, when the other random draws are derived based on the transforn
tion of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respec
to the higher order autocorrelations in sequences, and conclude that the Wichmar
Hill generator performs well.

For 32-bit computers, L'Ecuyer (1988) proposed a combinatiok @sngruential
generators that have prime modujj such that all values ofi{ —1)/2 are relatively
prime, and with multipliers that yield full periods.

Let the sequence frorjth generator be; 1, X;2, Xj3, - - -

264

Consider the case where each individual generptera maximum-period multi-

plicative linear congruential generator with moduhysind multipliera;, i.e.,
Xji = ajXji-1 mod n;.

Assuming that the first generator is a relatively good one andhthatfairly large,

we form theith integer in the sequence as:

K
% =) (-1)"'x;; mod (- 1),

j=1

where the other modufij, j = 2,3,---,K, do not need to be large.

265

The normalization takes care of the possibility of zero occurring in this sequence:
b
nl’
n-1

if xi >0,
U =
, if x; =0.

n

As for each individual generatqr note as follows.
Defineq = [n/a] andr = nmoda, i.e.,nis decomposed as= aq+r, wherer < a.
Therefore, for O< x < n, we have:

axmodn = (ax— [x/g]n) modn

= (ax— [x/q](aq+ r)) modn

266

= (a(x_ [x/dla) — [X/q]r) modn
= (a(x modq) — [X/q]r) modn.

Practically, LEcuyer (1988) suggested combining two multiplicative congruential
generators, where= 2, (@1, ng, qi, r1) = (40014, 2147483563, 53668, 12211) and
(az, Np, Oz, I2) = (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown urnd(ix,iy,rn), whereix andiy are inputs, i.e.,

seeds, andn is an output, i.e., a uniform random number between zero and one.

267

NnnNnnNnNnNON

H urnd(ix,iy,rn) %

subroutine urnd(ix,iy,rn)

Input:
ix, iy: Seeds
Output:
rn: Uniform Random Draw U(0,1)

1 kx=ix/53668
1ix=40014*(ix-kx*53668)-kx*12211
if(ix.1t.0) ix=ix+2147483563

ky=iy/52774
iy=40692* (iy-ky*52774)-ky*3791
if(iy.1t.0) iy=iy+2147483399

rn=ix-iy

if(rn.1t.1.) rn=rn+2147483562
rn=rn*4.656613e-10

268

19: if(rn.le.0.) go to 1

20: C
21: return
22: end

The period of the generator proposed by L'Ecuyer (1988) is of the order'8f 10
(more precisely 31 x 10'8), which is quite long and practically long enough.
L'Ecuyer (1988) presents the results of both theoretical and empirical tests, whel
the above generator performs well.

Furthermore, L'Ecuyer (1988) gives an additional portable generator for 16-bi

computers.

269

Also, see L'Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L'Ecuyer (198¢
is combined with the sHhliing method suggested by Bays and Durham (1976),
and it is introduced asan2 in Press, Teukolsky, Vetterling and Flannery (1992a,
1992b).

However, from relatively long period and simplicity of the source code, hereaftel
the subroutineirnd(ix, iy, rn) is utilized for the uniform random number gen-
eration method, and we will obtain various random draws based on the uniforr

random draws.

270

5.6.2 TransformingU (0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density
functions are derived from the uniform distributi@h(0, 1) by transformation of

variables.

Normal Distribution: N(O,1): The normal distribution with mean zero and vari-

ance one, i.e, the standard normal distribution, is represented by:

1 1,2
f(X) = —e2¥,
V2n

for —oco < X < .

271

Mean, variance and the moment-generating function are given by:
1 2
EX)=0, V(X)=1 ¢@) = exp(ée)-

The normal random variable is constructed using two independent uniform randol
variables.

This transformation is well known as the Box-Muller (1958) transformation and is
shown as follows.

Let U; andU, be uniform random variables between zero and one.

Suppose thdt; is independent of),.

272

Consider the following transformation:

X1 = y-2log(U,) cos(ZU>),
X = 4/=2logU4) sin(2rU,).

where we havec < X; < oo and—oo < X, < cowhen0< U; < 1and O< U, < 1.

Then, the inverse transformation is given by:

X2 + %5 1 Xo
Uy = exp|l-———1, Up = o—arctan. -
1

We perform transformation of variables in multivariate cases.

