
5.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduce

theratio-of-uniforms method.

This generation method does not require the sampling density utilized in rejection

sampling (Section 5.7.1), importance resampling (Section 5.7.2) and the Metropolis-

Hastings algorithm (Section 5.7.3).

Suppose that a bivariate random variable (U1,U2) is uniformly distributed, which

satisfies the following inequality:

0 ≤ U1 ≤
√

h(U2/U1),
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for any nonnegative functionh(x). Then,X = U2/U1 has a density functionf (x) =

h(x)/
∫

h(x) dx.

Note that the domain of (U1, U2) will be discussed below.

The above random number generation method is justified in the following way.

The joint density ofU1 andU2, denoted byf12(u1, u2), is given by:

f12(u1,u2) =


k, if 0 ≤ u1 ≤

√
h(u2/u1),

0, otherwise,

wherek is a constant value, because the bivariate random variable (U1,U2) is uni-

formly distributed.
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Consider the following transformation from (u1,u2) to (x, y):

x =
u2

u1
, y = u1,

i.e.,

u1 = y, u2 = xy.

The Jacobian for the transformation is:

J =

∣∣∣∣∣∣∣
∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ 0 1

y x

∣∣∣∣∣∣ = −y.
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Therefore, the joint density ofX andY, denoted byfxy(x, y), is written as:

fxy(x, y) = |J| f12(y, xy) = ky,

for 0 ≤ y ≤
√

h(x).

The marginal density ofX, denoted byfx(x), is obtained as follows:

fx(x) =
∫ √

h(x)

0
fxy(x, y) dy =

∫ √
h(x)

0
kydy = k

[y2

2

]√h(x)

0
=

k
2

h(x) = f (x),

wherek is taken as:k = 2/
∫

h(x) dx.

Thus, it is shown thatfx(·) is equivalent tof (·).

This result is due to Kinderman and Monahan (1977).
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Also see Ripley (1987), O’Hagan (1994), Fishman (1996) and Gentle (1998).

Now, we take an example of choosing the domain of (U1,U2).

In practice, for the domain of (U1,U2), we may choose the rectangle which encloses

the area 0≤ U1 ≤
√

h(U2/U1), generate a uniform point in the rectangle, and reject

the point which does not satisfy 0≤ u1 ≤
√

h(u2/u1).

That is, generate two independent uniform random drawsu1 andu2 from U(0,b)

andU(c,d), respectively.

The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,
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whereb, c andd are given by:

b = sup
x

√
h(x), c = − sup

x
x
√

h(x), d = sup
x

x
√

h(x),

because the rectangle has to enclose 0≤ u1 ≤
√

h(u2/u1), which is verified as

follows:

0 ≤ u1 ≤
√

h(u2/u1) ≤ sup
x

√
h(x),

− sup
x

x
√

h(x) ≤ −x
√

h(x) ≤ u2 ≤ x
√

h(x) ≤ sup
x

x
√

h(x).

The second line also comes from 0≤ u1 ≤
√

h(u2/u1) andx = u2/u1.
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We can replacec = − supx x
√

h(x) by c = inf x x
√

h(x), taking into account the case

of − supx x
√

h(x) ≤ inf x x
√

h(x).

The discussion above is shown in Ripley (1987).

Thus, in order to apply the ratio-of-uniforms method with the domain{0 ≤ u1 ≤

b, c ≤ u2 ≤ d}, we need to have the condition thath(x) andx2h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:

(i) Generateu1 andu2 independently fromU(0,b) andU(c,d).

(ii) Setx = u2/u1 if u2
1 ≤ h(u2/u1) and return to (i) otherwise.

As shown above, thex accepted in Step (ii) is taken as a random draw fromf (x) =

428



h(x)/
∫

h(x) dx.

The acceptance probability in Step (ii) is
∫

h(x) dx/(2b(d − c)).

We have shown the rectangular domain of (U1,U2).

It may be possible that the domain of (U1,U2) is a parallelogram.

In Sections 5.7.4 and 5.7.4, we show two examples as applications of the ratio-of-

uniforms method.

