5.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduc
theratio-of-uniforms method.

This generation method does not require the sampling density utilized in rejectio
sampling (Section 5.7.1), importance resampling (Section 5.7.2) and the Metropoli
Hastings algorithm (Section 5.7.3).

Suppose that a bivariate random varialilg,U,) is uniformly distributed, which

satisfies the following inequality:

0 < U; < +/h(Uz/Uy),
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for any nonnegative function(x). Then,X = U,/U; has a density functiof(x) =
h(x)/ [ h(x) dx.

Note that the domain ot{;, U,) will be discussed below.

The above random number generation method is justified in the following way.

The joint density otJ; andU,, denoted byf,,(uy, Uy), is given by:

K, if 0 < up < vh(uy/uy),

0, otherwise,

fra(ug, Up) =

wherek is a constant value, because the bivariate random varialléJg) is uni-

formly distributed.
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Consider the following transformation fror,( u,) to (x, y):

V7]
X=—= =u
U Yy 1
i.e.,
up =Y, Uy = XY.
The Jacobian for the transformation is:
J= ox oy _ 01 _
W ||y
ox oy
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Therefore, the joint density of andY, denoted byf,(X, y), is written as:
fy(X,¥) = 131 f12(y, xy) = ky,

for0 <y < vh(x).

The marginal density oK, denoted byf,(X), is obtained as follows:

vh(x) vh(x)
B9= [ = [ kyay- 2 1= K000 = 100,

wherek is taken ask = 2/ [ h(x) dx.
Thus, it is shown thatf,(') is equivalent tof (-).

This result is due to Kinderman and Monahan (1977).
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Also see Ripley (1987), O’Hagan (1994), Fishman (1996) and Gentle (1998).
Now, we take an example of choosing the domainbf, U,).

In practice, for the domain off;, U,), we may choose the rectangle which encloses
the area & U; < vh(U,/U,), generate a uniform point in the rectangle, and reject
the point which does not satisfyQu; < vh(u,/uy).

That is, generate two independent uniform random drawend u, from U(O, b)
andU (c, d), respectively.

The rectangle is given by:
O<u <h, c<u <d,
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whereb, c andd are given by:

b = sup+/h(x), ¢ = — supx+/h(x), d = supxh(x),

because the rectangle has to enclose @, < +h(u,/u,), which is verified as

follows:

0 < u; < vh(up/up) < sup+/h(x),
—supxyh(x) < =x+/h(x) < u; < x+/h(x) < supx+/h(x).

The second line also comes fronxQu; < vh(u/u;) andx = up/uy.
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We can replace = - sup, x Vh(X) by ¢ = inf, x vh(x), taking into account the case
of —sup, xVh(x) < inf, xvh(x).

The discussion above is shown in Ripley (1987).

Thus, in order to apply the ratio-of-uniforms method with the dom@ir u; <

b, ¢ < u, < d}, we need to have the condition th#k) andx?h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:

(i) Generates; andu, independently frontJ (0, b) andU(c, d).

(i) Setx = up/uy if U2 < h(up/uy) and return to (i) otherwise.
As shown above, the accepted in Step (ii) is taken as a random draw fifdw) =
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h(x)/ [ h(x) dx.

The acceptance probability in Step (ii) fsh(x) dx/(2b(d - ©)).

We have shown the rectangular domainf,(U.).

It may be possible that the domain &fy, U,) is a parallelogram.

In Sections 5.7.4 and 5.7.4, we show two examples as applications of the ratio-o
uniforms method.

Especially, in Section 5.7.4, the parallelogram domainlf, U,) is taken as an

example.
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Normal Distribution: N(0,1): The kernel of the standard normal distribution is
given by:h(x) = exp(3x?).

In this caseb, c andd are obtained as follows:

b =supvh(x) =1,
X

¢ = inf x4/h(x) = - V2e 1,
d = supxvh(x) = V2e L
X

Accordingly, the standard normal random number based on the ratio-of-uniform

method is represented as follows.
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() Generate two independent uniform random draywandv, from U (0, 1) and
defineu, = (2v, — 1) v2e 1.
(i) Setx = up/uy if UF < exp(-3u3/u), i.e.,—4u? log(u,) > u3, and return to (i)

otherwise.

