5.6.4 UsingU(0,1): Discrete Type

In Sections 5.6.2 and 5.6.3, the random number generators from continuous dist
butions are discussed, i.e., the transformation of variables in Section 5.6.2 and t|
inverse transform method in Section 5.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we de
with some discrete distributions and consider generating their random numbers.
As a representative random number generation method, we can consider utilizir
the inverse transform method in the case of discrete random variables.

Suppose that a discrete random variablean takexs, X,, - - -, X,, where the proba-
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bility which X takesx; is given byf(x), i.e.,P(X = x) = f(X).

Generate a uniform random drawwhich is between zero and one.

Consider the case where we haves_;) < u < F(X), whereF(x) = P(X < %)
andF(xp) = 0.

Then, the random draw of is given byx;.
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5.7 Sampling Method II: Random Number Generation
5.7.1 Rejection Sampling ;%)

We want to generate random draws frdifx), called thetarget density (B F9%;
), but we consider the case where it is hard to sample ff(g

Now, suppose that it is easy to generate a random draw from another de(gity
called thesampling density (> 7'1) > Z'Z &) or proposal density (X% E).

In this case, random draws of from f(x) are generated by utilizing the random
draws sampled fronf, (x).

Let x be the the random draw of generated fronf (x).
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Suppose thai(x) is equal to the ratio of the target density and the sampling density.
le.,

f(x)
f.(x)°

q(¥) = (1)

Then, the target density is rewritten as:
fF(X) = a(x) f.(x).

Based om(x), the acceptance probability is obtained.
Depending on the structure of the acceptance probability, we have three kinds

sampling techniques, i.ergjection sampling @E#1;%) in this section,impor-
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tance resampling &= ') H> 71 >~ J53K) in Section 5.7.2 and thidetropolis-
Hastings algorithm (X hARY Z—/N\ZF 4 >4 - 7)LT1) X L) in Section
5.7.4.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random drawsxdirom f(x), the functional form ofy(x) should
be known and random draws have to be easily generatedfriomm

In order for rejection sampling to work well, the following condition has to be

satisfied:

q(x) = f(x) <cC

o)
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wherec is a fixed value.

That is,q(x) has an upper limit.

As discussed below,/t is equivalent to the acceptance probability.
If the acceptance probability is large, rejection sampling computationally takes .
lot of time.

Under the conditiom(x) < c for all x, we may minimizec.

That is, since we hawg(x) < sup, q(x) < ¢, we may take the supremum gfx) for
C.

Thus, in order for rejection sampling to workKieiently, c should be the supremum
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of q(x) with respect tox, i.e.,c = sup, q(X).
Let x* be the random draw generated frdr(x), which is a candidate of the random
draw generated from(x).

Definew(X) as:
_oq®) ax)
“(X) = supq@d ¢’
which is called theacceptance probability ¢FiR#E ).

Note that we have & w(X) < 1 when supq(z) = ¢ < co.
The supremum syjgi(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection
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sampling.
A random draw ofX is generated froni (x) in the following way:
() Generatex' from f,(x) and computev(X").
(i) Setx = x* with probability w(x*) and go back to (i) otherwise.
In other words, generating from a uniform distribution between zero and

one, takex = X" if u < w(x") and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.
Let U be the uniform random variable between zero and ohbége the random

variable generated from the target densify),
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X* be the random variable generated from the sampling dehgiy, andx* be the
realization (i.e., the random draw) generated from the sampling defn&iy
Consider the probabilitfP(X < XU < w(x")), which should be the cumulative
distribution ofX, F(x), from Step (ii).
The probabilityP(X < XU < w(x*)) is rewritten as follows:

P(X < x,U < w(X))

PX<XU <o) = =55 0oy

where the numerator is represented as:

X (t) X w(t)
P(X < x, U < (X)) = f fo.(u,t) dudt = f f f,(u) T, (t) du dt
—00 0

—00 0
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- f ' ( f o0 fu(U) du) f.(t) dt = f ' ( f w0 du) f.(t) dt
—c0 JO —o0 JO
_ f ' ot ot = f w(t)f.(t) dt = f q(t)f(t) dt = —X F(X)

and the denominator is given by:

P(U < w(x)) = P(X < 00, U < w(X)) = @ - %

In the numeratorf, .(u, X) denotes the joint density of random variablésind X*.
Because the random draws dfand X* are independently generated in Steps (i)
and (i) we havef,.(u,x) = f,(u)f.(x), wheref,(u) and f.(x) denote the marginal

density ofU and that ofxX*.
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The density function ol is given by f,(u) = 1, because the distribution &f is
assumed to be uniform between zero and one.
Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

_ 9 _ ¥
¢ cf(x)’

w(X)

w(X)f.(X) = f(x)/cis obtained.
Finally, substituting the numerator and denominator shown above, we have the fc
lowing equality:

P(X < XU < w(X")) = F(X).
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Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the moi@ent sampling method in the sense of
precision of the random draws, because using rejection sampling we can gener:
mutually independently distributed random draws.

However, for rejection sampling we need to obtain thehich is greater than or
equal to the supremum qfX).

If the supremum is infinite, i.e., i€ is infinite, w(x) is zero and accordingly the
candidatex’ is never accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.

336



Let Nr be the average number of the rejected random draws.

We need (+ Ng) random draws in average to generate one random number fron
f(x).

In other words, the acceptance rate is given L  NR) in average, which is equal

to 1/cin average because Bf{U < w(x*)) = 1/c.