Especially, in Section 5.7.4, the parallelogram domain of (U1,U2) is taken as an

example.
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Normal Distribution: N(0,1): The kernel of the standard normal distribution is

given by:h(x) = exp(−1
2x2).

In this case,b, c andd are obtained as follows:

b = sup
x

√
h(x) = 1,

c = inf
x

x
√

h(x) = −
√

2e−1,

d = sup
x

x
√

h(x) =
√

2e−1.

Accordingly, the standard normal random number based on the ratio-of-uniforms

method is represented as follows.
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(i) Generate two independent uniform random drawsu1 andv2 from U(0,1) and

defineu2 = (2v2 − 1)
√

2e−1.

(ii) Setx = u2/u1 if u2
1 ≤ exp(−1

2u2
2/u

2
1), i.e.,−4u2

1 log(u1) ≥ u2
2, and return to (i)

otherwise.

The acceptance probability is given by:∫
h(x) dx

2b(d − c)
=

√
πe
4
≈ 0.7306,

which is slightly smaller than the acceptance probability in the case of rejection

sampling, i.e., 1/
√

2e/π ≈ 0.7602.
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The Fortran source code for the standard normal random number generator based

on the ratio-of-uniforms method is shown insnrnd9(ix,iy,rn).

——— snrnd9(ix,iy,rn)———

1: subroutine snrnd9(ix,iy,rn)
2: c
3: c Use "snrnd9(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: e1=1./2.71828182845905
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12: 1 call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn2=(2.*rn2-1.)*sqrt(2.*e1)
15: if(-4.*rn1*rn1*log(rn1).lt.rn2*rn2 ) go to 1
16: rn=rn2/rn1
17: return
18: end

Gamma Distribution: G(α, β): When random variableX has a gamma distribu-

tion with parametersα andβ, i.e.,X ∼ G(α, β), the density function ofX is written

as follows:

f (x) =
1

βαΓ(α)
xα−1e−

x
β ,
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for 0 < x < ∞.

WhenX ∼ G(α,1), we haveY = βX ∼ G(α, β).

Therefore, first we consider generating a random draw ofX ∼ G(α,1).

Since we have discussed the case of 0< α ≤ 1 in Sections 5.7.1 – 5.7.3, now we

consider the case ofα > 1.

Using the ratio-of-uniforms method, the gamma random number generator is intro-

duced.

h(x), b, c andd are set to be:

h(x) = xα−1e−x,
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b = sup
x

√
h(x) =

(
α − 1

e

)(α−1)/2

,

c = inf
x

x
√

h(x) = 0,

d = sup
x

x
√

h(x) =

(
α + 1

e

)(α+1)/2

.

Note thatα > 1 guarantees the existence of the supremum ofh(x), which implies

b > 0.

See Fishman (1996, pp.194 – 195) and Ripley (1987, pp.88 – 89).

By the ratio-of-uniforms method, the gamma random number with parameterα > 1

andβ = 1 is represented as follows:
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(i) Generate two independent uniform random drawsu1 andu2 from U(0,b) and

U(c,d), respectively.

(ii) Setx = u2/u1 if u1 ≤
√

(u2/u1)α−1e−u2/u1 and go back to (i) otherwise.

Thus, thex obtained in Steps (i) and (ii) is taken as a random draw fromG(α,1) for

α > 1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 pro-

gram for the gamma random number generator with parametersα > 1 andβ = 1 is

shown ingammarnd6(ix,iy,alpha,rn).
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——— gammarnd6(ix,iy,alpha,rn)———

1: subroutine gammarnd6(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd6(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: b=( (alpha-1.)/e )**(0.5*alpha-0.5)
15: d=( (alpha+1.)/e )**(0.5*alpha+0.5)
16: 1 call urnd(ix,iy,rn0)
17: call urnd(ix,iy,rn1)
18: u=rn0*b
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19: v=rn1*d
20: rn=v/u
21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return
23: end

gammarnd6(ix,iy,alpha,rn) should be used together withurnd(ix,iy,rn).

b andd are obtained in Lines 14 and 15.