The acceptance probability is given by:

[ h(x) dx _ yme

d_0 - 4 ~ 0.7306

which is slightly smaller than the acceptance probability in the case of rejectiol

sampling, i.e., 1v2e/r ~ 0.7602.
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The Fortran source code for the standard normal random number generator ba:s

on the ratio-of-uniforms method is shownsarnd9(ix,iy,rn).

4{ snrnd9(ix,iy,rn) }7

subroutine snrnd9(ix,iy,rn)

Use "snrnd9(ix,iy,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
Output:
rn: Normal Random Draw N(O0,1)

el=1./2.71828182845905

RPOOONOORWNE
nNNNNNNNNON

e
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12: 1 call urnd(ix,iy,rnl)

13: call urnd(ix,iy,rn2)

14: rn2=(2.*rn2-1.)*sqrt(2.*el)

15: if(-4.*rnl*rnl*log(rnl).1lt.rn2*rn2 ) go to 1
16: rn=rn2/rnl

17: return

18: end

Gamma Distribution: G(e,8): When random variabl¥ has a gamma distribu-
tion with parameters andg, i.e., X ~ G(«a, 8), the density function oK is written
as follows:

f(x) = x5,

1
BT ()
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for0 < X < oo,

WhenX ~ G(«, 1), we haveY = X ~ G(«a, ).

Therefore, first we consider generating a random dra¥ ofG(«, 1).

Since we have discussed the case &f @ < 1 in Sections 5.7.1 — 5.7.3, now we
consider the case of > 1.

Using the ratio-of-uniforms method, the gamma random number generator is intrc
duced.

h(x), b, c andd are set to be:
h(x) = x* e,
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e

C= ir)l(f x+y/h(x) =0,
d = supx+/h(x) = (a—+1

e

_ 1\(@1)2
b = sup+/h(x) = (a—l) ,

)(a/+l)/2

Note thata > 1 guarantees the existence of the supremum(x)f which implies
b> 0.

See Fishman (1996, pp.194 — 195) and Ripley (1987, pp.88 — 89).

By the ratio-of-uniforms method, the gamma random number with parametelr

andg = 1 is represented as follows:
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(i) Generate two independent uniform random drayandu, from U (0, b) and

U(c, d), respectively.

(i) Setx = Up/uy if Uy < +/(Up/up)e-le%/u and go back to (i) otherwise.

Thus, thex obtained in Steps (i) and (ii) is taken as a random draw f&{m 1) for
a>1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 pr
gram for the gamma random number generator with parameters andg = 1 is

shown ingammarnd6 (ix,iy,alpha,rn).
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nonNnnNnnonNnonNnNONN

—————{gammarnd6(ix,iy,alpha,rn)}—————

subroutine gammarnd6(ix,iy,alpha,rn)

Use "gammarnd6(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:

ix, iy: Seeds

alpha: Shape Parameter (alpha>1)
Output:

rn: Gamma Random Draw
with Parameters alpha and beta=1

e=2.71828182845905

b=( (alpha-1.)/e )**(0.5*alpha-0.5)

d=(C (alpha+l.)/e )**(0.5*alpha+0.5)
1 call urnd(ix,iy,rn®)

call urnd(ix,iy,rnl)

u=rn0*b
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19: v=rnl¥*d

20: rn=v/u

21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return

23: end

gammarnd6 (ix, iy, alpha,rn) should be used together witlrnd(ix,iy,rn).
b andd are obtained in Lines 14 and 15.

Lines 16 —19 gives us two uniform random drawvandv, which correspond ta;
andu,.

rn in Line 20 indicates a candidate of the gamma random draw.
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Line 21 represents Step (ii).
To see #iciency or indficiency of the generator above, we compute the acceptanc
probability in Step (i) as follows:

fh(X) dx _ T ()
2b(d-c) 2(a - 1)e-D/2(q + 1)e+Dy2’

It is known that the acceptance probability decreases by the ord@ot/?), i.e.,

(6)

in other words, computational time for random number generation increases by tt
order ofO(a*?).
Therefore, a® is larger, the generator is lesSieient.