273

From this transformation, the Jacobian is obtained as:

ou; Oy 1 2 > 1 2 >
S % 9%) —X1 exp(—é(xl + x2)) —Xo exp(—é(x1 + x2))
RECE 1 % 1 %
X, 0% 21 X2 + %5 21 X2 + X5
1 1
= exp(—é(xf + xg)).

Let (X1, X2) be the joint density oK; and X, and f,(u;, U;) be the joint density of
U, andUQ.

SinceU; andU, are assumed to be independent, we have the following:

fu(u, Uz) = fi(ur) fa(u2) = 1,

274

wheref;(u;) and f,(u,) are the density functions &f, andU,, respectively.
Note thatf;(u;) = fo(u) = 1 becausdJ; andU, are uniform random variables
between zero and one.
Accordingly, the joint density 0K; andX; is:
2 2

1%
2

= % exp(—%(xf + x%))

X2
fo(x. %) = |3/ fu(exp)5 arctanx—l)
1 1, 1 1,
= —— exg—=X{) X — expg—=X%5),
N H-3%) N H-3%)
which is a product of two standard normal distributions.

275

Thus, X; andX; are mutually independently distributed as normal random variables
with mean zero and variance one.

See Hogg and Craig (1995, pp.177 — 178).

The source code of the standard normal random number generator shown above

given bysnrnd(ix,iy,rn).

4{ snrnd(ix,iy,rn) }7

subroutine snrnd(ix,iy,rn)

Use "snrnd(ix,iy,rn)"
together with "urnd(ix,iy,rn)".

arwbdE
NnNNNON

276

6: ¢ Input:

7. C ix, iy: Seeds

8: ¢ Output:

9 C rn: Standard Normal Random Draw N(O,1)
10: C

11 pi= 3.1415926535897932385

12: call urnd(ix,iy,rnl)

13: call urnd(ix,iy,rn2)

14 rn=sqrt(-2.0*log(rnl))*sin(2.0%*pi*rn2)
15: return

16: end

snrnd (ix,iy,rn) should be used together with the uniform random number gen-
eratorurnd(ix, iy, rn) shown in Section 5.6.1 (p.267).

rnin snrnd(ix, iy, rn) corresponds teX;.

277

Conventionally, one 0K; andX; is taken as the random number which we use.
Here, X; is excluded from consideration.

snrnd (ix,iy,rn) includes the sine, which takes a lot of time computationally.
Therefore, to avoid computation of the sine, various algorithms have been invente
(Ahrens and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLare
and Bray (1964) and so on).

Standard Normal Probabilities WhenX ~ N(0, 1), we have the case where we

want to approximate such thatp = F(X) given x, whereF(x) = f_’; f(t)dt =

278

P(X < X).
Adams (1969) reports that
* 1 1 11234
P(X>x):f —e‘%‘zdt:—e‘%xz()
x V2r Vor

for x > 0, where the form in the parenthesis is called the continued fraction, whicl

X+ X+ X+ X+ X+

is defined as follows:

aq a az a1

Xi+ Xot Xg+ Xy + a

as
X3+...

Xo +
A lot of approximations on the continued fraction shown above have been propose

279

See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (19¢

Here, we introduce the following approximation (see Takeuchi (1989)):

3 1
1+ apX

1
P(X > X) = \/—Ze‘zxz(blt + bot? + bst® + byt + bst®),

ap = 0.2316419 b, = 0.319381530 b, = -0.356563782
b; = 1.781477937 b, = -1.821255978 bs = 1.330274429
In snprob(x,p) below,P(X < X) is shown.
Thatis,p up to Line 19 is equal t&(X > X) in snprob(x,p).
In Line 20,P(X < X) is obtained.

280

NnnNnnNnNnNON

4{ snprob(x,p) }7

subroutine snprob(x,p)

Inp

X:

Out

p:
pi= 3.1415926535897932385

ut:

put:

a0= 0.2316419

bl= 0.319381530
b2=-0.356563782
b3= 1.781477937
b4=-1.821255978
b5= 1.330274429

z=abs(x)
t=1.0/(1.0+a0%*z)

pr=exp(-.5%z*z)/sqrt(2.0%pi)

N(®,1) Percent Point

Probability corresponding to x

281

19:
20:
21:
22:
23:

p=pr*t*(bl+t*(b2+t* (b3+t*(b4+b5*t))))
1f(x.gt.0.0) p=1.0-p

return
end

The maximum error of approximation gfis 7.5 x 1078, which practically gives us

enough precision.