Lines 16 –19 gives us two uniform random drawsu andv, which correspond tou1

andu2.

rn in Line 20 indicates a candidate of the gamma random draw.
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Line 21 represents Step (ii).

To see efficiency or inefficiency of the generator above, we compute the acceptance

probability in Step (ii) as follows:∫
h(x) dx

2b(d − c)
=

eαΓ(α)
2(α − 1)(α−1)/2(α + 1)(α+1)/2

. (6)

It is known that the acceptance probability decreases by the order ofO(α−1/2), i.e.,

in other words, computational time for random number generation increases by the

order ofO(α1/2).

Therefore, asα is larger, the generator is less efficient.

See Fishman (1996) and Gentle (1998).
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To improve inefficiency for largeα, various methods have been proposed, for exam-

ple, Cheng and Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) and

so on.

As mentioned above, the algorithmgammarnd6 takes a long time computationally

by the order ofO(α1/2) as shape parameterα is large.

Chen and Feast (1979) suggested the algorithm which does not depend too much

on shape parameterα.

As α increases the acceptance region shrinks towardu1 = u2.

Therefore, Chen and Feast (1979) suggested generating two uniform random draws
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within the parallelogram aroundu1 = u2, rather than the rectangle.

The source code is shown ingammarnd7(ix,iy,alpha,rn).

——— gammarnd7(ix,iy,alpha,rn)———

1: subroutine gammarnd7(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd7(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
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12: c
13: e =2.71828182845905
14: c0=1.857764
15: c1=alpha-1.
16: c2=( alpha-1./(6.*alpha) )/c1
17: c3=2./c1
18: c4=c3+2.
19: c5=1./sqrt(alpha)
20: 1 call urnd(ix,iy,u1)
21: call urnd(ix,iy,u2)
22: if(alpha.gt.2.5) u1=u2+c5*(1.-c0*u1)
23: if(0.ge.u1.or.u1.ge.1.) go to 1
24: w=c2*u2/u1
25: if(c3*u1+w+1./w.le.c4) go to 2
26: if(c3*log(u1)-log(w)+w.ge.1.) go to 1
27: 2 rn=c1*w
28: return
29: end
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See Fishman (1996, p.200) and Ripley (1987, p.90).

In Line 22, we use the rectangle for 1< α ≤ 2.5 and the parallelogram forα > 2.5

to give a fairly constant speed asα is varied.

Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computational efficiency,gammarnd7(ix,iy,alpha,rn) is better.

Gamma Distribution: G(α, β) for α > 0 and β > 0: Combininggammarnd2 on

p.353 andgammarnd7 on p.441, we introduce the gamma random number generator

in the case ofα > 0.
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In addition, utilizingY = βX ∼ G(α, β) whenX ∼ G(α,1), the random number gen-

erator forG(α, β) is introduced as in the source codegammarnd8(ix,iy,alpha,beta,rn).

——— gammarnd8(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd8(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd8(ix,iy,alpha,beta,rn)"
4: c together with "gammarnd2(ix,iy,alpha,rn)",
5: c "gammarnd7(ix,iy,alpha,rn)"
6: c and "urnd(ix,iy,rn)".
7: c
8: c Input:
9: c ix, iy: Seeds

10: c alpha: Shape Parameter
11: c beta: Scale Parameter
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12: c Output:
13: c rn: Gamma Random Draw
14: c with Parameters alpha and beta
15: c
16: if( alpha.le.1. ) then
17: call gammarnd2(ix,iy,alpha,rn1)
18: else
19: call gammarnd7(ix,iy,alpha,rn1)
20: endif
21: rn=beta*rn1
22: return
23: end

Lines 16 – 20 show that we usegammarnd2 for α ≤ 1 andgammarnd7 for α > 1.

In Line 21,X ∼ G(α,1) is transformed intoY ∼ G(α, β) by Y = βX, whereX andY
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indicatesrn1 andrn, respectively.

