
5.6.4 UsingU(0,1): Discrete Type

In Sections 5.6.2 and 5.6.3, the random number generators from continuous distri-

butions are discussed, i.e., the transformation of variables in Section 5.6.2 and the

inverse transform method in Section 5.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we deal

with some discrete distributions and consider generating their random numbers.

As a representative random number generation method, we can consider utilizing

the inverse transform method in the case of discrete random variables.

Suppose that a discrete random variableX can takex1, x2, · · ·, xn, where the proba-
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bility which X takesxi is given by f (xi), i.e.,P(X = xi) = f (xi).

Generate a uniform random drawu, which is between zero and one.

Consider the case where we haveF(xi−1) ≤ u < F(xi), whereF(xi) = P(X ≤ xi)

andF(x0) = 0.

Then, the random draw ofX is given byxi.
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5.7 Sampling Method II: Random Number Generation

5.7.1 Rejection Sampling (棄却法)

We want to generate random draws fromf (x), called thetarget density (目的密

度), but we consider the case where it is hard to sample fromf (x).

Now, suppose that it is easy to generate a random draw from another densityf∗(x),

called thesampling density (サンプリング密度) or proposal density (提案密度).

In this case, random draws ofX from f (x) are generated by utilizing the random

draws sampled fromf∗(x).

Let x be the the random draw ofX generated fromf (x).
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Suppose thatq(x) is equal to the ratio of the target density and the sampling density,

i.e.,

q(x) =
f (x)
f∗(x)
. (1)

Then, the target density is rewritten as:

f (x) = q(x) f∗(x).

Based onq(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of

sampling techniques, i.e.,rejection sampling (棄却法) in this section,impor-
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tance resampling (重点的リサンプリング法) in Section 5.7.2 and theMetropolis-

Hastings algorithm (メトロポリス－ハスティング・アルゴリズム) in Section

5.7.4.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random draws ofx from f (x), the functional form ofq(x) should

be known and random draws have to be easily generated fromf∗(x).

In order for rejection sampling to work well, the following condition has to be

satisfied:

q(x) =
f (x)
f∗(x)

< c,
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wherec is a fixed value.

That is,q(x) has an upper limit.

As discussed below, 1/c is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a

lot of time.

Under the conditionq(x) < c for all x, we may minimizec.

That is, since we haveq(x) < supx q(x) ≤ c, we may take the supremum ofq(x) for

c.

Thus, in order for rejection sampling to work efficiently,c should be the supremum
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of q(x) with respect tox, i.e.,c = supx q(x).

Let x∗ be the random draw generated fromf∗(x), which is a candidate of the random

draw generated fromf (x).

Defineω(x) as:

ω(x) =
q(x)

supz q(z)
=

q(x)
c
,

which is called theacceptance probability (採択確率).

Note that we have 0≤ ω(x) ≤ 1 when supz q(z) = c < ∞.

The supremum supz q(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection
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sampling.

A random draw ofX is generated fromf (x) in the following way:

(i) Generatex∗ from f∗(x) and computeω(x∗).

(ii) Setx = x∗ with probabilityω(x∗) and go back to (i) otherwise.

In other words, generatingu from a uniform distribution between zero and

one, takex = x∗ if u ≤ ω(x∗) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.

Let U be the uniform random variable between zero and one,X be the random

variable generated from the target densityf (x),
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X∗ be the random variable generated from the sampling densityf∗(x), andx∗ be the

realization (i.e., the random draw) generated from the sampling densityf∗(x).

Consider the probabilityP(X ≤ x|U ≤ ω(x∗)), which should be the cumulative

distribution ofX, F(x), from Step (ii).

The probabilityP(X ≤ x|U ≤ ω(x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(x∗)) =
P(X ≤ x,U ≤ ω(x∗))

P(U ≤ ω(x∗))
,

where the numerator is represented as:

P(X ≤ x,U ≤ ω(x∗)) =
∫ x

−∞

∫ ω(t)

0
fu,∗(u, t) du dt =

∫ x

−∞

∫ ω(t)

0
fu(u) f∗(t) du dt
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=

∫ x

−∞

(∫ ω(t)

0
fu(u) du

)
f∗(t) dt =

∫ x

−∞

(∫ ω(t)

0
du

)
f∗(t) dt

=

∫ x

−∞

[
u
]ω(t)

0
f∗(t) dt =

∫ x

−∞
ω(t) f∗(t) dt =

∫ x

−∞

q(t)
c

f∗(t) dt =
F(x)

c
,

and the denominator is given by:

P(U ≤ ω(x∗)) = P(X ≤ ∞,U ≤ ω(x∗)) =
F(∞)

c
=

1
c
.

In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU andX∗ are independently generated in Steps (i)

and (ii) we havefu,∗(u, x) = fu(u) f∗(x), where fu(u) and f∗(x) denote the marginal

density ofU and that ofX∗.
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The density function ofU is given by fu(u) = 1, because the distribution ofU is

assumed to be uniform between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

ω(x) =
q(x)

c
=

f (x)
c f∗(x)

,

ω(x) f∗(x) = f (x)/c is obtained.

Finally, substituting the numerator and denominator shown above, we have the fol-

lowing equality:

P(X ≤ x|U ≤ ω(x∗)) = F(x).
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Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the most efficient sampling method in the sense of

precision of the random draws, because using rejection sampling we can generate

mutually independently distributed random draws.

However, for rejection sampling we need to obtain thec which is greater than or

equal to the supremum ofq(x).