Therefore, to obtain one random draw froitx), we have to generate @ Ng)
random draws fronf.(x) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’'Hagan (1994) anc

Geweke (1996) for rejection sampling.
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To examine the condition thai(x) is greater than zero, i.e., the condition that the
supremum ofy(x) exists, consider the case whdrg) and f.(X) are distributed as
N(u, 0?) andN(u,, 0?), respectively.

q(x) is given by:

(0 (2mZ)-1/2exp(—§(x—u)2)
¥)

)
2

lof-o (X_/,tO'f—/J*O'Z)Z_i_}(M—,U*)Z
2 o202 02— o2 202-02)

q(x) = 00 - .

== exp(——(x WP+

:_ep(

338



If 02 < 02, g(X) goes to infinity asc is large.
In the case of2 > o2, the supremum afj(x) exists, which condition implies that
f.(X) should be more broadly distributed th&¢x).

In this case, the supremum is obtained as:

c = supq(x) = exr(l(/u p)’ )

202-
Wheno? = o2 andu = u., we haveq(x) = 1, which impliesw(x) = 1.
That is, a random draw from the sampling dendit{x) is always accepted as a
random draw from the target densityx), wheref(x) is equivalent tof.(x) for all

X.

339



If 02 = 02 andu # u., the supremum afi(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

Figure 1: Rejection Sampling
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From the definition ofu(x), we have the inequalit§(x) < cf.(x).

cf.(xX) and f(x) are displayed in Figure 1.

The ratio of f(x*) andcf.(x") corresponds to the acceptance probability‘ai.e.,
w(X).

Thus, for rejection sampling,f.(Xx) has to be greater than or equalftx) for all x,
which implies that the sampling densify(x) needs to be more widely distributed
than the target densit(x).

Finally, note that the above discussion holds without any modification even thoug

f(x) is a kernel of the target density, i.e., even thoddk) is proportional to the
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target density, because the constant term is canceled out between the numerator

denominator (remember tha{(x) = q(x)/ sup,q(2)).

Normal Distribution: N(0,1): First, denote the half-normal distribution by:

2 2
—e‘?" for0 < x < o0,

f(x) =4 Ver

0, otherwise.

The half-normal distribution above corresponds to the positive part of the standa

normal probability density function.
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Using rejection sampling, we consider generating standard normal random drav
based on the half-normal distribution.

We take the sampling density as the exponential distribution:

e for0 < x < oo,
f.(X) =
0, otherwise,

whered > 0. Sinceq(x) is defined ag|(x) = f(x)/f.(x), the supremum of|(x) is
given by:

1,32
ez’

2
AN2r

¢ = supq(x) =

which depends on parameter
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Remember tha®(U < w(x")) = 1/c corresponds to the acceptance probability.
Since we need to increase the acceptance probability to reduce computational tin
we want to obtain tha which minimizes supq(x) with respect tol.

Solving the minimization problemi, = 1 is obtained.

Substituting? = 1, the acceptance probability(x) is derived as:

w(x) = e 801

for0 < X < oo,
Remember that logU has an exponential distribution with = 1 whenU ~

u(o, 1).

344



Therefore, the algorithm is represented as follows.

(i) Generate two independent uniform random drayendu, between zero and

one.

(i) Computex = —logu,, which indicates the exponential random draw gener-

ated from the target densitiy(x).

(i) Setx = x*if u; < exp3(x — 1)?), i.e.,—2log(uy) > (X' — 1)%, and return to

(i) otherwise.

x in Step (iii) yields a random draw from the half-normal distribution.
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To generate a standard normal random draw utilizing the half-normal random dra
above, we may put the positive or negative sign randomly with

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random draw between zero and one, and get X if

Uz < 1/2 andz = —x otherwise.

zgives us a standard normal random draw.
Note that the number of iteration in Step (iii) is given by v2e/r ~ 1.3155 in
average, or equivalently, the acceptance probability in Step (iii)ds10.7602.

The source code for this standard normal random number generator is shown
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snrnd6(ix,iy,rn).

—————{snrnd6(ix,iy,rn)%—————

1: subroutine snrnd6(ix,iy,rn)
2. C

3 ¢ Use "snrnd6(ix,iy,rn)"

4: ¢ together with "urnd(ix,iy,rn)".
5 C

6: ¢ Input:

7. C ix, iy: Seeds

8: ¢ Output:

9: C rn: Normal Random Draw N(0,1)
10: C

11: 1 call urnd(ix,iy,rnl)

12: call urnd(ix,iy,rn2)

13; y=-log(rn2)

14: if( -2.*log(rnl).1t.(y-1.)**2 ) go to 1
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15: call urnd(ix,iy,rn3)

16: if(rn3.le.0.5) then
17: rn=y

18: else

19: rn=-y

20: endif

21: return

22: end

Note thatsnrnd6(ix, iy, rn) should be used together witlrnd(ix,iy,rn).
Thus, utilizing rejection sampling, we have the standard normal random numbe

generator, which is based on the half-normal distribution.
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Gamma Distribution: G(a,1)for 0 < @ < 1and 1l < a: In this section,
utilizing rejection sampling we show an example of generating random draws fron
the gamma distribution with parametersindg = 1, i.e.,G(a, 1).

WhenX ~ G(a, 1), the density function oX is given by:

f %x‘"le‘x, for 0 < x < oo,
(x) =

0, otherwise.
Ahrens and Dieter (1974) consider the case ef® < 1, which is discussed in this
section.

The case ofr > 1 will be discussed later.
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Using the rejection sampling, the composition method and the inverse transfort
method, we consider generating random draws f@&m 1) forO< a < 1.

The sampling density is taken as:
e @
f.(X) = ——ax* 1 ——e LX),
() Trel 1(X) + Tie 2(X)

where both(x) andl,(x) denote the indicator functions defined as:
1, ifO<x<1, 1, if 1 <X,
11(X) = _ 12(X) = ,
0, otherwise, 0, otherwise.
Random number generation from the sampling density above utilizes the compos

tion method and the inverse transform method.
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The cumulative distribution related t(x) is given by:

%ex“, if0<x<1,
F.(X) = “e
= T e, ifx> 1

a+e a+e
Note that O< a < 1 is required because the sampling density far & < 1 has to

satisfy the property that the integration is equal to one.

