6 Bayesian Estimation — Examples

6.1 Heteroscedasticity Model

In Section 6.1, Tanizaki and Zhang (2001) is re-computed using the random numb
generators.

Here, we show how to use Bayesian approach in the multiplicative heteroscedastsi
ity model discussed by Harvey (1976).

The Gibbs sampler and the Metropolis-Hastings (MH) algorithm are applied to th

multiplicative heteroscedasticity model, where some sampling densities are consi
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ered in the MH algorithm.

We carry out Monte Carlo study to examine the properties of the estimates vi
Bayesian approach and the traditional counterparts such as the modified two-st
estimator (M2SE) and the maximum likelihood estimator (MLE).

The results of Monte Carlo study show that the sampling density chosen here is su
able, and Bayesian approach shows better performance than the traditional count
parts in the criterion of the root mean square error (RMSE) and the interquartil

range (IR).
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6.1.1 Introduction

For the heteroscedasticity model, we have to estimate both the regressfiin coe
cients and the heteroscedasticity parameters.

In the literature of heteroscedasticity, traditional estimation techniques include th
two-step estimator (2SE) and the maximum likelihood estimator (MLE).

Harvey (1976) showed that the 2SE has an inconsistent element in the heterosced
ticity parameters and furthermore derived the consistent estimator based on the 2
which is called the modified two-step estimator (M2SE).

These traditional estimators are also examined in Amemiya (1985), Judge, Hil

487



Griffiths and Lee (1980) and Greene (1997).

Ohtani (1982) derived the Bayesian estimator (BE) for a heteroscedasticity lines
model.

Using a Monte Carlo experiment, Ohtani (1982) found that among the Bayesia
estimator (BE) and some traditional estimators, the Bayesian estimator (BE) shov
the best properties in the mean square error (MSE) criterion.

Because Ohtani (1982) obtained the Bayesian estimator by numerical integratio
it is not easy to extend to the multi-dimensional cases of both the regressidn coe

cient and the heteroscedasticity parameter.
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Recently, Boscardin and Gelman (1996) developed a Bayesian approach in whis
a Gibbs sampler and the Metropolis-Hastings (MH) algorithm are used to estima
the parameters of heteroscedasticity in the linear model.

They argued that through this kind of Bayesian approach, we can average ov
our uncertainty in the model parameters instead of using a point estimate via tt
traditional estimation techniques.

Their modeling for the heteroscedasticity, however, is very simple and limited
Their choice of the heteroscedasticity is (= o®w?, wherew; are known “weights”

for the problem and is an unknown parameter.
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In addition, they took only one candidate for the sampling density used in the MF
algorithm and compared it with 2SE.

In Section 6.1, we also consider Harvey'’s (1976) model of multiplicative heteroscec
ticity.

This modeling is very flexible, general, and includes most of the useful formulation:
for heteroscedasticity as special cases.

The Bayesian approach discussed by Ohtani (1982) and Boscardin and Gelm
(1996) can be extended to the multi-dimensional and more complicated cases, usi

the model introduced here.
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The Bayesian approach discussed here includes the MH within Gibbs algorithn
where through Monte Carlo studies we examine two kinds of candidates for th
sampling density in the MH algorithm and compare the Bayesian approach wit
the two traditional estimators, i.e., M2SE and MLE, in the criterion of the root
mean square error (RMSE) and the interquartile range (IR).

We obtain the results that the Bayesian estimator significantly has smaller RMS
and IR than M2SE and MLE at least for the heteroscedasticity parameters.

Thus, the results of the Monte Carlo study show that the Bayesian approach pe

forms better than the traditional estimators.
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6.1.2 Multiplicative Heteroscedasticity Regression Model

The multiplicative heteroscedasticity model discussed by Harvey (1976) can b

shown as follows:

Yi=XB+W, U ~N(O,0cd), 7

ot = o expa), (8)

fort = 1,2,---,n, wherey, is thetth observationX; and g, are thetth 1 x k and
1x (J - 1) vectors of explanatory variables, respectively.

B anda are vectors of unknown parameters.
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The model given by equations (7) and (8) includes several special cases such as
model in Boscardin and Gelman (1996), in whigh= logw; andé = —a.

As shown in Greene (1997), there is a useful simplification of the formulation.
Letz = (1, q) andy = (logo?, '), wherez andy denote Ix J andJ x 1 vectors.

Then, we can simply rewrite equation (8) as:

O'tz = expy). ()]

Note that expg,) provideso?, wherey; denotes the first element of

As for the variance of, hereafter we use (9), rather than (8).
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The generalized least squares (GLS) estimat@; denoted by§GLS, is given by:
~ n 1 n
Bos = (D, expzy)XiX) D expEza) Xy, (10)
t=1 t=1

Where,éGLS depends ory, which is the unknown parameter vector.

To obtain the feasible GLS estimator, we need to repjabg its consistent esti-
mate.

We have two traditional consistent estimatory pfe., M2SE and MLE, which are

briefly described as follows.
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Modified Two-Step Estimator (M2SE): First, define the ordinary least squares
(OLS) residual bye, = y; — X3,,s, Whereg, . represents the OLS estimator, i.e.,

Bows = (Tiy XIX)™ 2y Xy

For 2SE ofy, we may form the following regression:

log€ = zy + wi.

The OLS estimator of applied to the above equation leads to the 2Sf, because
€ is obtained by OLS in the first step.
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Thus, the OLS estimator gfgives us 2SE, denoted by, ., which is given by:

Yase = (Z Ztlzt)_l Z z log et2
t=1 t=1

A problem with this estimator is that, t = 1,2,---,n, have non-zero means and
are heteroscedastic.
If & converges in distribution ta;, thev; will be asymptotically independent with

mean E{;) = —1.2704 and variance V() = 4.9348, which are shown in Harvey
(1976).
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Then, we have the following mean and variance.of:"
n n

E(se) =7 - 127040 Z2)* )" 7, (11)
t=1 t=1

V(3,se) = 4934800 7).

For the second term in equation (11), the first element is equal.®/04 and the
remaining elements are zero, which can be obtained by simple calculation.
Therefore, the first element of.; is biased but the remaining elements are still
unbiased.

To obtain a consistent estimator pf, we consider M2SE of, denoted byy,, ...
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which is given by:

n n
?MZSE = ;)\/ZSE + 1'2704(21 Z;Zt)_l Z Z{
t=1 t=1

LetX, .. be the variance of,,,...

Then,Z, .. is represented by:
n
Zyose = V(:)\/MZSE) = V(a\/zSE) = 49348(2 zzt)_l-
t=1

The first element of . andy,,,.. corresponds to the estimate ®f, which value

does not influencg, ..

498



Since the remaining elements pf ~are equal to those of ., 3, iS equivalent
t0 B, Wheres,., andp, .. denote 2SE and M2SE gf respectively.
Note thai3,,. andj,,,.. can be obtained by substituting ~andy, .. intoy in (10).