Standard Normal Percent Points When X ~ N(0O,1), we approximate such

that p = F(X) given p, whereF(x) indicates the standard normal cumulative distri-

bution function, i.e.F(X) = P(X < x), andp denotes probability.

282

As shown in Odeh and Evans (1974), the approximation of a percent point is of th

form:
Say) _\, PotPy+ P2y’ + Pay® + pay*
Ta(y) o + QY + O2y? + Oz + Quy*

X=Yy+

wherey = /-2 log(p).

S4(y) andT4(y) denote polynomials degree 4.

The source code is shown #mperpt (p,x), wherex is obtained within 16?° <
p<1-107,

283

aeNeNeNeNaNeNe!

—————{snperpt(p,x)}—————

subroutine snperpt(p,x)

Input:
p: Probability
(err<p<l-err, where err=1e-20)
Output:
x: N(0,1) Percent Point corresponding to p

p0=-0.322232431088
pl=-1.0
p2=-0.342242088547
p3=-0.204231210245e-1
p4=-0.453642210148e-4
q0= 0.993484626060e-1
ql= 0.588581570495

284

16: g2= 0.531103462366

17: q3= 0.103537752850

18: g4= 0.385607006340e-2

19: ps=p

20: 1f(ps.gt.0.5) ps=1.0-ps

21: if(ps.eq.0.5) x=0.0

22: y=sqrt(-2.0*%log(ps))

23: x=y+(((Cy*p4+p3) *y+p2) *y+pl) *y+p0)
24: & /((((y*q4+q3)*y+q2) *y+ql) *y+q0)
25: if(p.1t.0.5) x=-x

26: return

27: end

The maximum error of approximation afis 1.5 x 1078 if the function is evaluated

in double precision and.& x 10°¢ if it is evaluated in single precision.

285

The approximation of the forrmx = y + S,(y)/Ts(y) by Hastings (1955) gives a
maximum error of &6 x 1074,
To improve accuracy of the approximation, Odeh and Evans (1974) proposed tf

algorithm above.

Normal Distribution: N(u,c?): The normal distribution denoted IN(u, 0?) is
represented as follows:

1 1 2
F(X) = ——— e 2 *H,
Y= o

for —co < X < 0.

286

u is called docation parameter ando? is ascale parameter
Mean, variance and the moment-generating function of the normal distributiot

N(u, o?) are given by:
EQ)=p V(X)=0? ¢(0) = exgud + %0292).

Whenu = 0 ando? = 1 are taken, the above density function reduces to the
standard normal distribution in Section 5.6.2.

X = oZ+u is normally distributed with meamand variance-?, whenZ ~ N(O, 1).
Therefore, the source code is representeciimd (ix, iy, ave,var,rn), where

ave andvar correspond tg ando?, respectively.

287

nonNnnNnNnonNonNODNDNN

—————{nrnd(ix,iy,ave,var,rn)%—————

subroutine nrnd(ix,iy,ave,var,rn)

Use "nrnd(ix,iy,ave,var,rn)"
together with "urnd(ix,iy,rn)"
and "snrnd(ix,iy,rn)".

Input:
ix, iy: Seeds
ave: Mean
var: Variance
Output:

rn: Normal Random Draw N(ave,var)

call snrnd(ix,iy,rnl)
rn=ave+sqrt(var)*rnl

288

16: return
17: end

nrnd(ix,iy,ave,var,rn) should be used together witlhrnd(ix,iy,rn) on
p.267 ancnrnd(ix,iy,rn) on p.276. Itis possible to replasarnd (ix,iy,rn)

by snrnd2 (ix,iy,rn) or snrnd3(ix,iy,rn).

289

Exponential Distribution: The exponential distribution with parameteris

written as:
1 «
—e B, for0 < X < oo,

f(x) =
0, otherwise,

forg > 0.
B indicates a scale parameter.
Mean, variance and the moment-generating function are obtained as follows:

1
B =g V=5 60 =15

290

The relation between the exponential random variable the uniform random variab

is shown as follows:

WhenU ~ U(0, 1), consider the following transformation:

X = —Blog(U).