Chi-Square Distribution: χ2(k): The gamma distribution withα = k/2 andβ =

2 reduces to the chi-square distribution withk degrees of freedom.

5.7.5 Gibbs Sampling

The sampling methods introduced in Sections 5.7.1 – 5.7.3 can be applied to the

cases of both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the
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multivariate cases.

The Gibbs sampler shows how to generate random draws from the unconditional

densities under the situation that we can generate random draws from two condi-

tional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon

and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and

Karim (1991), Casella and George (1992), Gamerman (1997) and so on developed

the Gibbs sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke
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and Tanizaki (1999, 2001) applied the Gibbs sampler to the nonlinear and/or non-

Gaussian state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random

variablesX andY in order to make things easier.

Two conditional density functions,fx|y(x|y) and fy|x(y|x), are assumed to be known,

which denote the conditional distribution function ofX givenY and that ofY given

X, respectively.
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Suppose that we can easily generate random draws ofX from fx|y(x|y) and those of

Y from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the

joint density ofX andY, denoted byfxy(x, y).

In order to have the random draws of (X,Y) from the joint densityfxy(x, y), we take

the following procedure:

(i) Take the initial value ofX asx−M.

(ii) Givenxi−1, generate a random draw ofY, i.e.,yi, from f (y|xi−1).

(iii) Givenyi, generate a random draw ofX, i.e.,xi, from f (x|yi).
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(iv) Repeat the procedure fori = −M + 1,−M + 2, · · · ,1.

From the convergence theory of the Gibbs sampler, asM goes to infinity, we can

regardx1 andy1 as random draws fromfxy(x, y), which is a joint density function of

X andY.

M denotes theburn-in period , and the firstM random draws, (xi , yi) for i = −M +

1,−M + 2, · · · ,0, are excluded from further consideration.

When we wantN random draws fromfxy(x, y), Step (iv) should be replaced by Step

(iv)’, which is as follows.

(iv)’ Repeat the procedure fori = −M + 1,−M + 2, · · · ,N.
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As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii)

and (iv)’ is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution

f (u) which satisfiesfi(u) = fi−1(u) = f (u). If we have the reversibility condition

shown in equation (4), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant
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distribution, which implies that there exists the invariant distributionf (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribu-

tion, i.e., f ∗(u|v).

Here, we consider that bothu andv are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions.xi andyi are generated

from fi(u) through f ∗(u|v), given fi−1(v).

Note thatu = (u1,u2) = (xi , yi) is taken whilev = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)
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Thus, we can choosef ∗(u|v) as shown above.

Then, asi goes to infinity, (xi , yi) tends in distribution to a random vector whose

joint density isfxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the

basic result of the Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi , yi) −→ E(g(x, y)) =
∫∫

g(x, y) fxy(x, y) dx dy, as N −→ ∞,

whereg(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.
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Based on the conditional densities, we can generate random draws from the joint

density.

Remark 1: We have considered the bivariate case, but it is easily extended to the

multivariate cases.

That is, it is possible to take multi-dimensional vectors forx andy.

Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the

ith random draws fromfx|yz(x|yi−1, zi−1), fy|xz(y|xi , zi−1) and fz|xy(z|xi , yi), sequentially,

we can obtain the random draws fromfxyz(x, y, z).
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Remark 2: Let X, Y andZ be the random variables.

Take an example of the case whereX is highly correlated withY.

If we generate random draws fromfx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known

that convergence of the Gibbs sampler is slow.

In this case, without separatingX andY, random number generation fromf (x, y|z)

and f (z|x, y) yields better random draws from the joint densityf (x, y, z).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-

gorithm: We compare rejection sampling, importance resampling and the Metropolis-
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Hastings algorithm from precision of the estimated moments and CPU time.

All the three sampling methods utilize the sampling density and they are useful

when it is not easy to generate random draws directly from the target density.

When the sampling density is too far from the target density, it is known that rejec-

tion sampling takes a lot of time computationally while importance resampling and

the Metropolis-Hastings algorithm yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on the

three sampling methods.