Maximum Likelihood Estimator (MLE):  The density ofY, = (Y1, Y2, - -, Y¥n)
based on (7) and (9) is:

n

(Yol ) < exp| —5 > (xpl-2)(k - XY+ 29)|. (12)

t=1

which is maximized with respect andy, using the method of scoring.
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That is, given values fg8) andy(), the method of scoring is implemented by the

following iterative procedure:
n n
. . -1 .
pO = (Z exp(-zo )X, Xt) > expzy )Xy,
t=1

P =y 4 Z(Z Zz)™ Z(eXp(—ZW“‘l))ef - 1),

t=1

for J = 1, 2’ cee Wheree[ =V - Xtﬁ(j—l)_

NIl =

The starting value for the above iteration may be takeB@54®) = (3., 7o),
(ﬂZS E® ,’}\/ZS E) Or wMZSE’ /’)\/MZS E)'
Letd = (B,7y).
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The limit of 0 = (81, y()) gives us the MLE of, which is denoted by, . =
(BMLE’ &MLE)'
Based on the information matrix, the asymptotic covariance matiix,ofis repre-

sented by:

S 821og f(Ynl6)\\
V(Oye) = ( - E(w))

( (Ztn=1 expEzy) X Xt)_l 0 )
0 200, Zz) )

Thus, from (13), asymptotically there is no correlation betm[éﬁp andy,, ., and

(13)

furthermore the asymptotic variance gf . is represented byX,, . = V(¥,,:) =
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2>, zz)™t, which implies thaty,,... is asymptotically infiicient becausg,, .. —
Y. Is positive definite.

Remember that the varianceqf,.. is given by: V§,,,..) = 4.9348( 1, zz) .

6.1.3 Bayesian Estimation

We assume that the prior distributions of the paramgtaredy are noninformative,

which are represented by:

fs(8) = constant f,(y) = constant. (14)
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Combining the prior distributions (14) and the likelihood function (12), the poste-

rior distributionf, (5, yly) is obtained as follows:

n

£,(8.71Y,) o exp| 5 " (exp(-z)(vk ~ XY’ + 7).

t=1
The posterior means gfandy are not operationally obtained.

Therefore, by generating random drawgaindy from the posterior densitf; (8, yIYy),
we consider evaluating the mathematical expectations as the arithmetic averac
based on the random draws.

Now we utilize the Gibbs sampler, which has been introduced in Section 5.7.5, t

sample random draws gfandy from the posterior distribution.

503



Then, from the posterior densitly (5, y|Y»), we can derive the following two con-

ditional densities:
n

£, (018, Yo) o exp| 5 " (exp(-20)(y - X + 20)|. (15)
t=1
fp\y(ﬂly’ Yn) = N(Bl, Hl)’ (16)

where
n n
H'= > expzy)X%,  Bi=Hiy expzy)Xiy.
t=1 t=1

Sampling from (16) is simple since it iskavariate normal distribution with mean

B; and variancéH;.
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However, since thd-variate distribution (15) does not take the form of any standard
density, it is not easy to sample from (15).

In this case, the MH algorithm discussed in Section 5.7.3 can be used within th
Gibbs sampler.

See Tierney (1994) and Chib and Greeberg (1995) for a general discussion.
Lety;_; be the { — 1)th random draw oy andy* be a candidate of thith random
draw ofy.

The MH algorithm utilizes another appropriate distribution functigfy|y;), which

is called the sampling density or the proposal density.
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Let us define the acceptance rat@;_,,y*) as:

(.4)( ] *) — min fyw(y*lﬁi—l’ Yn)/f*(7*|7i—l)
re Y £ 0nalBs Yo Eiay)” )

The sampling procedure based on the MH algorithm within Gibbs sampling is a

follows:

(i) Setthe initial valugg_y, which may be taken g, .. Of 3,,,.-

(i) Givengpi_1, generate a random drawpfdenoted byy;, from the conditional
densityf ,(y|6i-1, Yn), where the MH algorithm is utilized for random number

generation because it is not easy to generate random drawfsash (15).
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The Metropolis-Hastings algorithm is implemented as follows:

(a) Givenvy;_1, generate a random drawt from f,.(-}yi_1) and compute the

acceptance raio(y;_1,y*).
We will discuss later about the sampling denditfy|yi_1).
(b) Sety; = v* with probability w(yi_1,v*) andy; = y;_, otherwise,
(i) Givenvy;, generate a random draw gf denoted bys;, from the conditional
densityf, (Blyi, Yn), whichisglyi, Yn ~ N(By, H;) as shown in (16).
(iv) Repeat (ii) and (iii) foi = -M +1,-M + 2,---,N.
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Note that the iteration of Steps (ii) and (iii) corresponds to the Gibbs sampler, whicl
iteration yields random draws gfandy from the joint densityf, (8, y|Y,) wheni

is large enough.

It is well known that convergence of the Gibbs sampler is slow whenhighly
correlated withy.

That is, a large number of random draws have to be generated in this case.
Therefore, depending on the underlying joint density, we have the case where tl
Gibbs sampler does not work at all.

For example, see Chib and Greenberg (1995) for convergence of the Gibbs sampl
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In the model represented by (7) and (8), however, there is asymptotically no corre
lation betweers,, . andy, ., as shown in (13).
It might be expected that correlation betwgkn. andy,, . is not too high even in

the small sample.

Therefore, it might be appropriate to consider that the Gibbs sampler works well i

this model.
In Step (ii), the sampling densitl(y|y;_1) is utilized.
We consider the multivariate normal density function for the sampling distribution,

which is discussed as follows.
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Choice of the Sampling Density in Step (ii): Several generic choices of the sam-
pling density are discussed by Tierney (1994) and Chib and Greenberg (1995).
Here, we takef,.(ylyi_1) = f.(y) as the sampling density, which is called the inde-
pendence chain because the sampling density is not a functign of

We consider taking the multivariate normal sampling density in the independenc
MH algorithm, because of its simplicity.

Therefore,f,(y) is taken as follows:
f.(y) = N(y*,c’2), (17)
which represents thé&variate normal distribution with meart and variance?x*.
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The tuning parametaris introduced into the sampling density (17).

We have mentioned that for the independence chain (Sampling Density ) the sar
pling density with the variance which gives us the maximum acceptance probabilit
is not necessarily the best choice.

From some Monte Carlo experiments, we have obtained the result that the samplil
density with the 1.5 — 2.5 times larger standard error is better than that with th
standard error which maximizes the acceptance probability.

Therefore,c = 2 is taken in the next section, and it is the larger value tharcthe

which gives us the maximum acceptance probability.
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This detail discussion is given in Section 6.1.4.

Thus, the sampling density ¢fis normally distributed with meap* and variance
cxr.

As for (y*,Z*), in the next section we choose one 9f (%, ,,.<.) and ¢,,.c, Z,.c)

from the criterion of the acceptance rate.

As shown in Section 2, both of the two estimatg(s.. andy,, . are consistent
estimates of.

Therefore, it might be very plausible to consider that the sampling density is dis

tributed around the consistent estimates.
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Bayesian Estimator: From the convergence theory of the Gibbs sampler and the
MH algorithm, as goes to infinity we can regarg andg; as random draws from
the target density, (8, yIYn).

Let M be a stficiently large numbery; andg; fori = 1,2,---, N are taken as the
random draws from the posterior densfty(s, y|Yy).

Therefore, the Bayesian estimatogs, andj,,, are given by:

19 19
:)\/BZZ = N;yi’ IBBZZ = N;'Bi’

where we read the subscript BZZ as the Bayesian estimator which uses the mul

variate normal sampling density with me@y) and variance,,. ZZ takes M2SE
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or MLE.

We consider two kinds of candidates of the sampling density for the Bayesian est
mator, which are denoted by BM2SE and BMLE.

Thus, in Section 6.1.4, we compare the two Bayesian estimators (i.e, BM2SE ar

BMLE) with the two traditional estimators (i.e., M2SE and MLE).