If the supremum is infinite, i.e., ifc is infinite, ω(x) is zero and accordingly the

candidatex∗ is never accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.
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Let NR be the average number of the rejected random draws.

We need (1+ NR) random draws in average to generate one random number from

f (x).

In other words, the acceptance rate is given by 1/(1+NR) in average, which is equal

to 1/c in average because ofP(U ≤ ω(x∗)) = 1/c.

Therefore, to obtain one random draw fromf (x), we have to generate (1+ NR)

random draws fromf∗(x) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and

Geweke (1996) for rejection sampling.
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To examine the condition thatω(x) is greater than zero, i.e., the condition that the

supremum ofq(x) exists, consider the case wheref (x) and f∗(x) are distributed as

N(µ, σ2) andN(µ∗, σ2
∗), respectively.

q(x) is given by:

q(x) =
f (x)
f∗(x)

=

(2πσ2)−1/2 exp
(
− 1

2σ2
(x− µ)2

)
(2πσ2

∗)−1/2 exp
(
− 1

2σ2
∗
(x− µ∗)2

)
=
σ∗
σ

exp
(
− 1

2σ2
(x− µ)2 +

1
2σ2
∗
(x− µ∗)2

)
=
σ∗
σ

exp

(
− 1

2
σ2
∗ − σ2

σ2σ2
∗

(
x− µσ

2
∗ − µ∗σ2

σ2
∗ − σ2

)2
+

1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.
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If σ2
∗ < σ

2, q(x) goes to infinity asx is large.

In the case ofσ2
∗ > σ

2, the supremum ofq(x) exists, which condition implies that

f∗(x) should be more broadly distributed thanf (x).

In this case, the supremum is obtained as:

c = sup
x

q(x) =
σ∗
σ

exp
(1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.

Whenσ2 = σ2
∗ andµ = µ∗, we haveq(x) = 1, which impliesω(x) = 1.

That is, a random draw from the sampling densityf∗(x) is always accepted as a

random draw from the target densityf (x), where f (x) is equivalent tof∗(x) for all

x.
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If σ2 = σ2
∗ andµ , µ∗, the supremum ofq(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

Figure 1: Rejection Sampling

X

f (x)

��	
c f∗(x)

x∗

 f (x∗)

c f∗(x∗)
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From the definition ofω(x), we have the inequalityf (x) ≤ c f∗(x).

c f∗(x) and f (x) are displayed in Figure 1.

The ratio of f (x∗) andc f∗(x∗) corresponds to the acceptance probability atx∗, i.e.,

ω(x∗).

Thus, for rejection sampling,c f∗(x) has to be greater than or equal tof (x) for all x,

which implies that the sampling densityf∗(x) needs to be more widely distributed

than the target densityf (x).

Finally, note that the above discussion holds without any modification even though

f (x) is a kernel of the target density, i.e., even thoughf (x) is proportional to the
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target density, because the constant term is canceled out between the numerator and

denominator (remember thatω(x) = q(x)/ supz q(z)).

Normal Distribution: N(0, 1): First, denote the half-normal distribution by:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

The half-normal distribution above corresponds to the positive part of the standard

normal probability density function.
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Using rejection sampling, we consider generating standard normal random draws

based on the half-normal distribution.

We take the sampling density as the exponential distribution:

f∗(x) =


λe−λx, for 0 ≤ x < ∞,

0, otherwise,

whereλ > 0. Sinceq(x) is defined asq(x) = f (x)/ f∗(x), the supremum ofq(x) is

given by:

c = sup
x

q(x) =
2

λ
√

2π
e

1
2λ

2
.

which depends on parameterλ.
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Remember thatP(U ≤ ω(x∗)) = 1/c corresponds to the acceptance probability.

Since we need to increase the acceptance probability to reduce computational time,

we want to obtain theλ which minimizes supx q(x) with respect toλ.

Solving the minimization problem,λ = 1 is obtained.

Substitutingλ = 1, the acceptance probabilityω(x) is derived as:

ω(x) = e−
1
2 (x−1)2,

for 0 < x < ∞.

Remember that− logU has an exponential distribution withλ = 1 whenU ∼

U(0,1).
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Therefore, the algorithm is represented as follows.

(i) Generate two independent uniform random drawsu1 andu2 between zero and

one.

(ii) Computex∗ = − logu2, which indicates the exponential random draw gener-

ated from the target densityf∗(x).

(iii) Setx = x∗ if u1 ≤ exp(−1
2(x∗ − 1)2), i.e.,−2 log(u1) ≥ (x∗ − 1)2, and return to

(i) otherwise.

x in Step (iii) yields a random draw from the half-normal distribution.
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To generate a standard normal random draw utilizing the half-normal random draw

above, we may put the positive or negative sign randomly withx.

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random drawu3 between zero and one, and setz = x if

u3 ≤ 1/2 andz= −x otherwise.

z gives us a standard normal random draw.

Note that the number of iteration in Step (iii) is given byc =
√

2e/π ≈ 1.3155 in

average, or equivalently, the acceptance probability in Step (iii) is 1/c ≈ 0.7602.

The source code for this standard normal random number generator is shown in
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snrnd6(ix,iy,rn).