The acceptance probability(x) = q(x)/ sup q(2) for q(x) = f(x)/f.(X) is given by:
w(X) = € X11(X) + X2, (X).
Moreover, the mean number of trials until success, ¢.e. sup q(2) is represented
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as:
_a+te

C= ——
ael'(a)’
which depends on and is not greater than 1.39.

Note thatg(x) takes a maximum value at= 1.

The random number generation procedure is given by:

(i) Generate a uniform random drawfrom U (0, 1), and sek* = ((a/e+1)u;)"®

if uy <e/(a+e€) andx = —log((1/e+ 1/a)(1 - uy))if u; > e/(a + €).

(i) Obtainw(x?) = e if uy < e/(a + €) andw(x*) = x** 1 if u, > e/(a + €).
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(i) Generate a uniform random drawfrom U (0, 1), and sek = x* if U, < w(X*)

and return to (i) otherwise.

In Step (i) a random draw* from f,(X) can be generated by the inverse transform

method discussed in Section 5.6.3.

—{ gammarnd2 (ix,iy,alpha,rn) }7

subroutine gammarnd2(ix,iy,alpha,rn)

Use "gammarnd2(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

ounhrhwnR
nNNNnNnnN

Input:
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

nNnnNnnNnnNnNN

ix, iy: Seeds
Shape Parameter (O<alpha \le 1)

alpha:
Output:

rn: Gamma Random Draw

with Parameters alpha and beta=1

e=2.71828182845905

1 call urnd(ix,iy,rn®)
call urnd(ix,iy,rnl)

rn=-log((alpha+e)*(1.-rn®)/(alpha*e))
if( rnl.gt.rn**(alpha-1.) ) go to 1

return
end

if( rn0®.le.e/(alpha+e) ) then
rn=( (alpha+e)*rn@/e )**(1./alpha)
if( rnl.gt.e**(-rn) ) go to 1

else

endif
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Note thatgammarnd2 (ix, iy, alpha,rn) should be used withrnd(ix,iy,rn).
In gammarnd2(ix,iy,alpha,rn), the case of & « < 1 has been shown.
Now, using rejection sampling, the casewf> 1 is discussed in Cheng (1977,
1998).
The sampling density is chosen as the following cumulative distribution:
X/l
F.g=10t X"
0, otherwise,

for x > 0,

which is sometimes called theg-logistic distribution.
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Then, the probability density functior,(x), is given by:

Aoxt1

—_— for x > 0,
f.og = (X

0, otherwise.

By the inverse transform method, the random draw frii(x), denoted byx, is

generated as follows:
ou \1/a
X= (1 — u) ’
whereu denotes the uniform random draw generated ftdg@, 1).

For the two parameterg, = V2a — 1 ands = o are chosen, taking into account
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minimizing ¢ = sup, q(x) = sup, f(x)/ f.(x) with respect t& and4 (note thatt and

6 are approximately taken, since it is not possible to obtain the explicit solution o

6 andJ).
Then, the number of rejections in average is given by:
oo 4o
T(@)V2a -1

which is computed as:
1.47 wherny = 1, 1.25 wheny = 2, 1.17 whernw = 5,

1.15 whernr = 10, 1.13 wheny = co.

Thus, the average number of rejections is quite small far.all
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The random number generation procedure is given by:

() Seta=1/V2a-1,b=a-log4andc=a+ V2a - 1.

(i) Generate two uniform random drawsandu, from U (0, 1).
Ug
1-u’
(iv) Takex = x"if r > logzand return to (ii) otherwise.

(i) Sety = alog X' = ae,z= U andr =b+cy— x.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (iii)

and (iv), which is as follows:
(i) Takex = x*if r > 4.5z—- d and go to (iv) otherwise.
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dis defined asl = 1 + log 4.5, which has to be computed in Step (i).

Note that we have the relationz — (1 + log#) > logzfor all z> 0 and any given
6 > 0, because logis a concave function af. According to Cheng (1977), the
choice off is not critical and the suggested valu@is 4.5, irrespective of.

The source code for Steps (i) — (iv) and (iii) is givendymmarnd3 (ix,iy,alpha,rn).

4{ gammarnd3 (ix,iy,alpha,rn) }7

subroutine gammarnd3(ix,iy,alpha,rn)

Use "gammarnd3(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

arwbdE
NnNNNON
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aNeNeNeNaNeNse!

Input:
ix, iy: Seeds
alpha: Shape Parameter (l<alpha)
Output:
rn: Gamma Random Draw
with Parameters alpha and beta=1

e=2.71828182845905
a=1./sqrt(2.*alpha-1.)
b=alpha-log(4.)
c=alpha+sqrt(2.*alpha-1.)
d=1.+log(4.5)

1 call urnd(ix,iy,ul)
call urnd(ix,iy,u2)
y=a*log(ul/(1.-ul))
rn=alpha* (e**y)
z=ul*ul*u2
r=b+c*y-rn
if( r.ge.4.5%z-d ) go to 2
if( r.1t.log(z) ) go to 1
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26: 2 return
27 end

Note thatgammarnd3(ix,iy,alpha,rn) requiresurnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Lir
17 and 24 frongammarnd3, because evaluating the (. . .) sentences in Lines 24
and 25 sometimes takes more time than computing the logarithm in Line 25.
Thus, using botlyammarnd2 andgammarnd3, we have the gamma random number

generator with parametess> 0 andg = 1.
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5.7.2 Importance ResamplingEm=8 ) 4> 71 > %)

Theimportance resamplingmethod also utilizes the sampling denditgx), where
we should choose the sampling density from which it is easy to generate rando
draws.
Let X" be theith random draw ok generated fronf,(x).
The acceptance probability is defined as:
N G909
w(X) = ZTT);(XT)

whereq(-) is represented as equation (1).
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To obtain a random draws frori(x), we perform the following procedure:

() Generatex; from the sampling densitf.(x) for j = 1,2,---,n.
(i) Computew(x;) forall j =1,2,---,n.
(i) Generate a uniform random drawbetween zero and one and take= X;

whenQ; ; < u< Q;, whereQ; = 3), w(x) andQq = 0.