6.1.4 Monte Carlo Study

Setup of the Model: In the Monte Carlo study, we consider using the artificially

simulated data, in which the true data generating process (DGP) is presented
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Judge, Hill, Gritiths and Lee (1980, p.156).
The DGP is defined as:

Vi = B1 + SoXor + BaXar + U, (18)

whereu, t = 1,2, - - -, n, are normally and independently distributed withufE O,

E(u?) = o and,
o2 = exply1 + yaXoy), fort=1,2,---,n. (19)

As it is discussed in Judge, Hill, Giiths and Lee (1980), the parameter values are

set to beg1, 82,83, v1.¥2) = (10,1,1,-2,0.25).
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From (18) and (19), Judge, Hill, Giiths and Lee (1980, pp.160 — 165) generated
one hundred samples pivith n = 20.

In the Monte Carlo study, we utilize,; andxs; given in Judge, Hill, Gfiiths and
Lee (1980, pp.156), which is shown in Table 1, and gendsatamples ofy; given
theX fort=21,2,---,n.

That is, we perfornG simulation runs for each estimator, whé&e= 10 is taken.

The simulation procedure is as follows:

(i) Giveny and xp; fort = 1,2,---,n, generate random numbers af for

t = 1,2---,n, based on the assumptiong: ~ N(0,o?), where 1,7y,) =
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Table 1: The Exogenous Variablgg andx,;

1

2

3

4

5

6

7 8 9 10

Xot

X3t

14.53
16.74

15.30
16.81

15.92
19.50

17.41
22.12

18.37
22.34

18.83
17.47

18.84 19.71 20.01 20.26
20.24 20.37 12.71 22.98

11

12

13

14

15

16

17 18 19 20

X2t

X3t

20.77
19.33

21.17
17.04

21.34
16.74

2291
19.81

22.96
31.92

23.69
26.31

2482 2554 25.63 28.73
25.93 21.96 24.05 25.66
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(=2,0.25) ando? = exply; + y2Xo;) are taken.

(i) Givenp, (Xa1, X3t) anduy; fort = 1,2,---,n, we obtain a set of datg, t =

1,2 ---,n, from equation (18), wheres(, 8>, 33) = (10, 1, 1) is assumed.

(i) Given §, X;) fort = 1,2,---,n, perform M2SE, MLE, BM2SE and BMLE
discussed in Sections 6.1.2 and 6.1.3 in order to obtain the estimaies of
(3,7), denoted by.

N N

Note thatd takesd, ..., 6. _, 6. andé

M2SE’ “MLE! YBM2SE BMLE*

(iv) Repeat (i) — (iii)G times, whereG = 10* is taken as mentioned above.

(v) FromG estimates o, compute the arithmetic average (AVE), the root mean
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square error (RMSE), the first quartile (25%), the median (50%), the thiro

quartile (75%) and the interquartile range (IR) for each estimator.

AVE and RMSE are obtained as follows:
18 1 1/2
_ 19 _ n(9) 32
AVE = = >89, RMSE= (6 D@ -0)2) ",
g=1 g=1
for j = 1,2,---,5, whereg; denotes thgth element o® andégg) represents

the j-element of in thegth simulation run.

As mentioned above) denotes the estimate 6f whered takesf, ... 6.,

QBMZSE andHBMLE'
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Figure 2: Acceptance Rates in Averadé¢:= 5000 andN = 10*
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Choice of ¢y*, X*) and c. For the Bayesian approach, dependingpn £*) we
have BM2SE and BMLE, which denote the Bayesian estimators using the multi
variate normal sampling density whose mean and covariance matrix are calibrat
on the basis of M2SE or MLE.

We consider the following sampling densitf{y) = N(y*, ¢Z*), wherec denotes

the tuning parameter angt'(, X*) takes §,,,c e, Zyose) OF Vs> Zuie)-

Generally, for choice of the sampling density, the sampling density should not hav
too large variance and too small variance.

Chib and Greenberg (1995) pointed out that if standard deviation of the samplin
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density is too low, the Metropolis steps are too short and move too slowly withir
the target distribution; if it is too high, the algorithm almost always rejects and stay:
in the same place.

The sampling density should be chosen so that the chain travels over the support
the target density.

First, we consider choosing{, £*) andc which maximizes the arithmetic average
of the acceptance rates obtained fr@simulation runs.

The results are in Figure 2, where= 20, M = 5000,N = 10*, G = 10* and

c =0210.2---,4.0 are taken (choice dl and M is discussed in Appendix of
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Section 6.1.6).

In the case of¢*,Z*) = (y,,.e» ) @NdC = 1.2, the acceptance rate in average is
0.5078, which gives us the largest one.

It is important to reduce positive correlation betwegandy;_; and keep random-
ness.

Therefore, ¥*,2%) = (y,er Zy.c) IS @dopted, rather than (, £*) = (Vyuser Zyose)s
because BMLE has a larger acceptance probability than BM2SE fofsae Figure
2).

However, the sampling density with the largest acceptance probability is not nece
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sarily the best choice.

We have the result that the optimal standard error should be 1.5 — 2.5 times larg
than the standard error which gives us the largest acceptance probability.

Here, §¢*,2%) = (y,,c> Zy.c) @ndc = 2 are taken.

Whenc s larger than 2, both the estimates and their standard errors become stat
although here we do not show these facts.

Therefore, in this Monte Carlo study,(y) = N(y,,.,2°Z,,.) is chosen for the
sampling density.

Hereafter, we compare BMLE with M2SE and MLE (i.e., we do not consider
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BM2SE anymore).

As for computational CPU time, the casemf= 20, M = 5000,N = 10* and

G = 10 takes about 76 minutes for each of= 0.1,0.2,---,4.0 and each of
BM2SE and BMLE, where Dual Pentium Il 1GHz CPU, Microsoft Windows 2000
Professional Operating System and Open Watcom FORTRARZ7@ptimizing
Compiler (Version 1.0) are utilized.

Note that WATCOM Fortran 77 Compiler is downloaded from

http://www.openwatcom.org/.
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Results and Discussion: Through Monte Carlo simulation studies, the Bayesian
estimator (i.e., BMLE) is compared with the traditional estimators (i.e., M2SE anc
MLE).

The arithmetic mean (AVE) and the root mean square error (RMSE) have bee
usually used in Monte Carlo study.

Moreover, for comparison with the standard normal distribution, Skewness an

Kurtosis are also computed.

Moments of the parameters are needed in the calculation of AVE, RMSE, Skewne:

and Kurtosis.
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However, we cannot assure that these moments actually exist.

Therefore, in addition to AVE and RMSE, we also present values for quartiles, i.e.
the first quartile (25%), median (50%), the third quartile (75%) and the interquartile
range (IR).

Thus, for each estimator, AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% an
IR are computed fron® simulation runs.

The results are given in Table 3, where BMLE is compared with M2SE and MLE.
The case oh = 20, M = 5000 and\ = 10* is examined in Table 3.

A discussion on choice d¥l andN is given in Appendix 6.1.6, where we examine
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whetherM = 5000 and\ = 10* are stficient.
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Table 3: The AVE, RMSE and Quartiles:= 20

B1 B2 B3 71 Y2
True Value| 10 1 1 -2 0.25
AVE 10.064 0995 1002 -0.988 Q199
RMSE 7.537 0418 Q333 3059 Q146
Skewness | 0.062 -0.013 -0.010 -0.101 -0.086
M2SE | Kurtosis 4.005 3941 2988 3519 3572
25% 5.208 0728 Q778 -2.807 Q113
50% 10.044 0995 1003 -0.934 Q200
75% 14958 1261 1227 (0889 0287
IR 9.751 0534 Q449 3697 Q175
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Table 3: The AVE, RMSE and Quartiles:= 20 — Cont.