——— snrnd6(ix,iy,rn)———

1: subroutine snrnd6(ix,iy,rn)
2: c
3: c Use "snrnd6(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: 1 call urnd(ix,iy,rn1)
12: call urnd(ix,iy,rn2)
13: y=-log(rn2)
14: if( -2.*log(rn1).lt.(y-1.)**2 ) go to 1
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15: call urnd(ix,iy,rn3)
16: if(rn3.le.0.5) then
17: rn= y
18: else
19: rn=-y
20: endif
21: return
22: end

Note thatsnrnd6(ix,iy,rn) should be used together withurnd(ix,iy,rn).

Thus, utilizing rejection sampling, we have the standard normal random number

generator, which is based on the half-normal distribution.
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Gamma Distribution: G(α, 1) for 0 < α ≤ 1 and 1 < α: In this section,

utilizing rejection sampling we show an example of generating random draws from

the gamma distribution with parametersα andβ = 1, i.e.,G(α, 1).

WhenX ∼ G(α,1), the density function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

Ahrens and Dieter (1974) consider the case of 0< α ≤ 1, which is discussed in this

section.

The case ofα > 1 will be discussed later.
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Using the rejection sampling, the composition method and the inverse transform

method, we consider generating random draws fromG(α,1) for 0< α ≤ 1.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined as:

I1(x) =

1, if 0 < x ≤ 1,

0, otherwise,
I2(x) =

1, if 1 < x,

0, otherwise.

Random number generation from the sampling density above utilizes the composi-

tion method and the inverse transform method.
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The cumulative distribution related tof∗(x) is given by:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.

Note that 0< α ≤ 1 is required because the sampling density for 0< x ≤ 1 has to

satisfy the property that the integration is equal to one.

The acceptance probabilityω(x) = q(x)/ supz q(z) for q(x) = f (x)/ f∗(x) is given by:

ω(x) = e−xI1(x) + xα−1I2(x).

Moreover, the mean number of trials until success, i.e.,c = supz q(z) is represented
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as:

c =
α + e
αeΓ(α)

,

which depends onα and is not greater than 1.39.

Note thatq(x) takes a maximum value atx = 1.

The random number generation procedure is given by:

(i) Generate a uniform random drawu1 fromU(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).

(ii) Obtainω(x∗) = e−x∗ if u1 ≤ e/(α + e) andω(x∗) = x∗α−1 if u1 > e/(α + e).
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(iii) Generate a uniform random drawu2 from U(0,1), and setx = x∗ if u2 ≤ ω(x∗)

and return to (i) otherwise.

In Step (i) a random drawx∗ from f∗(x) can be generated by the inverse transform

method discussed in Section 5.6.3.

——— gammarnd2(ix,iy,alpha,rn)———

1: subroutine gammarnd2(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd2(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
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7: c ix, iy: Seeds
8: c alpha: Shape Parameter (0<alpha \le 1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: 1 call urnd(ix,iy,rn0)
15: call urnd(ix,iy,rn1)
16: if( rn0.le.e/(alpha+e) ) then
17: rn=( (alpha+e)*rn0/e )**(1./alpha)
18: if( rn1.gt.e**(-rn) ) go to 1
19: else
20: rn=-log((alpha+e)*(1.-rn0)/(alpha*e))
21: if( rn1.gt.rn**(alpha-1.) ) go to 1
22: endif
23: return
24: end
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Note thatgammarnd2(ix,iy,alpha,rn) should be used withurnd(ix,iy,rn).

In gammarnd2(ix,iy,alpha,rn), the case of 0< α ≤ 1 has been shown.

Now, using rejection sampling, the case ofα > 1 is discussed in Cheng (1977,

1998).

The sampling density is chosen as the following cumulative distribution:

F∗(x) =


xλ

δ + xλ
, for x > 0,

0, otherwise,

which is sometimes called thelog-logistic distribution .
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Then, the probability density function,f∗(x), is given by:

f∗(x) =


λδxλ−1

(α + xλ)2
, for x > 0,

0, otherwise.

By the inverse transform method, the random draw fromf∗(x), denoted byx, is

generated as follows:

x =
( δu
1− u

)1/λ
,

whereu denotes the uniform random draw generated fromU(0,1).

For the two parameters,λ =
√

2α − 1 andδ = αλ are chosen, taking into account
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minimizingc = supx q(x) = supx f (x)/ f∗(x) with respect toδ andλ (note thatλ and

δ are approximately taken, since it is not possible to obtain the explicit solution of

δ andλ).

Then, the number of rejections in average is given by:

c =
4ααe−α

Γ(α)
√

2α − 1
,

which is computed as:

1.47 whenα = 1, 1.25 whenα = 2, 1.17 whenα = 5,

1.15 whenα = 10, 1.13 whenα = ∞.

Thus, the average number of rejections is quite small for allα.
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The random number generation procedure is given by:

(i) Seta = 1/
√

2α − 1, b = α − log 4 andc = α +
√

2α − 1.

(ii) Generate two uniform random drawsu1 andu2 from U(0, 1).

(iii) Sety = a log
u1

1− u1
, x∗ = αey, z= u2

1u2 andr = b+ cy− x.

(iv) Takex = x∗ if r ≥ logz and return to (ii) otherwise.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (iii)

and (iv), which is as follows:

(iii)’ Takex = x∗ if r ≥ 4.5z− d and go to (iv) otherwise.
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d is defined asd = 1+ log 4.5, which has to be computed in Step (i).

Note that we have the relation:θz− (1+ logθ) ≥ logz for all z > 0 and any given

θ > 0, because logz is a concave function ofz. According to Cheng (1977), the

choice ofθ is not critical and the suggested value isθ = 4.5, irrespective ofα.