The x obtained in Step (iii) represents a random draw from the target def{sity
In Step (i), all the probability weighte(x;), j = 1,2,---,n, have to be computed

for importance resampling.
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Thus, we need to generateandom draws from the sampling densftyx) in ad-
vance.

When we want to generate more random draws (Sagandom draws), we may
repeat Step (iiiN times.

In the importance resampling method, there mrealizations, i.e.x;, x5, - - -, X,
which are mutually independently generated from the sampling defhédy

The cumulative distribution of (x) is approximated by the following empirical

distribution:
_ JLamfmd
[ af.() dt

*£(1)
o (0

P(X < X) = f f(t) dt = f.(t) dt
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wherel(x, ") denotes the indicator function which satisfl¢s, x') = 1 whenx >

x-andl(x, x7) = 0 otherwise.

P(X = x') is approximated as(X").

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importanc
resampling procedure.

As mentioned in Section 5.7.1, for rejection samplifx) may be a kernel of the
target density, or equivalently(x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.
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That is, f(xX) may be proportional to the target density for importance resampling,
too.

To obtain a random draws frorf(x), importance resampling requiresrandom
draws from the sampling densify(x), but rejection sampling needs{lg) random
draws from the sampling density(x).

For importance resampling, when we havéifferent random draws from the sam-
pling density, we pick up one of them with the corresponding probability weight.
The importance resampling procedure computationally takes a lot of time, becau:

we have to compute all the probability weiglits, j = 1,2,---,n, in advance even
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when we want only one random draw.
When we want to generatd random draws, importance resampling requines

random draws from the sampling densityx), but rejection sampling needgl +

Nr) random draws from the sampling densttyx).

Thus, asN increases, importance resampling is relatively less computational tha
rejection sampling.

Note thatN < nis recommended for the importance resampling method.

In addition, when we havBl random draws from the target densitfx), some of

the random draws take the exactly same values for importance resampling, whi
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all the random draws take thefidirent values for rejection sampling.
Therefore, we can see that importance resampling is inferior to rejection samplin

in the sense of precision of the random draws.

Normal Distribution: N(O,1):  Again, we consider an example of generating
standard normal random draws based on the half-normal distribution:
ie‘%’(z, for 0 < X < oo,

f(x) =4 Ver

0, otherwise.
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We take the sampling density as the following exponential distribution:

e for 0 < x < o0,
f.(X) =
0, otherwise,

which is exactly the same sampling density as in Section 5.7.1.
Given the random draws’, i = 1,---,n, generated from the above exponential
densityf.(x), the acceptance probability(x) is given by:

w(X) = a06) /) expe 12 1)
Z?=l q(XT) ZTzl f(XT)/ f*(XT) er):]- exp(—%XTz N XT) .

Therefore, a random draw from the half-normal distribution is generated as follows
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(i) Generate uniform random drawsg, Uy, - - -, u, from U (0, 1).
(if) Obtainx = —log(u) fori=1,2---,n.
(i) Computew(x’) fori=1,2,---,n.
(iv) Generate a uniform random drasvfrom U (0, 1).
(V) Setx =X whenQ;_; <v; < Q;forQ; = Zijzl w(X) andQg = 0.
X is taken as a random draw generated from the half-normal distrib&(gn

In order to have a standard normal random draw, we additionally put the following

step.
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(vi) Generate a uniform random drag from U(0, 1), and sek = xif v, < 1/2

andz = —x otherwise.

Zrepresents a standard normal random draw.
Note that Step (vi) above corresponds to Step (iv) in Section 5.7.1.
Steps (i) — (vi) shown above represent the generator which yields one standa

normal random draw.
When we wantN standard normal random draws, Steps (iv) — (vi) should be re-

peated\ times.

In Steps (iv) and (v), a random draw frofix) is generated based & for | =
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12,---,n.

Gamma Distribution: G(a,1)for 0 < @ < 1.  WhenX ~ G(«e, 1), the density
function of X is given by:

Fix"‘le‘x, for 0 < X < oo,
f(x) = 1@

0, otherwise.

The sampling density is taken as:
£,0X) = ——ax* My (%) + — e 1,(%)
: a+e ! a+e 2
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which is the same function as gammarnd2 of Section 5.7.1, where both(x) and
I,(X) denote the indicator functions defined in Section 5.7.1.

The probability weights are given by:
ax) _ FO)/ (X))

W)= ST )~ I F00)/0)
~ w—le—)q/(xim—lll(xi*) + e—x].* IZ(XI*))
BT e /(e (x) + €7 15(x))
fori=1,2,---,n
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The cumulative distribution function df(x) is represented as:

_C e if0 <x<1,
a+e

e [0 .
— = (-, ifx> 1
a+€e a+e

F.(X) =

Therefore,x’ can be generated by utilizing both the composition method and the

inverse transform method.
Givenx', computew(x’) fori = 1,2,---,n, and takex = x* with probability w(x").
Summarizing above, the random number generation procedure for the gamma d

tribution is given by:
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(i) Generate uniform random drawss | = 1,2,---,n, from U(0, 1), and set
X = ((a/e+ Dw)* andw(x) = eX if u < e/(a + €) and takex" =
—log((1/e+1/e)(1-u)) andw(x) = x*tif u, > e/(a+€) fori =1,2,---,n.