B1 B2 B3 71 Y2
True Value| 10 1 1 -2 0.25
AVE 10.029 0997 1002 -2753 Q272
RMSE 7.044 0386 Q332 2999 Q139
Skewness | 0.081 -0.023 -0.014 Q006 -0.160
MLE | Kurtosis 4.062 3621 2965 4620 4801
25% 5.323 0741 Q775 -4514 Q189
50% 10.066 0998 1002 -2.710 Q273
75% 14.641 1249 1229 -0.958 0355
IR 9.318 0509 Q454 3556 Q165
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Table 3: The AVE, RMSE and Quartiles:= 20 — Cont.

B1 B2 B3 Y1 y2
True Value| 10 1 1 -2 0.25
AVE 10.034 0996 1002 -2011 Q250
RMSE 6.799 0380 0328 2492 Q117
Skewness | 0.055 -0.016 -0.013 -0.016 -0.155
BMLE | Kurtosis 3.451 3340 2962 3805 3897
25% 5413 0745 Q778 -3584 Q176
50% 10.041 0996 1002 -1.993 0252
75% 14538 1246 1226 -0.407 0325
IR 9.125 0501 Q448 3177 Q150

c = 2.0, M = 5000 and\ = 10* are chosen for BMLE

531



First, we compare the two traditional estimators, i.e., M2SE and MLE.

Judge, Hill, Gritiths and Lee (1980, pp.141-142) indicated that 2SEk;a$ in-
consistent although 2SE of the other parameters is consistent but asymptotica
inefficient.

For M2SE, the estimate o is modified to be consistent.

But M2SE is still asymptotically in@cient while MLE is consistent and asymptot-
ically efficient.

Therefore, fory, MLE should have better performance than M2SE in the sense o

efficiency.
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In Table 3, for all the parameters except for IRGf RMSE and IR of MLE are
smaller than those of M2SE.

For both M2SE and MLE, AVEs g# are close to the true parameter values.
Therefore, it might be concluded that M2SE and MLE are unbiasefd é&men in
the case of small sample.

However, the estimates gfare diferent from the true values for both M2SE and
MLE.

That is, AVE and 50% ofy; are-0.988 and-0.934 for M2SE, and-2.753 and
—2.710 for MLE, which are far from the true value.0.
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Similarly, AVE and 50% ofy, are 0.199 and 0.200 for M2SE, which ardéfeient
from the true value 0.25.

But 0.272 and 0.273 for MLE are slightly larger than 0.25 and they are close ¢
0.25.

Thus, the traditional estimators work well for the regressiortomentsg but not

for the heteroscedasticity parameters

Next, the Bayesian estimator (i.e., BMLE) is compared with the traditional ones
(i.e., M2SE and MLE).

For all the parameters ¢, we can find from Table 3 that BMLE shows better
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performance in RMSE and IR than the traditional estimators, because RMSE ar
IR of BMLE are smaller than those of M2SE and MLE.

Furthermore, from AVEs of BMLE, we can see that the heteroscedasticity parame
ters as well as the regression ffag@ents are unbiased in the small sample.

Thus, Table 3 also shows the evidence that for #ndy, AVE and 50% of
BMLE are very close to the true parameter values.

The values of RMSE and IR also indicate that the estimates are concentrated arou
the AVE and 50%, which are vary close to the true parameter values.

For the regression céiicientp, all of the three estimators are very close to the true
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parameter values. However, for the heteroscedasticity paramé&&LE shows a
good performance but M2SE and MLE are poor.

The larger values of RMSE for the traditional counterparts may be due to “outliers
encountered with the Monte Carlo experiments.

This problem is also indicated in Zellner (1971, pp.281).

Compared with the traditional counterparts, the Bayesian approach is not chara
terized by extreme values for posterior modal values.

Now we compare empirical distributions for M2SE, MLE and BMLE in Figures 3
—-7.
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Figure 3: Empirical Distributions g8;
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Figure 4: Empirical Distributions g3,
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Figure 5: Empirical Distributions g83
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Figure 6: Empirical Distributions o,
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Figure 7: Empirical Distributions o,
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For the posterior densities @ (Figure 3),3, (Figure 4),8; (Figure 5) andy;
(Figure 6), all of M2SE, MLE and BMLE are almost symmetric (also, see Skewnes:
in Table 3).

For the posterior density ok (Figure 7), both MLE and BMLE are slightly skewed
to the left because Skewnessyfin Table 3 is negative, while M2SE is almost
symmetric.

As for Kurtosis, all the empirical distributions except f8y have a sharp kurtosis
and fat tails, compared with the normal distribution.

Especially, for the heteroscedasticity parametgrandy,, MLE has the largest
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kurtosis of the three.

For all figures, location of the empirical distributions indicates whether the estima
tors are unbiased or not.

For B, in Figure 3,8, in Figure 4 angB; in Figure 5, M2SE is biased while MLE
and BMLE are distributed around the true value.

For y; in Figure 6 andy, in Figure 7, the empirical distributions of M2SE, MLE
and BMLE are quite dferent.

For vy, in Figure 6, M2SE is located in the right-hand side of the true parametel

value, MLE is in the left-hand side, and BMLE is also slightly in the left-hand side.
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Moreover, fory, in Figure 7, M2SE is downward-biased, MLE is overestimated,

and BMLE is distributed around the true parameter value.

On the Sample Sizen: Finally, we examine how the sample si@enfluences
precision of the parameter estimates.

Since we utilize the exogenous variatdeshown in Judge, Hill, Gfiiths and Lee
(1980), we cannot examine the case wheiggreater than 20.

In order to see thefiect of the sample size, here the case of = 15 is compared

with that ofn = 20.
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The casen = 15 of BMLE is shown in Table 4, which should be compared with
BMLE in Table 3.

As aresult, all the AVEs are very close to the corresponding true parameter value
Therefore, we can conclude from Tables 3 and 4 that the Bayesian estimator
unbiased even in the small sample sucl as15, 20.

However, RMSE and IR become largeradecreases.

That is, for example, RMSEs ¢, 3,, B3, v1 andvy, are given by 6.799, 0.380,
0.328, 2.492 and 0.117 in Table 3, and 8.715, 0.455, 0.350, 4.449 and 0.228
Table 4.
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Thus, we can see that RMSE and IR decreaseiatarge.
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Table 4: BMLE:n = 15,¢c = 2.0, M = 5000 andN = 10*

B1 B2 B3 71 Y2

True Value| 10 1 1 -2 0.25

AVE 10.060 0.995 D02 -2086 0.252
RMSE 8.715 0.455 (B50 4449 0.228
Skewness | 0.014 0.033 -0.064 -0.460 0.308
Kurtosis 3.960 3.667 340 4714 4.604
25% 4420 0.702 @72 -4.725 0.107
50% 10.053 0.995 D04 -1.832 0.245
75% 15.505 1.284 237 0821 0.391
IR 11.085 0.581 @65 5547 0.284
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6.1.5 Summary

In Section 6.1, we have examined the multiplicative heteroscedasticity model dis
cussed by Harvey (1976), where the two traditional estimators are compared wil
the Bayesian estimator.

For the Bayesian approach, we have evaluated the posterior mean by generat
random draws from the posterior density, where the Markov chain Monte Carlc
methods (i.e., the MH within Gibbs algorithm) are utilized.