See Fishman (1996) and Gentle (1998).
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To improve indficiency for larger, various methods have been proposed, for exam-
ple, Cheng and Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) a
So on.

As mentioned above, the algorithgammarnd6 takes a long time computationally
by the order ofO(a'/?) as shape parameteris large.

Chen and Feast (1979) suggested the algorithm which does not depend too mt
on shape parametet

As a increases the acceptance region shrinks towakel u,.

Therefore, Chen and Feast (1979) suggested generating two uniform random dra
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within the parallelogram aroung = u,, rather than the rectangle.

The source code is showngammarnd7 (ix,iy,alpha,rn).

e

nNnonNnnNnnNnnonNnNNN

4{ gammarnd?7 (ix,iy,alpha,rn) }7

subroutine gammarnd7(ix,iy,alpha,rn)

Use "gammarnd7(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:

ix, iy: Seeds

alpha: Shape Parameter (alpha>1)
Output:

rn: Gamma Random Draw
with Parameters alpha and beta=1
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12: C

13: e =2.71828182845905

14: c0=1.857764

15: cl=alpha-1.

16: c2=( alpha-1./(6.%*alpha) )/cl

17: c3=2./cl

18: c4=c3+2.

19: c5=1./sqrt(alpha)

20: 1 call urnd(ix,iy,ul)

21: call urnd(ix,iy,u2)

22: if(alpha.gt.2.5) ul=u2+c5*(1.-c0*ul)
23: if(0.ge.ul.or.ul.ge.1.) go to 1

24: w=c2*u2/ul

25: if(c3*ul+w+l./w.le.c4) go to 2

26: if(c3*log(ul)-log(w)+w.ge.1.) go to 1
27: 2 rn=cl*w

28: return

29: end
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See Fishman (1996, p.200) and Ripley (1987, p.90).

In Line 22, we use the rectangle forla < 2.5 and the parallelogram far > 2.5
to give a fairly constant speed ass varied.

Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computationalféciency,gammarnd7 (ix,iy,alpha,rn) is better.

Gamma Distribution: G(a,B) for @ > 0andp > 0. Combininggammarnd2 on
p.353 andyammarnd7 on p.441, we introduce the gamma random number generato

in the case of > 0.
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In addition, utilizingY = X ~ G(«a, 8) whenX ~ G(a, 1), the random number gen-

erator forG(«a, B) is introduced as in the source cogfenmarnd8 (ix, iy, alpha,beta,ri

4{ gammarnd8(ix,iy,alpha,beta,rn) }7

1: subroutine gammarnd8(ix,iy,alpha,beta,rn)
2: C

3. ¢ Use "gammarnd8(ix,iy,alpha,beta,rn)"

4: ¢ together with "gammarnd2(ix,iy,alpha,rn)",
5 C "gammarnd7 (ix,iy,alpha,rn)"
6: C and "urnd(ix,iy,rn)".

7. C

8: ¢ Input:

9: C ix, iy: Seeds

10: C alpha: Shape Parameter

11: C beta: Scale Parameter
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12: ¢ Output:

13: C rn: Gamma Random Draw

14: C with Parameters alpha and beta
15: C

16: if( alpha.le.1. ) then

17: call gammarnd2(ix,iy,alpha,rnl)
18: else

19: call gammarnd7(ix,iy,alpha,rnl)
20: endif

21: rn=beta*rnl

22: return

23: end

Lines 16 — 20 show that we ugammarnd2 for « < 1 andgammarnd? for @ > 1.
In Line 21,X ~ G(a, 1) is transformed inttY ~ G(a,8) by Y = X, whereX andY
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indicatesrnl andrn, respectively.

Chi-Square Distribution: y?(k): The gamma distribution with = k/2 andg =
2 reduces to the chi-square distribution witbegrees of freedom.
5.7.5 Gibbs Sampling

The sampling methods introduced in Sections 5.7.1 — 5.7.3 can be applied to tl
cases of both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in tt
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multivariate cases.