(i) Compute; = ¥i_; w(x) fori=1,2,---,n, whereQ, = 0.

(i) Generate a uniform random drasrom U (0, 1), and takex = X" whenQ;_; <

V< Q.

As mentioned above, this algorithm yields one random draw.

If we wantN random draws, Step (iii) should be repeakétimes.
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Beta Distribution:  The beta distribution with parametersaandg is of the form:

1
f(x) = B(a.B)

0, otherwise.

x*H1-xF?1,  forO<x<1,

The sampling density is taken as:
1, forO< x< 1,

f.(X) =
0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightso(x), i = 1,2,---,n, are given by:

S Q. D M VA ) M S Cha Vit
2006) 2 FOO)/R0G) T Xy xR 1 - Xt
Therefore, to generate a random draw fré(w), first generatec’, i = 1,2,---,n,

from U(0, 1), second compute(x’) fori = 1,2,---,n, and finally takex = x* with
probability w(x/).

We have shown three examples of the importance resampling procedure in tr
section.

One of the advantages of importance resampling is that it is really easy to constru

a Fortran source code.
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However, the disadvantages are that (i) importance resampling takes quite a lol
time because we have to obtain all the probability weights in advance and (ii) impot

tance resampling requires a great amount of storages &omd<Q; fori = 1,2,---,n.
5.7.3 Metropolis-Hastings Algorithm (X kARY Z—N\RF71 VTR - 7L
O X L)

This section is based on Geweke and Tanizaki (2003), where three sampling dist
butions are compared with respect to precision of the random draws from the targ

density f (x).
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The Metropolis-Hastings algorithm is also one of the sampling methods to gen-
erate random draws from any target dengify), utilizing sampling densityf.(X),
even in the case where it is not easy to generate random draws from the targ
density.

Let us define the acceptance probability by:

oY= S

whereq(-) is defined as equation (1).

w(Xi_1, X") = min(

By the Metropolis-Hastings algorithm, a random draw fré¢r) is generated in the

following way:
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(i) Take the initial value ok asx_y.
(i) Generatex* from f,(xX) and computev(X_1, X*) givenx;_s.
(i) Setx = x* with probability w(x_1, X*) andx, = x_; otherwise.
(iv) Repeat Steps (ii) and (iii) far= -M + 1, -M + 2,---, 1.
In the above algorithmy; is taken as a random draw froh{x).

When we want more random draws (s&i), we replace Step (iv) by Step (iv)’,

which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) far= -M + 1, -M + 2,-- -, N.

380



When we implement Step (iv)’, we can obtain a series of random dxams<_ w1,

<o, Xo, X1, X2, + -+, XN, WhErex_m, Xoms1, - -+ Xo are discarded from further consid-
eration.

The lastN random draws are taken as the random draws generated from the targ
densityf(x).

Thus,N denotes the number of random draws.

M is sometimes called thHaurn-in period .

We can justify the above algorithm given by Steps (i) — (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 5.7.1.
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We show that; is the random draw generated from the target denigixy under
the assumption;_; is generated fromni ().

Let U be the uniform random variable between zero and Xrise the random vari-
able which has the density functidiix) andx* be the realization (i.e., the random
draw) generated from the sampling dendit{x).

Consider the probabilitP(X < XU < w(X_1, X*)), which should be the cumulative
distribution ofX, i.e., F(X).

The probabilityP(X < XU < w(Xi_1, X)) is rewritten as follows:

P(X < X7 U < (L)(Xi_]_, X*))

P(X < XU < w(X_1, X)) = PU < w(X_1,x7))
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where the numerator is represented as:

X ro(Xi-1,t)
P(X < x,U < w(X_1, X)) = f f fu.(u,t) du dt
—oo JO

- - fu(u) f.(t) dudt = b fu(u) du)f.(t) dt
fx fw(X' t) fx (fw(xi t) )
- du)f.(t) dt = “Ceds @) dt
f fw(xu t) f [ ]

[ aoa [ 200

and the denominator is given by:

f.(X- 1)
f(x-1)

f.(Xi-1)

PU < 0(Xi-1, X)) = P(X < 00, U < w(X-1, X)) = fx)

F(e0) =
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The density function oU is given byf,(u) =1 forO<u< 1.
Let X* be the random variable which has the density funcfigr).
In the numeratorf, .(u, X) denotes the joint density of random variablésind X*.
Because the random draws Of and X* are independently generated, we have
fu.(u, X) = fu(u) f.(x) = f.(X).
Thus, the first four equalities are derived.
Substituting the numerator and denominator shown above, we have the followin
equality:

P(X < XU < w(X_1, X)) = F(X).
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Thus, thex* which satisfies) < w(X_1, X*) indicates a random draw frori(x).

We setx; = X_1 if U < w(X_1, X") IS not satisfied.x;_; is already assumed to be a
random draw fronf (x).

Therefore, it is shown thag is a random draw fromni (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, noté(t)ahay
be a kernel of the target density, or equivalenfifx) may be proportional to the
target density.

The same algorithm as Steps (i) — (iv) can be applied to the case Vifrores
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proportional to the target density, becaud$g®) is divided by f(x_1) in w(X_1, X*).

As a general formulation of the sampling density, insteafl ©f), we may take the
sampling density as the following forni;(x/x_1), where a candidate random draw
x* depends on tha ¢ 1)th random draw, i.e¥;_;.