In the MH algorithm, the sampling density has to be specified.

We examine the multivariate normal sampling density, which is the independenc
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chain in the MH algorithm.

For mean and variance in the sampling density, we consider using the mean a
variance estimated by the two traditional estimators (i.e., M2SE and MLE).

The Bayesian estimators with M2SE and MLE are called BM2SE and BMLE in
Section 6.1.

Through the Monte Carlo studies, the results are summarized as follows:

(i) We compare BM2SE and BMLE with respect to the acceptance rates in th
MH algorithm.

In this case, BMLE shows higher acceptance rates than BM2SE fay all
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which is shown in Figure 2.

For the sampling density, we utilize the independence chain through Sectio
6.1.

The high acceptance rate implies that the chain travels over the support of tt

target density.
For the Bayesian estimator, therefore, BMLE is preferred to BM2SE.
However, note as follows.

The sampling density which yields the highest acceptance rate is not nece
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(ii)

sarily the best choice and the tuning parametshould be larger than the

value which gives us the maximum acceptance rate.

Therefore, we have focused on BMLE with= 2 (remember that BMLE

with ¢ = 1.2 yields the maximum acceptance rate).

For the traditional estimators (i.e., M2SE and MLE), we have obtained the
result that MLE has smaller RMSE than M2SE for all the parameters, becaus
for one reason the M2SE is asymptotically leficeent than the MLE.

Furthermore, for M2SE, the estimates/hare unbiased but those ¢fare

different from the true parameter values (see Table 3).
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(iii)

(iv)

From Table 3, BMLE performs better than the two traditional estimators in
the sense of RMSE and IR, because RMSE and IR of BMLE are smaller tha

those of the traditional ones for all the cases.
Each empirical distribution is displayed in Figures 3 — 7.

The posterior densities of almost all the estimates are distributed to be syn
metric (v, is slightly skewed to the left), but the posterior densities of both the
regression cdécients (except foBz) and the heteroscedasticity parameters

have fat tails.

Also, see Table 3 for skewness and kurtosis.
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(v) As for BMLE, the case oh = 15 is compared witim = 20.

The casen = 20 has smaller RMSE and IR than= 15, while AVE and 50%

are close to the true parameter valuesfandy.

Therefore, it might be expected that the estimates of BMLE go to the true

parameter values asis large.
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6.1.6 Appendix:

Are M = 5000and N = 10* Sufficient?

Table 5: BMLE:n = 20 andc = 2.0

B1 B2 B3 71 Y2
True Value| 10 1 1 -2 0.25
AVE 10.028 (0097 1002 -2.008 Q250
RMSE 6.807 0380 0328 2495 Q117
Skewness | 0.041 -0.007 -0.012 Q017 -0.186
M = 1000 | Kurtosis 3.542 3358 2963 3950 4042
N =10 | 25% 5413 0745 Q778 -3592 Q176
50% 10.027 0996 1002 -1.998 Q0252
75% 14539 1245 1226 -0405 Q326
IR Q448 3187 Q150

9.127 554)500




Table 5: BMLE:n = 20 andc = 2.0 — Cont.

B1 B2 B3 71 Y2
True Value| 10 1 1 -2 0.25
AVE 10.033 0996 1002 -2.010 Q250
RMSE 6.799 0380 Q328 2491 Q117
Skewness | 0.059 -0.016 -0.011 -0.024 -0.146
M = 5000 | Kurtosis 3.498 3347 2961 3764 3840
N = 5000 | 25% 5.431 0747 Q778 -3586 Q176
50% 10.044 0995 1002 -1.997 0252
75% 14532 1246 1225 -0.406 0326
IR 9.101 0499 Q447 3180 Q149
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In Section 6.1.4, only the case dfI(N) = (500Q 10%) is examined.

In this appendix, we check whethir = 5000 andN = 10* are sifficient.

For the burn-in period, there are some diagnostic tests, which are discussed ir
Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999).
However, since their tests are applicable in the case of one sample path, we cani
utilize them.

BecauseG simulation runs are implemented in Section 6.1.4 (see p.516 for the
simulation procedure), we ha@test statistics if we apply the tests.

It is difficult to evaluatés testing results at the same time.
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Therefore, we consider using the alternative approach to skk # 5000 and
N = 10* are stfficient.

For choice ofM andN, we consider the following two issues.

(i) Given fixedM = 5000, compard&l = 5000 andN = 10
(i) Given fixedN = 10%, compareM = 1000 andVl = 5000.

(i) examines whetheN = 5000 is stficiently large, while (ii) checks whether
M = 1000 is large enough. If the case ®f,(N) = (500Q 5000) is close to that of
(M, N) = (500Q 10, we can conclude thad = 5000 is stiiciently large.
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Similarly, if the case of f1,N) = (100Q 10%) is not too diferent from that of
(M, N) = (500Q 10%), it might be concluded tha¥l = 1000 is also sflicient.

The results are in Table 5, where AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75¢
and IR are shown for each of the regressionfitccients and the heteroscedasticity
parameters.

BMLE in Table 3 should be compared with Table 5.

From Tables 3 and 5, the three cases, iM, N) = (500Q 10%), (100Q 104, (500Q 5000),
are very close to each other.

Therefore, we can conclude that bdth= 1000 andN = 5000 are large enough in
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the simulation study shown in Section 6.1.4.
We take the case dfl = 5000 and\ = 10* for safety in Section 6.1.4, although we
obtain the results that botd = 1000 andN = 5000 are large enough.

6.2 Autocorrelation Model

In the previous section, we have considered estimating the regression model wi
the heteroscedastic error term, where the traditional estimators such as MLE a
M2SE are compared with the Bayesian estimators.

In this section, using both the maximum likelihood estimator and the Bayes estime
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tor, we consider the regression model with the first order autocorrelated error terr
where the initial distribution of the autocorrelated error is taken into account.

As for the autocorrelated error term, the stationary case is assumed, i.e., the au
correlation co#ficient is assumed to be less than one in absolute value.

The traditional estimator (i.e., MLE) is compared with the Bayesian estimator. Uti-
lizing the Gibbs sampler, Chib (1993) discussed the regression model with the a
tocorrelated error term in a Bayesian framework, where the initial condition of the
autoregressive process is not taken into account.

In this section, taking into account the initial density, we compare the maximurn
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likelihood estimator and the Bayesian estimator.

For the Bayes estimator, the Gibbs sampler and the Metropolis-Hastings algorith
are utilized to obtain random draws of the parameters.

As a result, the Bayes estimator is less biased and nfeeat than the maxi-
mum likelihood estimator. Especially, for the autocorrelationficoent, the Bayes
estimate is much less biased than the maximum likelihood estimate.

Accordingly, for the standard error of the estimated regressiofficieat, the Bayes

estimate is more plausible than the maximum likelihood estimate.
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6.2.1 Introduction

In Section 6.2, we consider the regression model with the first order autocorrelate
error term, where the error term is assumed to be stationary, i.e., the autocorrelati
codficient is assumed to be less than one in absolute value.

The traditional estimator, i.e., the maximum likelihood estimator (MLE), is com-
pared with the Bayes estimator (BE).

Utilizing the Gibbs sampler, Chib (1993) and Chib and Greenberg (1994) discusse
the regression model with the autocorrelated error term in a Bayesian framewor

where the initial condition of the autoregressive process is ignored.

562



Here, taking into account the initial density, we compare MLE and BE, where the
Gibbs sampler and the Metropolis-Hastings (MH) algorithm are utilized in BE.