For simplicity of discussion, consider the case where both the target and sampling
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densities are normal.

That is, the target densityf (x) is given byN(0,1) and the sampling densityf∗(x) is

N(µ∗, σ2
∗).

µ∗ = 0, 1, 2, 3 andσ∗ = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three moments E(X j), j = 1,2,3, are estimated,

generating 107 random draws.

For importance resampling,n = 104 is taken, which is the number of candidate

random draws.

The Metropolis-Hastings algorithm takesM = 1000 as the burn-in period and the
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initial value isx−M = µ∗.

As for the Metropolis-Hastings algorithm, note that is the independence chain is

taken for f∗(x) because off∗(x|z) = f∗(x).
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 0.000
0 IR 0.060 0.005 0.000 0.005 0.014 0.014

MH −0.004 0.000 0.000 0.000 0.000 0.000
(59.25) (100.00) (74.89) (59.04) (40.99) (31.21)

E(X) RS — — 0.000 0.000 0.000 0.000
= 0 1 IR 0.327 0.032 0.025 0.016 0.011 0.011

MH 0.137 0.000 0.001 0.000 0.000 0.000
(36.28) (47.98) (55.75) (51.19) (38.68) (30.23)

RS — — 0.000 0.000 0.000 0.000
2 IR 0.851 0.080 0.031 0.030 0.003 0.005

MH 0.317 0.005 0.001 0.001 0.000 0.001
(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)

RS — — 0.000 0.000 0.000 −0.001
3 IR 1.590 0.337 0.009 0.029 0.021−0.007

MH 0.936 0.073 −0.002 0.000 0.001 −0.001
(1.68) (3.53) (9.60) (17.47) (24.31) (23.40)
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 1.000 1.000 1.000 0.999
0 IR 0.822 0.972 0.969 0.978 0.994 1.003

MH 0.958 1.000 1.000 1.000 1.001 1.001

E(X2) RS — — 1.000 1.000 1.000 1.000
= 1 1 IR 0.719 0.980 0.983 0.993 1.010 1.004

MH 0.803 1.002 0.999 0.999 1.001 1.002

RS — — 1.000 1.000 1.001 1.001
2 IR 1.076 0.892 1.014 0.984 1.000 1.012

MH 0.677 0.992 1.001 0.999 1.001 1.002

RS — — 1.000 1.000 1.000 1.000
3 IR 2.716 0.696 1.013 1.025 0.969 1.002

MH 1.165 0.892 1.005 1.001 0.999 0.999
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 −0.001
0 IR 0.217 0.034 −0.003 −0.018 0.018 0.036

MH −0.027 0.001 0.001 −0.001 −0.002 −0.004

E(X3) RS — — 0.002 −0.001 0.000 0.001
= 0 1 IR 0.916 0.092 0.059 0.058 0.027 0.032

MH 0.577 −0.003 0.003 0.000 0.002−0.001

RS — — −0.001 0.002 0.001 0.001
2 IR 1.732 0.434 0.052 0.075 0.040 0.001

MH 0.920 0.035 0.003 0.004 0.004 0.004

RS — — 0.000 0.001 0.001 −0.001
3 IR 5.030 0.956 0.094 0.043 0.068 0.020

MH 1.835 0.348 −0.002 0.003 0.001 −0.001
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Comparison of Three Sampling Methods: CPU Time (Seconds)

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 15.96 20.50 30.69 39.62
0 IR 431.89 431.40 431.53 432.58 435.37 437.16

MH 9.70 9.24 9.75 9.74 9.82 9.77

RS — — 23.51 24.09 32.77 41.03
1 IR 433.22 427.96 426.41 426.36 427.80 430.39

MH 9.73 9.54 9.81 9.75 9.83 9.76

RS — — 74.08 38.75 39.18 45.18
2 IR 435.90 432.23 425.06 423.78 421.46 422.35

MH 9.71 9.52 9.83 9.77 9.82 9.77

RS — — 535.55 87.00 52.91 53.09
3 IR 437.32 439.31 429.97 424.45 422.91 418.38

MH 9.72 9.48 9.79 9.75 9.81 9.76

462



RS, IR and MH denotes rejection sampling, importance resampling and the Metropolis-

Hastings algorithm, respectively.