For choice of the sampling densify(x/x;_1), Chib and Greenberg (1995) pointed
out as follows.

f.(X|x_1) should be chosen so that the chain travels over the suppb¢kpfwhich
implies that f.(xi_;) should not have too large variance and too small variance,

compared withf (x).
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See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’'Hagz
(1994), Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casel
(1999) and so on for the Metropolis-Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is for-

mulated as follows:
OB RECIIMOLY
where f*(ulv) denotes the transition distribution, which is characterized by Step
(iii).
Xi_1 is generated fromi_,(-) andx; is from f*(:|x;_1).
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x; depends only om;_;, which is called théMarkov property .

The sequencg- -, Xi_1, X, Xi+1, - - -} IS called theMarkov chain.

The Monte Carlo statistical methods with the sequepee X1, X, Xi41, -} IS
called theMarkov chain Monte Carlo (MCMC) .

From Step (iii),f*(ulv) is given by:

() = o W RN + (1 [ ouu).un) dd)pe) @
wherep(x) denotes the following probability function:
1, if u=y,
p(u) = _
0, otherwise.
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Thus, x is generated front, (ulv) with probability w(v, u) and fromp(u) with prob-
ability 1 - [ w(v, u)f.(ulv) du.

Now, we want to showfj(u) = fi_1(u) = f(u) asi goes to infinity, which implies
that bothx, andx;_; are generated from the invariant distribution functio) for
suficiently largel.

To do so, we need to consider the condition satisfying the following equation:

f(u) = f f*(ulv) f(v) dv. 3)

Equation (3) holds if we have the following equation:
(U f(u) = F(uv) F(v), 4)
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which is called theeversibility condition .

By taking the integration with respect voon both sides of equation (4), equation
(3) is obtained.

Therefore, we have to check whether thigulv) shown in equation (2) satisfies
equation (4).

It is straightforward to verify that

w(v, U £.(UV) (V) = w(u, v) f.(vu) f (u),

(1- f w(v, u) f.(ulv) du)p(u) f(v) = (1- f w(u, v) f.(vu) dv)p(v) f (u).
Thus, ag goes to infinity,x is a random draw from the target densttfy).
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If % is generated fronf(-), thenx;, is also generated frorf\-).

Therefore, all the, .1, Xi12, - - - are taken as random draws from the target density
f(-).

The requirement for uniform convergence of the Markov chain is that the chair
should barreducible andaperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(Xo) be the set of possible valuesxffrom starting pointxg.

If there exist two possible starting values, s&andx*, such thaC;(x*)NCi(x**) =

0 (i.e., empty set) for all, then the same limiting distribution cannot be reached
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from both starting points.

Thus, in the case @;(x") N Ci(x*™*) = 0, the convergence may fail.

A Markov chain is said to bereducible if there exists amsuch thaP(x € C|xg) >

0 for any starting poinky, and any se€ such thatj(; f(X) dx > 0.

The irreducible condition ensures that the chain can reach all pogsiblaes from

any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoir
setC! andC? such thatx,_; € C! impliesx;, € C? andx,_; € C? implies x; € C,

then the chain oscillates betwe@handC? and we again havg;(x*) N Ci(x™*) = 0
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for all i whenx* € C* andx™ € C2.

Accordingly, we cannot have the same limiting distribution in this case, either.
It is calledaperiodic if the chain does not oscillate between two $etsandC? or
cycle around a partitio@?!, C?, - - -, C" of r disjoint sets for > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithmy, is taken as a random draw »from f(X)

for suficiently largeM.
To obtainN random draws, we need to generlter N random draws.

Moreover, clearly we have Cox(,, X)) > 0, because; is generated based on ;
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in Step (iif).

Therefore, for precision of the random draws, the Metropolis-Hastings algorithn
gives us the worst random number of the three sampling methods. i.e., reje
tion sampling in Section 5.7.1, importance resampling in Section 5.7.2 and th
Metropolis-Hastings algorithm in this section.

Based on Steps (i) — (iii) and (iv)’, under some conditions the basic result of the

Metropolis-Hastings algorithm is as follows:
1 N
L0000 — @)= [gfdk  asN — .
i=1
whereg(-) is a function, which is representatively takengés) = x for mean and
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g(x) = (x - X)? for variance.

X denoteX = (1/N) 3N, x.

Thus, it is shown that (N) 3, g(x) is a consistent estimate of(@x)), even
thoughxy, X, - - -, Xy are mutually correlated.

As an alternative random number generation method to avoid the positive correl:
tion, we can perform the case Nf= 1 as in the above procedures (i) — (N)times

in parallel, taking diferent initial values fox_y.

In this case, we need to generde- 1 random numbers to obtain one random draw

from f(x).
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That is, N random draws fronf(x) are based omN(1 + M) random draws from
f.(XI%i-1)-

Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorithn
should be similar to rejection sampling.

However, this alternative method is too computer-intensive, compared with th,
above procedures (i) — (iii) and (iv)’, which takes more time than rejection sam-
pling in the case oM > Ng.

Furthermore, the sampling density has to satisfy the following conditions:
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(i) we can quickly and easily generate random draws from the sampling densit
and
(ii) the sampling density should be distributed with the same range as the targ

density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyzs
(1999) for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily de
pend on choice of the sampling density, we can see that the Metropolis-Hasting

algorithm has the problem of specifying the sampling density, which is the crucia
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criticism.

Several generic choices of the sampling density are discussed by Tierney (199
and Chib and Greenberg (1995).

We can consider several candidates for the sampling deh$ii;_1), i.e., Sam-

pling Densities | — 1.