As for MLE, it is well known that the autocorrelation d@ieient is underestimated

in small sample and therefore that variance of the estimated regressi@icieae

Is also biased.

See, for example, Andrews (1993) and Tanizaki (2000, 2001).

Under this situation, inference on the regressiornffocient is not appropriate, be-
cause variance of the estimated regressiofficient depends on the estimated au-

tocorrelation cofficient.
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We show in Section 6.2 that BE is superior to MLE because BEs of both the autc
correlation cofficient and the variance of the error term are closer to the true values

compared with MLEs.

6.2.2 Setup of the Model

Let X; be a 1x k vector of exogenous variables gfthe ak x 1 parameter vector.

Consider the following regression model:
Ve = XiB + W, U = pUi-1 + &, & ~ N(O, 0'3),
fort = 1,2,---,n, wheree, e, - -, & are assumed to be mutually independently
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distributed.
In this model, the parameter to be estimated is givef by, p, 02).
The unconditional density of is:
1 1
eXp-—=———
V2raZ/(1 - p?) { 20¢/(1-p?)

LetY; be the information set up to timei.e.,Y; = {Vi, V-1, - - - » Y1}

f(ytlﬁap’ 0'5) = (yt - Xtﬂ)z)

The conditional density of; givenY,_; is:

f (el Y1, B, 0, 02) = T (VilYi1. 8, p, 72
1 1
= exp(— 5 (Yt — pYe1) = (X = PXt—l)ﬁ)2)~

\2ro? 207
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Therefore, the joint density of,,, i.e., the likelihood function, is given by :

n
f(YnIB7p’ O-E) = f(yllﬁapa 0-3) n f(ytlYt—l,ﬁ,P, 0'5)
t=2

D0~ XBY).  (20)

€ t=1

= (210 "X(1 - p?)"? exy{ -

wherey; andX;" represent the following transformed variables:

V1 - P2y, fort=1,

Yt — PY-1, fort=2,3,---,n,

Ve = Yi(p) =
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V1 - p2X, fort =1,

X — pXe_1, fort=2,3,---,n,
which depend on the autocorrelation fiagentp.

X = X (p) =

Maximum Likelihood Estimator: We have shown above that the likelihood func-
tion is given by equation (20).
Maximizing equation (20) with respect foando?, we obtain the following expres-

sions:
B=Bl)= () XX XV
t=1 t=1
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P =) =1 30 - XA (21)
t=1

By substituting3 andc? into g ando? in equation (20), we have the concentrated

likelihood function:

f(VlB,p. 6 = (2r62(0) ™" (1 - 07" expl=). (22)

which is a function op.
Equation (22) has to be maximized with respega.to
In the next section, we obtain the maximum likelihood estimatge by a simple

grid search, in which the concentrated likelihood function (22) is maximized by
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changing the parameter value@by 0.0001 in the interval betweer0.9999 and
0.9999.

Once the solution g, denoted by, is obtainedj(p) andc?(p) lead to the maxi-
mum likelihood estimates ¢@f ando2.

Hereafterp, &2 andg are taken as the maximum likelihood estimateg,af? and
p, i.e.,B(p) and?(p) are simply written ag ando™.

Variance of the estimate 6f= (8, 02, p)’ is asymptotically given by: \&) = 1-1(6),
wherel () denotes the information matrix, which is represented as:

0% log f(Ynle))

'6) = _E( 0600’
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Therefore, variance gfis given by V{3) = a?(Xr, X' X)) tin large sample, where
pin Xt is replaced by, i.e., X = X (0).

For example, suppose th&t has a tendency to rise over timand that we have
p>0.

If p is underestimated, then B is also underestimated, which yields incorrect
inference on the regression d¢beientg.

Thus, unlesp is properly estimated, the estimate of3Y(s also biased.

In large samplep Ts a consistent estimator pfand therefore \f) is not biased.

However, in small sample, since it is known tpas underestimated (see, for exam-
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ple, Andrews (1993), Tanizaki (2000, 2001)), clearl\3Vis also underestimated.

In addition tog, the estimate of? also influences inference gf because we have
V(B) = XX, X’ X))t as mentioned above.

If o2 is underestimated, the estimated variancg isfalso underestimated.

&2 is a consistent estimator of’ in large sample, but it is appropriate to consider
thats? is biased in small sample, becauseis a function ofo"as in (21).

Therefore, the biased estimatecogives us the serious problem on inferencg.of
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Bayesian Estimator: We assume that the prior density functiongspp ando?

are the following noninformative priors:

f5(B) o constant for —oco < B < o0, (23)

f,(0) o« constant for-1<p<1, (24)
1

f, (0%) = for0 < o2 < oo, (25)

In equation (24), theoretically we should haveé < p < 1.
As for the prior density ot2, since we consider that lagf has the flat prior for

—o0 < logo? < o0, we obtainf,, (0?) o 1/02.
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Note that in Section 6.1 the first element of the heteroscedasticity paraymister

also assumed to beftlise, where it is formulated as the logarithm of variance of

the error term, i.e., log?.
Combining the four densities (20) and (23) — (25), the posterior density function o

B, p ando?, denoted byfs,.. (8, p, 72|Yy), is represented as follows:

f500. (B, P> Olen)
o 1(Yelb, o, D) Es(B) £, () s (02)
« (A PN - P exp(- o0 Y- XBP). (26)

2
202 e
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We want to have random draws@fp ando? givenY,,

However, itis not easy to generate random draws pfando? from f4,,.. (B, p, 02| Yn).
Therefore, we perform the Gibbs sampler in this problem.

According to the Gibbs sampler, we can sample from the posterior density functio
(26), using the three conditional distributiofi,.. (Blo, 02, Yn), fop0. (018, 2, Yn)

and f,s,(2|8, p, Yn), Which are proportional tds,. (8, o, c?Y,) and are obtained

as follows:
o f5p0 (B, 02, Yy) is given by:

fﬁ‘p(re (ﬂlp’ 0-3’ Yn)
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o fa0. (B, 0, 72|Yp) o exr(— 2(];2 Z(y; - )(t*lg)Z)

€ t=1

= exp{—5 5 2°(06 - XA - X8 - A)))

€ t=1

= {3 D 06 X = 5508~ B (Y XX0E D)

€ t=1

< exH{-5(6- B (55 > XX - ). @7)

€ t=1

which indicates thg ~ N(3, o2(X, X’ X:)™1), whereg represents the OLS esti-
mate, i.e.8 = (i1 X X)) (L X)-
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Thus, (27) implies thagg can be sampled from the multivariate normal distribution

with means and variancer?(X1, X’ X:) .
e {50 (018, 2, Yy) is obtained as:

fplﬁo—e(plﬁa 0-39 Yn) o prO'e (ﬁa P 0'§|Yn)
n

(- PP ey O (% - XB)). (@9

€ t=1

for -1 < p < 1, which cannot be represented in a known distribution.

Note thaty; = y; (o) andX; = X{ (o).
Sampling from (28) is implemented by the MH algorithm.
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A detail discussion on sampling will be given later.
o f,.5.(02B, p, Yn) is represented as:
oo (0218, p, Yo) o0 fﬁpve(ﬂ P, O'2|Yn)
(az)n/m exp(~5 LS00 - Xer). (29)

Etl

which is written as follows:o? ~ 1G(n/2, 2/ 3., €?), or equivalently, 102 ~
G(n/2, 2/ Y1, %), wheree = y; — X'B.