Then,X is an exponential distribution with parameger

Because the transformation is giventoy: exp(x/B), the Jacobian is:

du 1 1
J= ax = _B exr(—ﬁx).

291

By transforming the variables, the density functiorXos represented as:
1 1 1
f(X) = |J|fulexpE=X)) = = exg —=X),
() = 131 p(ﬁ,)) 3 p(ﬁ)

where f(-) and f,(-) denote the probability density functions ¥fandU, respec-
tively.

Note that O< X < oo because ok = —-Blog(u) and O< u < 1.

Thus, the exponential distribution with parameges obtained from the uniform

random draw between zero and one.

292

nonNnnNnnonNnonNnNONN

4{ exprnd(ix,iy,beta,rn) }7

subroutine exprnd(ix,iy,beta,rn)

Use "exprnd(ix,iy,beta,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
beta: Parameter
Output:
rn: Exponential Random Draw
with Parameter beta

call urnd(ix,iy,rnl)
rn=-beta*log(rnl)
return

end

293

exprnd(ix,iy,beta,rn) should be used together witttnd (ix,iy,rn) on p.267.
Wheng = 2, the exponential distribution reduces to the chi-square distribution with

2 degrees of freedom.

Gamma Distribution: G(a,8): The gamma distribution with parametersand
B, denoted bys(a, B), is represented as follows:
1
{3 = | FT@)

0, otherwise,

X
X lg7s, for 0 < X < oo,

294

for @« > 0 andB > 0, wherea is called ashape parameterandg denotes a scale

parameter.

I'(-) is called thegamma function, which is the following function o:

() = f x*~te™ dx.
0
The gamma function has the following features:

Ia+1)=al(a), T@1)=1, r(l) = 2r(§) = V7.

2 2
Mean, variance and the moment-generating function are given by:
1

E(X) = o, V(X) = of?, $(6) = a-poe

295

The gamma distribution witlk = 1 is equivalent to the exponential distribution
shown in Section 5.6.2.

This fact is easily checked by comparing both moment-generating functions.
Now, utilizing the uniform random variable, the gamma distribution with parame-
tersa andg are derived as follows.

The derivation shown in this section deals with the case wines@ positive integer,
e, =123, -

The random variableg,, Z,, ---, Z, are assumed to be mutually independently

distributed as exponential random variables with parangtethich are shown in

296

Section 5.6.2.
DefineX =)., Z.
Then, X has distributed as a gamma distribution with parameteasdg, wherea

should be an integer, which is proved as follows:

0:6) = E@) = B2 = [[E@) = | [40) = [| =5
i=1 i=1 i=1

3 1
- (1-p0)

whereg,(0) and ¢;(0) represent the moment-generating functionXandz, re-

spectively.

297

Thus, sum of the: exponential random variables yields the gamma random variable
with parameters andg.
Therefore, the source code which generates gamma random numbers is showr

gammarnd(ix,iy,alpha,beta,rn).

—————{gammarnd(ix,iy,alpha,beta,rn)%—————

subroutine gammarnd(ix,iy,alpha,beta,rn)

Use "gammarnd(ix,iy,alpha,beta,rn)"
together with "exprnd(ix,iy,beta,rn)"
and "urnd(ix,iy,rn)".

NoahkwNR
nNNNnnNnnNnnN

Input:

298

8 C ix, iy: Seeds

9 C alpha: Shape Parameter (which should be an integer)
10: C beta: Scale Parameter

11: ¢ Output:

12: C rn: Gamma Random Draw with alpha and beta
13: C

14: rn=0.0

15: do 1 i=1,nint(alpha)

16: call exprnd(ix,iy,beta,rnl)

17: 1 rn=rn+rnl

18: return

19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together withurnd(ix,iy,rn)

on p.267 anégxprnd(ix,iy,rn) on p.292.

299

As pointed out abovey should be an integer in the source code.

Whena is large, we have serious problems computationally in the above algorithmr
becauser exponential random draws have to be generated to obtain one gamrn
random draw with parametessandg.

Whena = k/2 andg = 2, the gamma distribution reduces to the chi-square distri-

bution withk degrees of freedom.

300

Chi-Square Distribution: y?(k): The chi-square distribution witk degrees of

freedom, denoted by?(K), is written as follows:
;xg‘le‘%x, for 0 < x < oo,
f(x) = 4 29T
0, otherwise,
wherek is a positive integer.
The chi-square distribution is equivalent to the gamma distribution gvigh2 and
a =k/2.
The chi-square distribution witk = 2 reduces to the exponential distribution with

B =2, shown in Section 5.6.2.