The source code for Steps (i) – (iv) and (iii)’ is given bygammarnd3(ix,iy,alpha,rn).

——— gammarnd3(ix,iy,alpha,rn)———

1: subroutine gammarnd3(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd3(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
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6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (1<alpha)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: a=1./sqrt(2.*alpha-1.)
15: b=alpha-log(4.)
16: c=alpha+sqrt(2.*alpha-1.)
17: d=1.+log(4.5)
18: 1 call urnd(ix,iy,u1)
19: call urnd(ix,iy,u2)
20: y=a*log(u1/(1.-u1))
21: rn=alpha*(e**y)
22: z=u1*u1*u2
23: r=b+c*y-rn
24: if( r.ge.4.5*z-d ) go to 2
25: if( r.lt.log(z) ) go to 1

360



26: 2 return
27: end

Note thatgammarnd3(ix,iy,alpha,rn) requiresurnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Lines

17 and 24 fromgammarnd3, because evaluating theif(...) sentences in Lines 24

and 25 sometimes takes more time than computing the logarithm in Line 25.

Thus, using bothgammarnd2 andgammarnd3, we have the gamma random number

generator with parametersα > 0 andβ = 1.
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5.7.2 Importance Resampling (重点的リサンプリング)

Theimportance resamplingmethod also utilizes the sampling densityf∗(x), where

we should choose the sampling density from which it is easy to generate random

draws.

Let x∗i be theith random draw ofx generated fromf∗(x).

The acceptance probability is defined as:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

,

whereq(·) is represented as equation (1).
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To obtain a random draws fromf (x), we perform the following procedure:

(i) Generatex∗j from the sampling densityf∗(x) for j = 1,2, · · · ,n.

(ii) Computeω(x∗j ) for all j = 1,2, · · · ,n.

(iii) Generate a uniform random drawu between zero and one and takex = x∗j

whenΩ j−1 ≤ u < Ω j, whereΩ j =
∑ j

i=1ω(x∗i ) andΩ0 ≡ 0.

Thex obtained in Step (iii) represents a random draw from the target densityf (x).

In Step (ii), all the probability weightsω(x∗j ), j = 1,2, · · · ,n, have to be computed

for importance resampling.
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Thus, we need to generaten random draws from the sampling densityf∗(x) in ad-

vance.

When we want to generate more random draws (say,N random draws), we may

repeat Step (iii)N times.

In the importance resampling method, there aren realizations, i.e.,x∗1, x∗2, · · ·, x∗n,

which are mutually independently generated from the sampling densityf∗(x).

The cumulative distribution off (x) is approximated by the following empirical

distribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x

−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt
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≈
(1/n)

∑n
i=1 q(x∗i )I (x, x

∗
i )

(1/n)
∑n

j=1 q(x∗j )
=

n∑
i=1

ω(x∗i )I (x, x
∗
i ),

whereI (x, x∗i ) denotes the indicator function which satisfiesI (x, x∗i ) = 1 whenx ≥

x∗i andI (x, x∗i ) = 0 otherwise.

P(X = x∗i ) is approximated asω(x∗i ).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance

resampling procedure.

As mentioned in Section 5.7.1, for rejection sampling,f (x) may be a kernel of the

target density, or equivalently,f (x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.
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That is, f (x) may be proportional to the target density for importance resampling,

too.

To obtain a random draws fromf (x), importance resampling requiresn random

draws from the sampling densityf∗(x), but rejection sampling needs (1+NR) random

draws from the sampling densityf∗(x).

For importance resampling, when we haven different random draws from the sam-

pling density, we pick up one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because

we have to compute all the probability weightsΩ j, j = 1,2, · · · ,n, in advance even
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when we want only one random draw.

When we want to generateN random draws, importance resampling requiresn

random draws from the sampling densityf∗(x), but rejection sampling needsn(1+

NR) random draws from the sampling densityf∗(x).

Thus, asN increases, importance resampling is relatively less computational than

rejection sampling.

Note thatN < n is recommended for the importance resampling method.

In addition, when we haveN random draws from the target densityf (x), some of

the random draws take the exactly same values for importance resampling, while
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all the random draws take the different values for rejection sampling.

Therefore, we can see that importance resampling is inferior to rejection sampling

in the sense of precision of the random draws.

Normal Distribution: N(0,1): Again, we consider an example of generating

standard normal random draws based on the half-normal distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.
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We take the sampling density as the following exponential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,

which is exactly the same sampling density as in Section 5.7.1.

Given the random drawsx∗i , i = 1, · · · , n, generated from the above exponential

density f∗(x), the acceptance probabilityω(x∗i ) is given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )
=

exp(−1
2x∗2i + x∗i )∑n

j=1 exp(−1
2x∗2j + x∗j )

.

Therefore, a random draw from the half-normal distribution is generated as follows.
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(i) Generate uniform random drawsu1, u2, · · ·, un from U(0,1).

(ii) Obtainx∗i = − log(ui) for i = 1,2, · · · ,n.

(iii) Computeω(x∗i ) for i = 1, 2, · · · ,n.

(iv) Generate a uniform random drawv1 from U(0,1).

(v) Setx = x∗j whenΩ j−1 ≤ v1 < Ω j for Ω j =
∑ j

i=1ω(x∗i ) andΩ0 = 0.

x is taken as a random draw generated from the half-normal distributionf (x).