Thus, in order to generate random drawggb ando? from the posterior density

fs00. (B, p» 2|Yn), the following procedures have to be taken:
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(i) Letg;, pi ando?; be theith random draws g8, p ando.

Take the initial values off, p, o2) as B-m, p-m, 02 _,,)-
(i) From equation (27), generag given pi_1, o2,_, and Yy, usingg ~ N(3,
o2 (S XX ™), wherep = (S X X)) HELLXY). % = ¥iloi-d)
andX = X{(oi-1)-
(i) From equation (28), genergtegiveng;, Uf,i_l andy,,.
Since it is not easy to generate random draws from (27), the Metropolis

Hastings algorithm is utilized, which is implemented as follows:
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(a) Generatep* from the uniform distribution betweenl and 1, which
implies that the sampling density pfis given by f.(olpi_1) = 1/2 for
-l<p<1.

Compute the acceptance probabilitfp;_1, p*), which is defined as:
(p *) mln[ prﬁO'é(p*Wi’ O-E,i—l’ Yn)/f*(p*lpl—l) 1]
w i-1, = ’
b pr,B(rE(pi—llﬁi’ O-E,i—l’Yn)/ f*(Pi—lLD*)
: [ foigor (07181, 072,15 V) )
=min 5 , 11.
fplﬁa'f (Pi—1|,3i > O-E,i—l’ Yn)

(b) Setp; = p* with probability w(pi_1, p*) andp; = pj_; otherwise.
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(iv) From equation (29), generadaei{i giveng;, pi andY,, using ¥o? ~ G(n/2,
2/ Y, U2), whereu, = y; — X8, Vi = Y; (o) andX; = X; (o).
(v) Repeat Steps (ii) — (iv) far=-M+1,-M +2,---, N, whereM indicates the

burn-in period.

Repetition of Steps (ii) — (iv) corresponds to the Gibbs sampler.

For suficiently largeM, we have the following results:

N
=3 a6) — E).
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dlpi) — E(g(p))

Zlr Z|k

M= 1M

1l
[

a(c?) — E(g(@?)),

|
whereg(-) is a function, typicallyg(x) = x or g(x) = X2.
We define the Bayesian estimategnb ando? asE = (1/N) Z{ilﬁi,ﬁ = (1/N) Zi“ilpi
ando? = (1/N) 3%, o2;, respectively.

Thus, using both the Gibbs sampler and the MH algorithm, we have shown that w

can sample fronfs,, (8, p, o2|Yy).

See, for example, Bernardo and Smith (1994), Carlin and Louis (1996), Chen, She
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and Ibrahim (2000), Gamerman (1997), Robert and Casella (1999) and Smith ar
Roberts (1993) for the Gibbs sampler and the MH algorithm.

6.2.3 Monte Carlo Experiments

For the exogenous variables, again we take the data used in Section 6.1, in whi
the true data generating process (DGP) is presented in Judge, HiiitiGrand Lee
(1980, p.156).

As in equation (18), the DGP is defined as:

Vi = B1 + BoXor + BaXar + U, U = pUi_1 + €, (30)

582



whereg, t = 1,2,---,n, are normally and independently distributed witlsEE O
and E€?) = o2.

As in Judge, Hill, Grifiths and Lee (1980), the parameter values are set t6;be (
B2, B3) = (10,1, 1).

We utilize X, andxs; given in Judge, Hill, Gfffiths and Lee (1980, pp.156), which
is shown in Table 1, and gener&esamples ofy; given theX; fort=1,2,---,n.

That is, we perforn@ simulation runs for each estimator, whé&e= 10* is taken.

The simulation procedure is as follows:

(i) Givenp, generate random numbers wffort = 1,2,---,n, based on the
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True Value| 10 1 1 0.9 1

AVE 10.012 0.999 1.000 0.559 0.752
SER 3.025 0.171 0.053 0.240 0.276
RMSE 3.025 0.171 0.053 0.417 0.372
Skewness | 0.034 -0.045 -0.008 -1.002 0.736
Kurtosis 2979 3.093 3.046 4.013 3.812
5% 5.096 0.718 0.914 0.095 0.363
10% 6.120 0.785 0.933 0.227 0.426
25% 7.935 0.883 0.965 0.426 0.550
50% 10.004 0.999 1.001 0.604 0.723
75% 12.051 1.115 1.036 0.740 0.913
90% 13.913 1.217 1.068 0.825 1.120
95% 15.036 1.274 1.087 0.863 1.255
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True Value| 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051
SER 2.782 0.160 0.051 0.188 0.380
RMSE 2,782 0.160 0.051 0.304 0.384
Skewness | 0.008 -0.029 -0.022 -1.389 0.725
Kurtosis 3.018 3.049 2942 5391 3.783
5% 5498 0.736 0.915 0.285 0.515
10% 6.411 0.798 0.934 0.405 0.601
25% 8.108 0.891 0.966 0572 0.776
50% 10.018 1.000 1.001 0.707 1.011
75% 11.888 1.107 1.036 0.799 1.275
90% 13578 1.205 1.067 0.852 1.555
95% 14588 1.258 1.085 0.875 1.750
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True Value| 10 1 1 0.9 1

AVE 10.011 0.999 1.000 0.661 1.051
SER 2.785 0.160 0.051 0.189 0.380
RMSE 2,785 0.160 0.052 0.305 0.384
Skewness | 0.004 -0.027 -0.022 -1.390 0.723
Kurtosis 3.028 3.056 2938 5403 3.776
5% 5500 0.736 0.915 0.285 0.514
10% 6.402 0.797 0.934 0.405 0.603
25% 8.117 0.891 0.966 0572 0.775
50% 10.015 1.000 1.001 0.707 1.011
75% 11.898 1.107 1.036 0.799 1.277
90% 13.612 1.205 1.066 0.852 1.559
95% 14.600 1.257 1.085 0.876 1.747
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True Value| 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051
SER 2.783 0.160 0.051 0.188 0.380
RMSE 2,783 0.160 0.051 0.304 0.384
Skewness | 0.008 -0.029 -0.021 -1.391 0.723
Kurtosis 3.031 3.055 2938 5.404 3.774
5% 5495 0.736 0.915 0.284 0.514
10% 6.412 0.797 0.935 0.404 0.602
25% 8.116 0.891 0.966 0573 0.774
50% 10.014 1.000 1.001 0.706 1.011
75% 11.897 1.107 1.036 0.799 1.275
90% 13.587 1.204 1.067 0.852 1.558
95% 14588 1.257 1.085 0.876 1.746
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assumptionsu; = pu;_1 + & ande ~ N(O, 1).
(i) Givenp, (Xa1, X3t) anduy, fort = 1,2,---,n, we obtain a set of datg, t =
1,2, ---,n, from equation (30), wheres{, 82, 83) = (10, 1,1) is assumed.

(iiiy Given (, X;) fort = 1,2,---,n, obtain the estimates &f= (8, p, ) by the
maximum likelihood estimation (MLE) and the Bayesian estimation (BE)

discussed in Sections 6.2.2, which are denoted &yds, respectively.
(iv) Repeat (i) — (iii)G times, whereG = 10* is taken.
(v) FromG estimates o, compute the arithmetic average (AVE), the standard

error (SER), the root mean square error (RMSE), the skewness (Skewnes:
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the kurtosis (Kurtosis), and the 5, 10, 25, 50, 75, 90 and 95 percent point
(5%, 10%, 25%, 50%, 75%, 90% and 95%) for each estimator.