3.4.1.1 Sampling Density | (Independence Chain) For the sampling density,
we have started witl.(x) in this section.

Thus, one possibility of the sampling density is given hy{x|x,_1) = f.(x), where
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f.(-) does not depend oxq_;.
This sampling density is called thedependence chain
For example, it is possible to takg(x) = N(u., o2), whereu, ando? are the hyper-

parameters.
Or, whenx lies on a certain interval, sag,(b), we can choose the uniform distribu-

tion f.(x) = 1/(b — a) for the sampling density.

3.4.1.2 Sampling Density Il (Random Walk Chain) We may take the sam-

pling density called theandom walk chain, i.e., f.(X|Xi_1) = f.(X— Xi_1).
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Representatively, we can take the sampling density,@¢x_1) = N(X_1, 02),
whereo? denotes the hyper-parameter.
Based on the random walk chain, we have a series of the random draws whic

follow the random walk process.

3.4.1.3 Sampling Density Il (Taylored Chain) The alternative sampling dis-
tribution is based on approximation of the log-kernel (see Geweke and Tanizal
(1999, 2001, 2003)), which is a substantial extension ofTdndored chain dis-
cussed in Chib, Greenberg and Winkelmann (1998).
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Let p(x) = log(f(x)), wheref(x) may denote the kernel which corresponds to the
target density.
Approximating the log-kernep(x) aroundx,_; by the second order Taylor series

expansionp(x) is represented as:

P(X) ~ p(Xi-1) + P'(Xi-1)(X = Xi-1) + ]E-p”(xi—l)(x — Xi_1)%, )

wherep’(-) andp”(-) denote the first- and second-derivatives.
Depending on the values pf(x) andp”(x), we have the four cases, i.e., Cases 1 —
4, which are classified by (f)’(X) < —e in Case 1 op”(X) > —e in Cases 2 —4 and

(i) p'(X) < 0in Case 2p'(X) > 0in Case 3 op’(xX) = 0in Case 4.
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Geweke and Tanizaki (2003) suggested introdueimgto the Taylored chain dis-
cussed in Geweke and Tanizaki (1999, 2001).

Note thate = 0 is chosen in Geweke and Tanizaki (1999, 2001).

To improve precision of random drawsshould be a positive value, which will be

discussed later in detail (see Remark 1dpr

Case 1: p”(xi-1) < —e: Equation (5) is rewritten by:

PO = p(%-1) - %(W

wherer(x_1) is an appropriate function of_;.

P (Xi-1)
P’ (Xi-1)

)(x— (%1 - ) + (%),
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Sincep”(x;_1) is negative, the second term in the right-hand side is equivalent

to the exponential part of the normal density.
Therefore f,(x|x_1) is taken adN(u., 02), whereu, = Xi_1 — p'(X-1)/p” (Xi—1)
ando? = -1/p"(X-1).

Case 2: p”(Xj-1) 2 —€ and p'(xi-1) < 0: Perform linear approximation qi(x).
Let x* be the nearest mode witf < X_;.

Then, p(x) is approximated by a line passing betwee€rand x,_;, which is
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written as:

p( +) P(Xi-1)
— Xi_1

From the second term in the right-hand side, the sampling density is rep

(x— xY).

p(X) = p(x*) +

resented as the exponential distribution with- x* — d, i.e., f.(X|X_1) =
/lexp(—/l(x— (x* - d))) if x* —d < xandf,(x/x_,) = 0 otherwise, whera is

defined as:

Fﬁﬂ—pml)
Xi—1
d is a positive value, which will be discussed later (see Remark @)for

Thus, a random draw* from the sampling density is generated)Xjy= w +
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(x* —d), wherew represents the exponential random variable with parametel

A.
Case 3: p”(Xj-1) = —e and p'(xj—1) > 0: Similarly, perform linear approximation
of p(x) in this case.
Let x* be the nearest mode witt ; < x*.
Approximation ofp(x) is exactly equivalent to that of Case 2.

Taking into accounk < x*+d, the sampling density is written a&:(x|x_1) =

ﬂex;{—ﬁ((x* +d) - x)) if X< x"+dandf,(x]x_1) = 0 otherwise.
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Thus, a random draw* from the sampling density is generated ky =

(x* + d) — w, wherew is distributed as the exponential random variable with

parameten.
Case 4: p’(xi-1) = —e and p'(xi_1) = 0: In this casep(x) is approximated as a
uniform distribution at the neighborhood xf ;.

As for the range of the uniform distribution, we utilize the two appropriate

valuesx™ andxt*, which satisfiext < x < x**.

When we have two modeg! andx™™ may be taken as the modes.
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Thus, the sampling densitly(x|x_1) is obtained by the uniform distribution
on the interval betweer" andx*™, i.e., f.(X|xi_1) = 1/(X** — x*) if X" < X<

x**andf.(x|x_1) = 0 otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases 1
4, depending on the values pf(:) andp”(-).

Moreover, in the case whevpeis a vector, applying the procedure above to each
element ofx, Sampling Il is easily extended to multivariate cases.

Finally, we discuss aboutandd in the following remarks.
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Remark 1. €in Cases 1 — 4 should be taken as an appropriate positive number.
It may seem more natural to take= O, rather thare > O.

The reason why > 0 is taken is as follows.

Consider the case @f= 0.

Whenp”(x;_1) is negative and it is very close to zero, variapnéén Case 1 becomes
extremely large because of = —1/p”(X_1).

In this case, the obtained random draws are too broadly distributed and according
they become unrealistic, which implies that we have a lot of outliers.

To avoid this situation¢ should be positive.
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It might be appropriate thatshould depend on variance of the target density, be-
causee should be small if variance of the target density is large.

Thus, in order to reduce a number of outliers; 0 is recommended.

Remark 2: Ford in Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.