In order to have a standard normal random draw, we additionally put the following

step.
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(vi) Generate a uniform random drawv2 from U(0,1), and setz = x if v2 ≤ 1/2

andz= −x otherwise.

z represents a standard normal random draw.

Note that Step (vi) above corresponds to Step (iv) in Section 5.7.1.

Steps (i) – (vi) shown above represent the generator which yields one standard

normal random draw.

When we wantN standard normal random draws, Steps (iv) – (vi) should be re-

peatedN times.

In Steps (iv) and (v), a random draw fromf (x) is generated based onΩ j for j =
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1,2, · · · ,n.

Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),
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which is the same function as ingammarnd2 of Section 5.7.1, where bothI1(x) and

I2(x) denote the indicator functions defined in Section 5.7.1.

The probability weights are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )

=
x∗α−1

i e−x∗i /(x∗α−1
i I1(x∗i ) + e−x∗i I2(x∗i ))∑n

j=1 x∗α−1
j e−x∗j /(x∗α−1

j I1(x∗j ) + e−x∗j I2(x∗j ))
,

for i = 1, 2, · · · ,n.
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The cumulative distribution function off∗(x) is represented as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.

Therefore,x∗i can be generated by utilizing both the composition method and the

inverse transform method.

Givenx∗i , computeω(x∗i ) for i = 1,2, · · · ,n, and takex = x∗i with probabilityω(x∗i ).

Summarizing above, the random number generation procedure for the gamma dis-

tribution is given by:
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(i) Generate uniform random drawsui, i = 1,2, · · · ,n, from U(0,1), and set

x∗i = ((α/e + 1)ui)
1/α andω(x∗i ) = e−x∗i if ui ≤ e/(α + e) and takex∗i =

− log((1/e+1/α)(1−ui)) andω(x∗i ) = x∗α−1
i if ui > e/(α+e) for i = 1,2, · · · ,n.

(ii) ComputeΩi =
∑i

j=1ω(x∗j ) for i = 1,2, · · · ,n, whereΩ0 = 0.

(iii) Generate a uniform random drawv from U(0,1), and takex = x∗i whenΩi−1 ≤

v < Ωi.

As mentioned above, this algorithm yields one random draw.

If we wantN random draws, Step (iii) should be repeatedN times.

375



Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )
=

x∗α−1
i (1− x∗i )

β−1∑n
j=1 x∗α−1

j (1− x∗j )
β−1
.

Therefore, to generate a random draw fromf (x), first generatex∗i , i = 1,2, · · · ,n,

from U(0,1), second computeω(x∗i ) for i = 1,2, · · ·,n, and finally takex = x∗i with

probabilityω(x∗i ).

We have shown three examples of the importance resampling procedure in this

section.

One of the advantages of importance resampling is that it is really easy to construct

a Fortran source code.
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However, the disadvantages are that (i) importance resampling takes quite a long

time because we have to obtain all the probability weights in advance and (ii) impor-

tance resampling requires a great amount of storages forx∗i andΩi for i = 1,2, · · · ,n.

5.7.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アル

ゴリズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distri-

butions are compared with respect to precision of the random draws from the target

density f (x).
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TheMetropolis-Hastings algorithm is also one of the sampling methods to gen-

erate random draws from any target densityf (x), utilizing sampling densityf∗(x),

even in the case where it is not easy to generate random draws from the target

density.

Let us define the acceptance probability by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

,1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
,

whereq(·) is defined as equation (1).

By the Metropolis-Hastings algorithm, a random draw fromf (x) is generated in the

following way:
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(i) Take the initial value ofx asx−M.

(ii) Generatex∗ from f∗(x) and computeω(xi−1, x∗) givenxi−1.

(iii) Setxi = x∗ with probabilityω(xi−1, x∗) andxi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

In the above algorithm,x1 is taken as a random draw fromf (x).

When we want more random draws (say,N), we replace Step (iv) by Step (iv)’,

which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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When we implement Step (iv)’, we can obtain a series of random drawsx−M, x−M+1,

· · ·, x0, x1, x2, · · ·, xN, wherex−M, x−M+1, · · ·, x0 are discarded from further consid-

eration.

The lastN random draws are taken as the random draws generated from the target

density f (x).

Thus,N denotes the number of random draws.

M is sometimes called theburn-in period .

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 5.7.1.
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We show thatxi is the random draw generated from the target densityf (x) under

the assumptionxi−1 is generated fromf (x).

Let U be the uniform random variable between zero and one,X be the random vari-

able which has the density functionf (x) andx∗ be the realization (i.e., the random

draw) generated from the sampling densityf∗(x).

Consider the probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)), which should be the cumulative

distribution ofX, i.e.,F(x).

The probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) =

P(X ≤ x,U ≤ ω(xi−1, x∗))
P(U ≤ ω(xi−1, x∗))

,
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where the numerator is represented as:

P(X ≤ x,U ≤ ω(xi−1, x
∗)) =

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du

)
f∗(t) dt =

∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P(U ≤ ω(xi−1, x
∗)) = P(X ≤ ∞,U ≤ ω(xi−1, x

∗)) =
f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.
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The density function ofU is given by fu(u) = 1 for 0< u < 1.

Let X∗ be the random variable which has the density functionf∗(x).

In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU and X∗ are independently generated, we have

fu,∗(u, x) = fu(u) f∗(x) = f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following

equality:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) = F(x).
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Thus, thex∗ which satisfiesu ≤ ω(xi−1, x∗) indicates a random draw fromf (x).