The Gibbs sampler shows how to generate random draws from the uncondition
densities under the situation that we can generate random draws from two conc
tional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poc
and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger ar
Karim (1991), Casella and George (1992), Gamerman (1997) and so on develop
the Gibbs sampling theory.

Carlin, Polson and Stter (1992), Carter and Kohn (1994, 1996) and Geweke

447



and Tanizaki (1999, 2001) applied the Gibbs sampler to the nonlinegwramzh-
Gaussian state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two randor
variablesX andY in order to make things easier.

Two conditional density functiond,y(Xly) and f«(ylx), are assumed to be known,
which denote the conditional distribution functionXfQivenY and that ofY given

X, respectively.
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Suppose that we can easily generate random drawsfr@m f,y(x]y) and those of

Y from fyx(yiX).

However, consider the case where it is not easy to generate random draws from t
joint density ofX andY, denoted byf,y(X, y).

In order to have the random draws &f {Y) from the joint densityf,,(X, y), we take

the following procedure:

(i) Take the initial value oX asx_y.
(i) Givenx_1, generate a random draw %f i.e.,y;, from f(y|Xi_1).

(ii) Giveny;, generate a random draw ¥f i.e., x;, from f(xy;).
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(iv) Repeatthe procedure foe - M +1,-M +2,---, 1.

From the convergence theory of the Gibbs sampleMagoes to infinity, we can
regardx; andy; as random draws frorfyy(x, y), which is a joint density function of
Xandy.

M denotes théurn-in period, and the firsM random draws,X, y;) fori = -M +
1,-M+2,---,0, are excluded from further consideration.

When we wantN random draws frond,,(X, y), Step (iv) should be replaced by Step

(iv)’, which is as follows.
(iv)’ Repeatthe procedure foe -M +1,-M +2,---,N.
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As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) — (iii)

and (iv)’ is formulated as follows:

f() = f £ (U) fa(v) .

For convergence of the Gibbs sampler, we need to have the invariant distributic
f(u) which satisfiesfi(u) = fi_1(u) = f(u). If we have the reversibility condition

shown in equation (4), i.e.,
(MU f(u) = F(uv) f(v),
the random draws based on the Gibbs sampler converge to those from the invariz
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distribution, which implies that there exists the invariant distributi¢u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribu
tion, i.e., f*(U|v).

Here, we consider that bothandv are bivariate vectors.

That is, f*(ulv) and f;(u) denote the bivariate distributiong; andy; are generated
from f;(u) throughf*(ulv), given fi_(v).

Note thatu = (ug, Up) = (X, Y;) is taken whilev = (vq, Vo) = (X_1, Vi_1) IS set.

The transition distribution in the Gibbs sampler is taken as:
f*(U|V) = fylx(uZ|Ul) fx|y(U1|V2)
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Thus, we can choosE (ulv) as shown above.

Then, as goes to infinity, &, Y;) tends in distribution to a random vector whose
joint density isf,y(X, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).
Furthermore, under the condition that there exists the invariant distribution, th,

basic result of the Gibbs sampler is as follows:

N
S 200y — Eley) = [ [ genfafey) dedy, asN — o
i=1

whereg(-, -) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.
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Based on the conditional densities, we can generate random draws from the joi

density.

Remark 1: We have considered the bivariate case, but it is easily extended to th
multivariate cases.

That is, it is possible to take multi-dimensional vectorsxXandy.

Taking an example, as for the tri-variate random vecXoiy(2), if we generate the

ith random draws fronfi(XIyi-1, Zi-1), fyxAYIXi, Z-1) and fxx(Z%;, yi), sequentially,

we can obtain the random draws frdigAX, y, 2).
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Remark 2: Let X, Y andZ be the random variables.

Take an example of the case whetés highly correlated withy.

If we generate random draws frofjy.(Xly, 2), fyxAYIX, 2) andfy(2X, y), itis known
that convergence of the Gibbs sampler is slow.

In this case, without separatingandY, random number generation froh{x, y|2)

and f(Zx,y) yields better random draws from the joint dendify, y, 2).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-

gorithm:  We compare rejection sampling, importance resampling and the Metro
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Hastings algorithm from precision of the estimated moments and CPU time.