In each table, “—” in RS implies the case where rejection sampling cannot be ap-

plied because the supremum ofq(x), supx q(x), does not exist.

As for MH in the case of E(X) = 0, the values in the parentheses represent the

acceptance rate (percent) in the Metropolis-Hastings algorithm.

The results obtained from each table are as follows.

E(X) should be close to zero because we have E(X) = 0 from X ∼ N(0,1).

Whenµ∗ = 0.0, all of RS, IR and MH are very close to zero and show a good
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performance.

Whenµ∗ = 1, 2, 3, forσ∗ = 1.5, 2.0, 3.0, 4.0, all of RS, IR and MH perform well,

but IR and MH in the case ofσ∗ = 0.5, 1.0 have the case where the estimated mean

is too different from zero.

For IR and MH, we can see that givenσ∗ the estimated mean is far from the true

mean asµ∗ is far from mean of the target density.

Also, it might be concluded that givenµ∗ the estimated mean approaches the true

value asσ∗ is large.

E(X2) should be close to one because we have E(X2) = V(X) = 1 from X ∼ N(0,1).
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The cases ofσ∗ = 1.5, 2.0, 3.0, 4.0 and the cases ofµ∗ = 0,1 andσ∗ = 1.0 are very

close to one, but the other cases are different from one.

These are the same results as the case of E(X). E(X3) in Table??should be close to

zero because E(X3) represents skewness.

For skewness, we obtain the similar results, i.e., the cases ofσ∗ = 1.5, 2.0, 3.0, 4.0

and the cases ofµ∗ = 0,1 andσ∗ = 0.5, 1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performance of

the three, and IR and MH is quite good whenσ∗ is relatively large.

We can conclude that IR is slightly worse than RS and MH.
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As for the acceptance rates of MH in E(X) = 0, from the table a higher acceptance

rate generally shows a better performance.

The high acceptance rate implies high randomness of the generated random draws.

In Section??, the sampling density in the MH algorithm will be discussed in detail.

From Table??, for variance of the sampling density, both too small variance and too

large variance give us the relatively low acceptance rate, which result is consistent

with the discussion in Chib and Greenberg (1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be computed
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in advance (see Section 5.7.2 for IR).

That is, 104 candidate random draws are generated from the sampling densityf∗(x)

and therefore 104 acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depend onµ∗ andσ∗.

However, for RS, givenσ∗ computational time increases asµ∗ is large.

In other words, as the sampling density is far from the target density the number of

rejections increases.

Whenσ∗ increases givenµ∗, the acceptance rate does not necessarily increase.

However, from the table a largeσ∗ is better than a smallσ∗ in general.
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Accordingly, as for RS, under the condition that mean off (x) is unknown, we can

conclude that relatively large variance off∗(x) should be taken.

Finally, the results are summarized as follows.

(1) For IR and MH, depending on choice of the sampling densityf∗(x), we have

the cases where the estimates of mean, variance and skewness are biased.

For RS, we can always obtain the unbiased estimates without depending on

choice of the sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose the

sampling density with relatively large variance.
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Furthermore, for RS we should take the sampling density with relatively large

variance to reduce computational burden.

But, note that too large variance leads to an increase in computational disad-

vantages.

(3) MH is the least computational sampling method of the three.

For IR, all the acceptance probabilities have to be computed in advance and

therefore

IR takes a lot of time to generate random draws.

469



In the case of RS, the amount of computation increases asf∗(x) is far from

f (x).

(4) For the sampling density in MH, it is known that both too large variance and

too small variance yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have to

be generated from the sampling density for evaluation of the expectations

such as E(X) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS some-
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times has the case where the supremum ofq(x) does not exist and in this case it is

impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferred

to IR and RS in a sense of less risk.

However, we should keep in mind that MH also has the problem which choice of

the sampling density is very important.
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