We setxi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied.xi−1 is already assumed to be a

random draw fromf (x).

Therefore, it is shown thatxi is a random draw fromf (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note thatf (x) may

be a kernel of the target density, or equivalently,f (x) may be proportional to the

target density.

The same algorithm as Steps (i) – (iv) can be applied to the case wheref (x) is
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proportional to the target density, becausef (x∗) is divided by f (xi−1) in ω(xi−1, x∗).

As a general formulation of the sampling density, instead off∗(x), we may take the

sampling density as the following form:f∗(x|xi−1), where a candidate random draw

x∗ depends on the (i − 1)th random draw, i.e.,xi−1.

For choice of the sampling densityf∗(x|xi−1), Chib and Greenberg (1995) pointed

out as follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support off (x), which

implies that f∗(x|i−1) should not have too large variance and too small variance,

compared withf (x).
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See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan

(1994), Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casella

(1999) and so on for the Metropolis-Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is for-

mulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv,

where f ∗(u|v) denotes the transition distribution, which is characterized by Step

(iii).

xi−1 is generated fromfi−1(·) andxi is from f ∗(·|xi−1).
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xi depends only onxi−1, which is called theMarkov property .

The sequence{· · ·, xi−1, xi, xi+1, · · ·} is called theMarkov chain .

The Monte Carlo statistical methods with the sequence{· · ·, xi−1, xi, xi+1, · · ·} is

called theMarkov chain Monte Carlo (MCMC) .

From Step (iii), f ∗(u|v) is given by:

f ∗(u|v) = ω(v,u) f∗(u|v) +
(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u), (2)

wherep(x) denotes the following probability function:

p(u) =

1, if u = v,

0, otherwise.
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Thus,x is generated fromf∗(u|v) with probabilityω(v,u) and fromp(u) with prob-

ability 1−
∫
ω(v,u) f∗(u|v) du.

Now, we want to showfi(u) = fi−1(u) = f (u) as i goes to infinity, which implies

that bothxi andxi−1 are generated from the invariant distribution functionf (u) for

sufficiently largei.

To do so, we need to consider the condition satisfying the following equation:

f (u) =
∫

f ∗(u|v) f (v) dv. (3)

Equation (3) holds if we have the following equation:

f ∗(v|u) f (u) = f ∗(u|v) f (v), (4)
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which is called thereversibility condition .

By taking the integration with respect tov on both sides of equation (4), equation

(3) is obtained.

Therefore, we have to check whether thef ∗(u|v) shown in equation (2) satisfies

equation (4).

It is straightforward to verify that

ω(v,u) f∗(u|v) f (v) = ω(u, v) f∗(v|u) f (u),(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u) f (v) =

(
1−

∫
ω(u, v) f∗(v|u) dv

)
p(v) f (u).

Thus, asi goes to infinity,xi is a random draw from the target densityf (·).
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If xi is generated fromf (·), thenxi+1 is also generated fromf (·).

Therefore, all thexi, xi+1, xi+2, · · · are taken as random draws from the target density

f (·).

The requirement for uniform convergence of the Markov chain is that the chain

should beirreducible andaperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(x0) be the set of possible values ofxi from starting pointx0.

If there exist two possible starting values, sayx∗ andx∗∗, such thatCi(x∗)∩Ci(x∗∗) =

∅ (i.e., empty set) for alli, then the same limiting distribution cannot be reached
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from both starting points.

Thus, in the case ofCi(x∗) ∩Ci(x∗∗) = ∅, the convergence may fail.

A Markov chain is said to beirreducible if there exists ani such thatP(xi ∈ C|x0) >

0 for any starting pointx0 and any setC such that
∫

C
f (x) dx > 0.

The irreducible condition ensures that the chain can reach all possiblex values from

any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoint

setC1 andC2 such thatxi−1 ∈ C1 implies xi ∈ C2 andxi−1 ∈ C2 implies xi ∈ C1,

then the chain oscillates betweenC1 andC2 and we again haveCi(x∗)∩Ci(x∗∗) = ∅
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for all i whenx∗ ∈ C1 andx∗∗ ∈ C2.

Accordingly, we cannot have the same limiting distribution in this case, either.

It is calledaperiodic if the chain does not oscillate between two setsC1 andC2 or

cycle around a partitionC1, C2, · · ·, Cr of r disjoint sets forr > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithm,x1 is taken as a random draw ofx from f (x)

for sufficiently largeM.

To obtainN random draws, we need to generateM + N random draws.

Moreover, clearly we have Cov(xi−1, xi) > 0, becausexi is generated based onxi−1
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in Step (iii).

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm

gives us the worst random number of the three sampling methods. i.e., rejec-

tion sampling in Section 5.7.1, importance resampling in Section 5.7.2 and the

Metropolis-Hastings algorithm in this section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the

Metropolis-Hastings algorithm is as follows:

1
N

N∑
i=1

g(xi) −→ E(g(x)) =
∫

g(x) f (x) dx, as N −→ ∞,

whereg(·) is a function, which is representatively taken asg(x) = x for mean and
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g(x) = (x− x)2 for variance.

x denotesx = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E(g(x)), even

thoughx1, x2, · · ·, xN are mutually correlated.

As an alternative random number generation method to avoid the positive correla-

tion, we can perform the case ofN = 1 as in the above procedures (i) – (iv)N times

in parallel, taking different initial values forx−M.

In this case, we need to generateM+1 random numbers to obtain one random draw

from f (x).
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That is, N random draws fromf (x) are based onN(1 + M) random draws from

f∗(x|xi−1).

Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorithm

should be similar to rejection sampling.

However, this alternative method is too computer-intensive, compared with the

above procedures (i) – (iii) and (iv)’, which takes more time than rejection sam-

pling in the case ofM > NR.

Furthermore, the sampling density has to satisfy the following conditions:
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(i) we can quickly and easily generate random draws from the sampling density

and

(ii) the sampling density should be distributed with the same range as the target

density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux

(1999) for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily de-

pend on choice of the sampling density, we can see that the Metropolis-Hastings

algorithm has the problem of specifying the sampling density, which is the crucial
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criticism.

Several generic choices of the sampling density are discussed by Tierney (1994)

and Chib and Greenberg (1995).

We can consider several candidates for the sampling densityf∗(x|xi−1), i.e., Sam-

pling Densities I – III.

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density,

we have started withf∗(x) in this section.

Thus, one possibility of the sampling density is given by:f∗(x|xi−1) = f∗(x), where
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f∗(·) does not depend onxi−1.

This sampling density is called theindependence chain.

For example, it is possible to takef∗(x) = N(µ∗, σ2
∗), whereµ∗ andσ2

∗ are the hyper-

parameters.

Or, whenx lies on a certain interval, say (a,b), we can choose the uniform distribu-

tion f∗(x) = 1/(b− a) for the sampling density.

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sam-

pling density called therandom walk chain, i.e., f∗(x|xi−1) = f∗(x− xi−1).
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Representatively, we can take the sampling density asf∗(x|xi−1) = N(xi−1, σ2
∗),

whereσ2
∗ denotes the hyper-parameter.

Based on the random walk chain, we have a series of the random draws which

follow the random walk process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling dis-

tribution is based on approximation of the log-kernel (see Geweke and Tanizaki

(1999, 2001, 2003)), which is a substantial extension of theTaylored chain dis-

cussed in Chib, Greenberg and Winkelmann (1998).
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Let p(x) = log( f (x)), where f (x) may denote the kernel which corresponds to the

target density.

Approximating the log-kernelp(x) aroundxi−1 by the second order Taylor series

expansion,p(x) is represented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x− xi−1) +
1
2

p′′(xi−1)(x− xi−1)
2, (5)

wherep′(·) andp′′(·) denote the first- and second-derivatives.

Depending on the values ofp′(x) andp′′(x), we have the four cases, i.e., Cases 1 –

4, which are classified by (i)p′′(x) < −ε in Case 1 orp′′(x) ≥ −ε in Cases 2 – 4 and

(ii) p′(x) < 0 in Case 2,p′(x) > 0 in Case 3 orp′(x) = 0 in Case 4.
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Geweke and Tanizaki (2003) suggested introducingε into the Taylored chain dis-

cussed in Geweke and Tanizaki (1999, 2001).

Note thatε = 0 is chosen in Geweke and Tanizaki (1999, 2001).

To improve precision of random draws,ε should be a positive value, which will be

discussed later in detail (see Remark 1 forε).

Case 1: p′′(xi−1) < −ε: Equation (5) is rewritten by:

p(x) ≈ p(xi−1) −
1
2

( 1
−1/p′′(xi−1)

)(
x− (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

wherer(xi−1) is an appropriate function ofxi−1.

402



Sincep′′(xi−1) is negative, the second term in the right-hand side is equivalent

to the exponential part of the normal density.

Therefore,f∗(x|xi−1) is taken asN(µ∗, σ2
∗), whereµ∗ = xi−1− p′(xi−1)/p′′(xi−1)

andσ2
∗ = −1/p′′(xi−1).

Case 2: p′′(xi−1) ≥ −ε and p′(xi−1) < 0: Perform linear approximation ofp(x).

Let x+ be the nearest mode withx+ < xi−1.

Then,p(x) is approximated by a line passing betweenx+ andxi−1, which is
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written as:

p(x) ≈ p(x+) +
p(x+) − p(xi−1)

x+ − xi−1
(x− x+).

From the second term in the right-hand side, the sampling density is rep-

resented as the exponential distribution withx > x+ − d, i.e., f∗(x|xi−1) =

λexp
(
−λ(x− (x+ − d))

)
if x+ − d < x and f∗(x|xi−1) = 0 otherwise, whereλ is

defined as:

λ =

∣∣∣∣∣ p(x+) − p(xi−1)
x+ − xi−1

∣∣∣∣∣ .
d is a positive value, which will be discussed later (see Remark 2 ford).

Thus, a random drawx∗ from the sampling density is generated byx∗ = w+
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(x+ − d), wherew represents the exponential random variable with parameter

λ.

Case 3: p′′(xi−1) ≥ −ε and p′(xi−1) > 0: Similarly, perform linear approximation

of p(x) in this case.

Let x+ be the nearest mode withxi−1 < x+.

Approximation ofp(x) is exactly equivalent to that of Case 2.

Taking into accountx < x++d, the sampling density is written as:f∗(x|xi−1) =

λexp
(
−λ((x+ + d) − x)

)
if x < x+ + d and f∗(x|xi−1) = 0 otherwise.

405



Thus, a random drawx∗ from the sampling density is generated byx∗ =

(x+ + d) − w, wherew is distributed as the exponential random variable with

parameterλ.

Case 4: p′′(xi−1) ≥ −ε and p′(xi−1) = 0: In this case,p(x) is approximated as a

uniform distribution at the neighborhood ofxi−1.