All the three sampling methods utilize the sampling density and they are useft
when it is not easy to generate random draws directly from the target density.
When the sampling density is too far from the target density, it is known that rejec
tion sampling takes a lot of time computationally while importance resampling anc
the Metropolis-Hastings algorithm yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on tt
three sampling methods.

For simplicity of discussion, consider the case where both the target and samplir
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densities are normal.

That is, the target densiti(X) is given byN(0, 1) and the sampling densitiy(x) is
N(ut., 072).

u.=0,1,2 3andr, =05, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three momeni (] = 1,2, 3, are estimated,
generating 10random draws.

For importance resamplingy = 10* is taken, which is the number of candidate
random draws.

The Metropolis-Hastings algorithm takés = 1000 as the burn-in period and the
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initial value isx_y = u..
As for the Metropolis-Hastings algorithm, note that is the independence chain i

taken forf,(x) because of.(x|2) = f.(X).
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Comparison of Three Sampling Methods

\T 0.5 1.0 1.5 2.0 3.0 4.0
M
RS| — — 0,000 0,000 0,000 0,000
0 IR | 0060 0.005 0.000 0.005 0.014 0.014
MH | -0.004 0000 0000 0000 0000 0.000
(59.25)  (100.00) (74.89) (59.04) (40.99) (31.21)
£ RS | — — 0,000 0,000 0,000 0,000
=0 || 1 IR | 0327 0032 0025 0016 0011 0.011
MH | 0137 0000 0001 0000 0000 0.000
(36.28) (47.98) (65.75) (51.19) (38.68) (30.23)
RS | — — 0,000 0,000 0,000 0,000
2 IR | 0851 0.080 0.031 0.030 0.003 0.005
MH | 0317 0005 0001 0001 0000 0,001
(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)
RS | — — 0,000 0,000 0,000 —0.001
3 IR | 1590 0.337 0.009 0.029 0.021-0.007
MH | 0036 0,073 -0,002 0.000 0.001 -0.001
(1.68) (353) (9.60) (17.47) (24:31) (23.30)




Comparison of Three Sampling Methods

\T 0.5 1.0 1.5 2.0
M
RS — — 1.000  1.000
0 IR | 0.822 0.972 0.969 0.978
MH | 0.958 1.000 1.000 1.000
E(X?) RS — — 1,000  1.000
=1" |1 IR | 0.719 0.980 0.983 0.993
MH | 0.803 1.002 0.999 0.999
RS — — 1.000  1.000
2 IR | 1.076 0.892 1.014 0.984
MH | 0.677 0.992 1.001 0.999
RS — — 1.000  1.000
3 IR | 2716 0.696 1.013 1.025
MH | 1.165 0.892 1.005 1.001
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Comparison of Three Sampling Methods

\x 0.5 1.0 15 2.0 3.0 4.0

— — 0.000 0.000 0.000 -0.001
0 IR 0.217 0.034 -0.003 -0.018 0.018 0.036
MH | -0.027 0.001  0.001 -0.001 -0.002 -0.004
R

E(X3) S — — 0.002 -0.001 0.000 _ 0.001
=0 || 1 IR 0916 0.092 0.059 0.058 0.027 0.032
MH 0.577 -0.003 0.003 0.000 0.002-0.001
RS — — -0.001 0.002 0.001 0.001
2 IR 1.732 0434 0.052 0.0/5 0.040 0.001

MH 0920 0.035 0.003 0.004 0.004 0.004

— 0.000 0.001  0.001 -0.001
3 IR 5030 0956 0.094 0.043 0.068 0.020
MH 1.835 0.348 -0.002 0.003 0.001 -0.001
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Comparison of Three Sampling Methods: CPU Time (Seconds)

\Tx 0.5 1.0 15 2.0 3.0 4.0

M
RS — — 15.96 20.50 30.69 39.62

0 IR | 431.89 431.40 431.53 432.58 435.37 437.16
MH 0 9.2 9.74 9.82 9.77
RS — — 2351 24.09 32.77 41.03

1 IR | 433.22 427.96 426.41 426.36 427.80 430.39
MH 73 9.54 9.81 9.75 9.83 9.76
RS — — 74.08 38.75 39.18  45.18

2 IR | 435.90 432.2 425.06 423.78 421.46 422.35
MH 71 9.52 9.83 9.77 9.82 9.77
RS — — 535.55 87.00 52.91 53.09

3 IR | 437.32 439.31 429.97 424.45 42291 418.38
MH 72 9.48 9.79 9.75 9.81 9.76




RS, IR and MH denotes rejection sampling, importance resampling and the Metrog
Hastings algorithm, respectively.