Let x* be the mode.
We have Case 2 in the right-hand sidexbfand Case 3 in the left-hand sidexdf

In the case ofl = 0, we have the random draws generated from either Case 2 or 3
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In this situation, the generated random draw does not move from one case to a
other.

In the case ofl > 0, however, the distribution in Case 2 can generate a randorn
draw in Case 3.

That is, for positived, the generated random draw may move from one case to an
other, which implies that the irreducibility condition of the MH algorithm is guar-

anteed.
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Normal Distribution: N(0,1): Asin Sections 5.7.1 and 5.7.2, we consider an

example of generating standard normal random draws based on the half-norn

distribution:
2 1
—e 2" for0 < X < oo,

0, otherwise.

As in Sections 5.7.1 and 5.7.2, we take the sampling density as the following expc
nential distribution:

e for 0 < x < o0,
f.(x) =
0, otherwise,
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which is the independence chain, i.&(X|x_1) = f.(X).
Then, the acceptance probabilityx_, x*) is given by:
f(x)/£.(x) 1)
f(Xi—1)/ f.(X-2)’
. 1., . 1,
= mln(exp(—éx X+ oK - Xi_1), 1).

w(Xi_1, X) = min(

Utilizing the Metropolis-Hastings algorithm, the standard normal random numbe

generator is shown as follows:

(i) Take an appropriate initial value &fasx_y (for examplex_y = 0).

(i) Setyi-1 = [X-al.
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(i) Generate a uniform random draw from U(0,1) and computev(y;_1, Y*)
wherey* = —log(u,).

(iv) Generate a uniform random draw from U(0, 1), and sety; = y* if u, <
w(Yi_1,Y*) andy; = y;_; otherwise.

(v) Generate a uniform random drawfrom U(0, 1), and set; = y; if uz < 0.5
andx; = -y; otherwise.

(vi) Repeat Steps (i) — (v) far=-M+1,-M+2,.--,1.

y; is taken as a random draw frofifx). M denotes the burn-in period.

If a lot of random draws (sayyl random draws) are required, we replace Step (vi)
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by Step (vi)’' represented as follows:
(vi)’ Repeat Steps (i) — (v) far=-M+1,-M +2,---,N.

In Steps (ii) — (iv), a half-normal random draw is generated.
Note that the absolute value &f ; is taken in Step (ii) because the half-normal
random draw is positive.

In Step (v), the positive or negative sign is randomly assignegd to
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Gamma Distribution: G(a,1)for 0 < @ < 1:  WhenX ~ G(«, 1), the density
function of X is given by:

Fix“‘le‘x, for 0 < X < oo,
f(x) = | 1@

0, otherwise.

As in gammarnd2 of Sections 5.7.1 angdammarnd4 of 5.7.2, the sampling density
Is taken as:

e a
f.(X) = ——ax ——e ™ y(x),
(0= ——ax 309 + —T—e™y(x)

where both;(x) andl,(x) denote the indicator functions defined in Section 5.7.1.
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Then, the acceptance probability is given by:
q(x’) o F(xX)/1(x)
1) = 1
e ST R e
X*a—le—x*/(x*a—lll(x*) + e—x* |2(X*)) )
X te /(Mo (%) + €751 5(%1)

As shown in Section 5.7.1, the cumulative distribution functiorf,§X) is repre-

w(Xi_1, X) = min(

= min(

sented as:
%ex“, if0<x<1,
F.)=1" .
= T e, ifx> 1

a+e a+e
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Therefore, a candidate of the random draw, k&.can be generated from(x), by
utilizing both the composition method and the inverse transform method.
Then, using the Metropolis-Hastings algorithm, the gamma random number gene

ation method is shown as follows.

(i) Take an appropriate initial value asy.

(i) Generate a uniform random drayfrom U(0, 1), and sek* = ((a/e+1)u,)*®
if uy <e/(a+e€) andx = —log((1/e+ 1/a)(1 - uy))if u; > e/(a + €).
(ii) Computew(x;_1, X*).

(iv) Generate a uniform random draw from U(0, 1), and set, = x" if u, <
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w(Xi_1, X*) andx = X;_; otherwise.

(v) Repeat Steps (ii) — (iv) far=-M +1,-M + 2,---, 1.

For suficiently largeM, x; is taken as a random draw frofifx). u; andu, should
be independently distributed.

M denotes the burn-in period. If we need a lot of random draws ($agndom

draws), replace Step (v) by Step (v)’, which is given by:

(v)" Repeat Steps (ii) — (iv) far=-M +1,-M +2,---,N.
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Beta Distribution:  The beta distribution with parametersaandg is of the form:

1
f(x) = B(a.B)

0, otherwise.

x*H1-xF?1,  forO<x<1,

The sampling density is taken as:
1, forO< x< 1,

f.(X) =
0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightso(x), i = 1,2,---,n, are given by:

. .o F(x)/ £.(x) o Xye-1, 1= X5 -1
@K1, X) = mln( f(%i_1)/ f(Xi1) 1) B mm((xi—l) (1 - Xi—1)ﬂ ’1)'

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generate

as follows.

(i) Take an appropriate initial value asy.
(i) Generate a uniform random drawfrom U(0, 1), and computes(X_z, X*).
(iif) Generate a uniform random drawrom U (0, 1), which is independent of,

and set; = X" if u < w(X_1, X*) andx; = X;_1 if U> w(X_1, X).
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(iv) Repeat Steps (ii) and (iii) far=-M + 1, -M + 2,---, 1.

For suficiently largeM, x; is taken as a random draw frofifx).
M denotes the burn-in period.
If we want a lot of random draws (sal, random draws), replace Step (iv) by Step

(iv)’, which is represented as follows:

(iv) Repeat Steps (ii) and (iii) far=-M + 1, -M + 2,-- -, N.
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