As for the range of the uniform distribution, we utilize the two appropriate

valuesx+ andx++, which satisfiesx+ < x < x++.

When we have two modes,x+ andx++ may be taken as the modes.
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Thus, the sampling densityf∗(x|xi−1) is obtained by the uniform distribution

on the interval betweenx+ andx++, i.e., f∗(x|xi−1) = 1/(x++ − x+) if x+ < x <

x++ and f∗(x|xi−1) = 0 otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases 1 –

4, depending on the values ofp′(·) andp′′(·).

Moreover, in the case wherex is a vector, applying the procedure above to each

element ofx, Sampling III is easily extended to multivariate cases.

Finally, we discuss aboutε andd in the following remarks.
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Remark 1: ε in Cases 1 – 4 should be taken as an appropriate positive number.

It may seem more natural to takeε = 0, rather thanε > 0.

The reason whyε > 0 is taken is as follows.

Consider the case ofε = 0.

Whenp′′(xi−1) is negative and it is very close to zero, varianceσ2
∗ in Case 1 becomes

extremely large because ofσ2
∗ = −1/p′′(xi−1).

In this case, the obtained random draws are too broadly distributed and accordingly

they become unrealistic, which implies that we have a lot of outliers.

To avoid this situation,ε should be positive.
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It might be appropriate thatε should depend on variance of the target density, be-

causeε should be small if variance of the target density is large.

Thus, in order to reduce a number of outliers,ε > 0 is recommended.

Remark 2: Ford in Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.

Let x+ be the mode.

We have Case 2 in the right-hand side ofx+ and Case 3 in the left-hand side ofx+.

In the case ofd = 0, we have the random draws generated from either Case 2 or 3.
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In this situation, the generated random draw does not move from one case to an-

other.

In the case ofd > 0, however, the distribution in Case 2 can generate a random

draw in Case 3.

That is, for positived, the generated random draw may move from one case to an-

other, which implies that the irreducibility condition of the MH algorithm is guar-

anteed.
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Normal Distribution: N(0,1): As in Sections 5.7.1 and 5.7.2, we consider an

example of generating standard normal random draws based on the half-normal

distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

As in Sections 5.7.1 and 5.7.2, we take the sampling density as the following expo-

nential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,
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which is the independence chain, i.e.,f∗(x|xi−1) = f∗(x).

Then, the acceptance probabilityω(xi−1, x∗) is given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
(
exp(−1

2
x∗2 + x∗ +

1
2

x2
i−1 − xi−1),1

)
.

Utilizing the Metropolis-Hastings algorithm, the standard normal random number

generator is shown as follows:

(i) Take an appropriate initial value ofx asx−M (for example,x−M = 0).

(ii) Setyi−1 = |xi−1|.
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(iii) Generate a uniform random drawu1 from U(0,1) and computeω(yi−1, y∗)

wherey∗ = − log(u1).

(iv) Generate a uniform random drawu2 from U(0,1), and setyi = y∗ if u2 ≤

ω(yi−1, y∗) andyi = yi−1 otherwise.

(v) Generate a uniform random drawu3 from U(0, 1), and setxi = yi if u3 ≤ 0.5

andxi = −yi otherwise.

(vi) Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,1.

y1 is taken as a random draw fromf (x). M denotes the burn-in period.

If a lot of random draws (say,N random draws) are required, we replace Step (vi)
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by Step (vi)’ represented as follows:

(vi)’ Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,N.

In Steps (ii) – (iv), a half-normal random draw is generated.

Note that the absolute value ofxi−1 is taken in Step (ii) because the half-normal

random draw is positive.

In Step (v), the positive or negative sign is randomly assigned toyi.
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Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

As in gammarnd2 of Sections 5.7.1 andgammarnd4 of 5.7.2, the sampling density

is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined in Section 5.7.1.
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Then, the acceptance probability is given by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

, 1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
( x∗α−1e−x∗/(x∗α−1I1(x∗) + e−x∗ I2(x∗))

xα−1
i−1 e−xi−1/(xα−1

i−1 I1(xi−1) + e−xi−1I2(xi−1))
,1

)
.

As shown in Section 5.7.1, the cumulative distribution function off∗(x) is repre-

sented as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.
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Therefore, a candidate of the random draw, i.e.,x∗, can be generated fromf∗(x), by

utilizing both the composition method and the inverse transform method.

Then, using the Metropolis-Hastings algorithm, the gamma random number gener-

ation method is shown as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawu1 fromU(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).

(iii) Computeω(xi−1, x∗).

(iv) Generate a uniform random drawu2 from U(0,1), and setxi = x∗ if u2 ≤
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ω(xi−1, x∗) andxi = xi−1 otherwise.

(v) Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x). u1 andu2 should

be independently distributed.

M denotes the burn-in period. If we need a lot of random draws (say,N random

draws), replace Step (v) by Step (v)’, which is given by:

(v)’ Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,N.
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Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
= min

(( x∗

xi−1

)α−1( 1− x∗

1− xi−1

)β−1
,1

)
.

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generated

as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawx∗ from U(0,1), and computeω(xi−1, x∗).

(iii) Generate a uniform random drawu from U(0, 1), which is independent ofx∗,

and setxi = x∗ if u ≤ ω(xi−1, x∗) andxi = xi−1 if u > ω(xi−1, x∗).
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(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x).

M denotes the burn-in period.

If we want a lot of random draws (say,N random draws), replace Step (iv) by Step

(iv)’, which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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