301

Mean, variance and the moment-generating function are given by:

1

F Distribution: F(m,n): TheF distribution withm andn degrees of freedom,

denoted byF(m, n), is represented as:

| giLet mo _men
T (MIe(1: D™, foro<x<es
f(X) — F(E)F(E) n n

0, otherwise,

wherem andn are positive integers.

302

Mean and variance are given by:

n
E(X) = — f 2
X) r—t orn> 2,

2r(m+n - 2)

m(n— 2= 4)’ forn > 4.

V(X) =

The moment-generating function Bfdistribution does not exist.
OneF random variable is derived from two chi-square random variables.
Suppose thdtl andV are independently distributed as chi-square random variables
i.e.,U ~ y2(m) andV ~ y?(n).

U/m

Then, itis shown thaX = Vn has & distribution with fn, n) degrees of freedom.

303

t Distribution: t(k): Thet distribution (or Student’sdistribution) withk degrees
of freedom, denoted bifk), is given by:

f(x) =

(k+1) 1 X2 k+1

I Vi et

for —co < X < o0, Wherek does not have to be an integer but conventionally it is a
positive integer.

Whenk is small, thet distribution has fat tails.

Thet distribution withk = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, the distribution approaches the standard normal distribution,

304

i.e.,t(c0) = N(O, 1), which is easily shown by using the definitionepii.e.,
2 k+l 1

L) =) (e Y) e

whereh = k/x? is set anch goes to infinity (equivalentlyk goes to infinity).

Thus, a kernel of thédistribution is equivalent to that of the standard normal dis-
tribution.

Therefore, it is shown that dsis large thet distribution approaches the standard
normal distribution.

Mean and variance of thedistribution withk degrees of freedom are obtained as:
E(X) =0, fork > 1,

305

V(X) = kaz fork > 2.

In the case of the distribution, the moment-generating function does not exist,
because all the moments do not necessarily exist.

For thet random variableX, we have the fact that K@) exists wherp is less than

k.

Therefore, all the moments exist only whiers infinity.

Onet random variable is obtained from chi-square and standard normal randor
variables.

Suppose thaf ~ N(0, 1) is independent df) ~ y?(k).

306

Then,X = Z/ 4/U/k has a distribution withk degrees of freedom.
Marsaglia (1984) gives a very fast algorithm for generatirgndom draws, which

Is based on a transformed acceptdrggection method, which will be discussed

later.

307

5.6.3 Inverse Transform Method

In Section 5.6.2, we have introduced the probability density functions which can b
derived by transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transforn
method are presented and the corresponding random number generators are shc
The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution fund&i@h

WhenU ~ U(0, 1), F-}(U) is equal toX.

308

The proof is obtained from the following fact:
P(X < x) = P(F}(U) < x) = P(U < F(x) = F(x).

In other words, leu be a random draw o), whereU ~ U(0, 1), andF(-) be a
distribution function ofX.

When we perform the following inverse transformation:
x = F~}(u),

x implies the random draw generated fréi().

309

The inverse transform method shown above is useful whEncan be computed
easily and the inverse distribution function, i .€-1(:), has a closed form.

For example, recall thd(-) cannot be obtained explicitly in the case of the normal
distribution because the integration is included in the normal cumulative distribu
tion (conventionally we approximate the normal cumulative distribution when we
want to evaluate it).

If no closed form ofF ~%(:) is available buf(-) is still computed easily, an iterative
method such as the Newton-Raphson method can be applied.

Definek(x) = F(x) — u.

310

The first order Taylor series expansion arounsd x* is:
0 = k(X) ~ k(X) + K'(X)(x = X).

Then, we obtain:
k(x) _ F(x)—u
k' (x) B f(x)

Replacingx andx* by x® andx(~%, we have the following iteration:

X=X -

i—1
) = 3 li-1) _ F(X! _)) ~ U,
f(x(-D)

fori=1,2,---.

311

The convergence value &f) is taken as a solution of equation= F(X).
Thus, based on, a random draw is derived fromF(-).

However, we should keep in mind that this procedure takes a lot of time compute
tionally, because we need to repeat the convergence computation shown above

many times as we want to generate.

312