In each table, “—” in RS implies the case where rejection sampling cannot be af
plied because the supremumagk), sup, q(x), does not exist.

As for MH in the case of EX) = O, the values in the parentheses represent the
acceptance rate (percent) in the Metropolis-Hastings algorithm.

The results obtained from each table are as follows.

E(X) should be close to zero because we have) E(0 from X ~ N(0, 1).

Whenyu, = 0.0, all of RS, IR and MH are very close to zero and show a good
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performance.

Whenyu, =1, 2, 3, foro, = 1.5, 20, 30, 40, all of RS, IR and MH perform well,
but IR and MH in the case af. = 0.5, 10 have the case where the estimated mean
is too diferent from zero.

For IR and MH, we can see that given the estimated mean is far from the true
mean age. is far from mean of the target density.

Also, it might be concluded that givgn the estimated mean approaches the true
value asr, is large.

E(X?) should be close to one because we haw?E€ V(X) = 1 from X ~ N(0, 1).
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The cases of. = 1.5, 20, 30, 40 and the cases of = 0,1 ando,. = 1.0 are very
close to one, but the other cases aféedent from one.

These are the same results as the caseX¥. EH(X®) in Table?? should be close to
zero because K@) represents skewness.

For skewness, we obtain the similar results, i.e., the cases ¢f1.5, 20, 30, 40

and the cases ¢f, = 0,1 ando,. = 0.5, 1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performance
the three, and IR and MH is quite good whenis relatively large.

We can conclude that IR is slightly worse than RS and MH.
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As for the acceptance rates of MH in)§(= 0, from the table a higher acceptance
rate generally shows a better performance.

The high acceptance rate implies high randomness of the generated random dra
In Section??, the sampling density in the MH algorithm will be discussed in detail.
From Table??, for variance of the sampling density, both too small variance and toc
large variance give us the relatively low acceptance rate, which result is consiste
with the discussion in Chib and Greenberg (1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be comput
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in advance (see Section 5.7.2 for IR).

That is, 16 candidate random draws are generated from the sampling ddr{sity
and therefore 10acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depeng.cando-..

However, for RS, giveinr, computational time increasesasis large.

In other words, as the sampling density is far from the target density the number ¢
rejections increases.

Wheno, increases givep., the acceptance rate does not necessarily increase.

However, from the table a large, is better than a smadt, in general.
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Accordingly, as for RS, under the condition that mearf ©f) is unknown, we can
conclude that relatively large variance x) should be taken.

Finally, the results are summarized as follows.
(1) For IR and MH, depending on choice of the sampling denkity), we have
the cases where the estimates of mean, variance and skewness are biased

For RS, we can always obtain the unbiased estimates without depending c

choice of the sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose th

sampling density with relatively large variance.

468



Furthermore, for RS we should take the sampling density with relatively large

variance to reduce computational burden.

But, note that too large variance leads to an increase in computational disa
vantages.

(3) MH is the least computational sampling method of the three.

For IR, all the acceptance probabilities have to be computed in advance ar

therefore

IR takes a lot of time to generate random draws.
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In the case of RS, the amount of computation increasds(&sis far from
f(x).
(4) Forthe sampling density in MH, it is known that both too large variance and

too small variance yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have |
be generated from the sampling density for evaluation of the expectation
such as EX) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS so
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times has the case where the supremum(gf does not exist and in this case it is
impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferre
to IR and RS in a sense of less risk.

However, we should keep in mind that MH also has the problem which choice o

the sampling density is very important.
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