For the maximum likelihood estimator (MLE), we compute:
18 18 1/2
— i) _ () 32
AVE = & >89, RMSE= (6 Z;(ej —6))) ",
g:

for j = 1,2,---,5, whereg; denotes thgth element o¥ andégg) represents

the jth element of) in thegth simulation run.

For the Bayesian estimator (BE),n the above equations is replaced &)y

and AVE and RMSE are obtained.
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(vi) Repeat (i) — (v) fop = -0.99,-0.98, - - -, 0.99.

Thus, in Section 6.2.3, we compare the Bayesian estimator (BE) with the maximui
likelihood estimator (MLE) through Monte Carlo studies.

In Figures 8 and 9, we focus on the estimates of the autocorrelatidicoe p.

In Figure 8 we draw the relationship betweemandp, wherep denotes the arith-
metic average of the fMMLEs, while in Figure 9 we display the relationship be-
tweenp andp, wherep indicates the arithmetic average of the BEs.

In the two figures the cases nf= 10, 15, 20 are shown, and\{, N) = (500Q 10%)

is taken in Figure 9 (we will discuss later abddtandN).
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If the relationship between andg (or p) lies on the 45 degree line, we can con-
clude that MLE (or BE) op is unbiased.

However, from the two figures, both estimators are biased.

Take an example gf = 0.9 in Figures 8 and 9.

When the true value is = 0.9, the arithmetic averages of AMLESs are given by
0.142 forn = 10, 0.422 fom = 15 and 0.559 fon = 20 (see Figure 8), while those
of 10° BEs are 0.369 fon = 10, 0.568 fom = 15 and 0.661 fon = 20 (see Figure
9).

As nincreases the estimators are less biased, because it is shown that MLE gives
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the consistent estimators.

Comparing BE and MLE, BE is less biased than MLE in the small sample, becaus
BE is closer to the 45degree line than MLE.

Especially, ap goes to one, the fference between BE and MLE becomes quite
large.

Tables 2 — 5 represent the basic statistics such as arithmetic average, standard el
root mean square error, skewness, kurtosis and percent points, which are compu
from G = 10* simulation runs, where the caserof 20 ando = 0.9 is examined.

Table 2 is based on the MLEs while Tables 3 — 5 are obtained from the BEs.
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Figure 10: Empirical Distributions ¢,
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Figure 11: Empirical Distributions ¢,
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Figure 12: Empirical Distributions ¢f;
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Figure 13: Empirical Distributions qf
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Figure 14: Empirical Distributions af?
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To check whetheM andN are enough large, Tables 3 — 5 are shown for BE.
Comparison between Tables 3 and 4 shows whether5000 is large enough and
we can see from Tables 3 and 5 whether the burn-in pevlog¢ 1000 is large
enough.

We can conclude thal = 5000 is enough if Table 3 is very close to Table 4 and
thatM = 1000 is enough if Table 3 is close to Table 5.

The diference between Tables 3 and 4 is at most 0.034 (see 9@% and that
between Tables 3 and 5 is less than or equal to 0.013 (see Kurt@s}s in

Thus, all the three tables are very close to each other.

600



Therefore, we can conclude that(N) = (100Q 5000) is enough.

For safety, hereafter we focus on the caseMyf) = (500Q 10%).

We compare Tables 2 and 3.

Both MLE and BE give us the unbiased estimators of regressiofficieatss;, 3,
andps, because the arithmetic averages from thé d€limates of3;, 8, andgs,

(i.e., AVE in the tables) are very close to the true parameter values, which are set
be (B1.2.83) = (10,1, 1).

However, in the SER and RMSE criteria, BE is better than MLE, because SER an

RMSE of BE are smaller than those of MLE. From Skewness and Kurtosis in the
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two tables, we can see that the empirical distributions of MLE and BE,0B4, 33)

are very close to the normal distribution. Remember that the skewness and kurto:
of the normal distribution are given by zero and three, respectively.

As for o2, AVE of BE is closer to the true value than that of MLE, because AVE of
MLE is 0.752 (see Table 2) and that of BE is 1.051 (see Table 3).

However, in the SER and RMSE criteria, MLE is superior to BE, since SER anc
RMSE of MLE are given by 0.276 and 0.372 (see Table 2) while those of BE ar¢
0.380 and 0.384 (see Table 3).

The empirical distribution obtained from 48stimates oé2 is skewed to the right
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(Skewness is positive for both MLE and BE) and has a larger kurtosis than th
normal distribution because Kurtosis is greater than three for both tables.

Forp, AVE of MLE is 0.559 (Table 2) and that of BE is given by 0.661 (Table 3).
As it is also seen in Figures 8 and 9, BE is less biased than MLE from the AVE
criterion.

Moreover, SER and RMSE of MLE are 0.240 and 0.417, while those of BE are
0.188 and 0.304.

Therefore, BE is morefcient than MLE.

Thus, in the AVE, SER and RMSE criteria, BE is superior to MLE with respect to
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P-

The empirical distributions of MLE and BE qf are skewed to the left because
Skewness is negative, which value is given-b002 in Table 2 and-1.389 in
Table 3.

We can see that MLE is less skewed than BE.

For Kurtosis, both MLE and BE g are greater than three and therefore the em-
pirical distributions of the estimates pfhave fat tails, compared with the normal
distribution.

Since Kurtosis in Table 3 is 5.391 and that in Table 2 is 4.013, the empirical distri
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bution of BE has more kurtosis than that of MLE.

Figures 10 — 14 correspond to the empirical distributions for each parameter, whic
are constructed from th® estimates used in Tables 2 and 3.

As we can see from Skewness and Kurtosis in Tables 2 agdeBdg;, i = 1, 2,3,

are very similar to normal distributions in Figures 10 — 12.

Forgi, i = 1,2, 3, the empirical distributions of MLE have the almost same centers
as those of BE, but the empirical distributions of MLE are more widely distributed
than those of BE.

We can also observe these facts from AVEs and SERs in Tables 2 and 3.
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In Figure 13, the empirical distribution pfi§ quite diferent from that op.

o is more skewed to the left thanahdp has a larger kurtosis than ~

Since the true value @fis 0.9, BE is distributed at the nearer place to the true value
than MLE.

Figure 14 displays the empirical distributionsced. MLE &2 is biased and under-
estimated, but it has a smaller variance thandBE

In addition, we can see that BE is distributed around the true value.
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6.2.4 Summary

In Section 6.2, we have compared MLE with BE, using the regression model witt
the autocorrelated error term.

Chib (1993) applied the Gibbs sampler to the autocorrelation model, where th
initial density of the error term is ignored.

Under this setup, the posterior distributioncofeduces to the normal distribution.
Therefore, random draws pfgiveng, o2 and §;, X;) can be easily generated.
However, when the initial density of the error term is taken into account, the pos

terior distribution ofp is not normal and it cannot be represented in an explicit
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functional form.

Accordingly, in Section 6.2, the Metropolis-Hastings algorithm have been appliec
to generate random draws @from its posterior density.

The obtained results are summarized as follows.

Giveng’ = (10,1,1) ando? = 1, in Figure 8 we have the relationship betwgen
andp, andp corresponding tp is drawn in Figure 9.

In the two figures, we can observe:

(i) both MLE and BE approach the true parameter value igdarge, and

(i) BE is closer to the 45degree line than MLE and accordingly BE is superior to
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MLE.

Moreover, we have compared MLE with BE in Tables 2 and 3, whete(10, 1, 1),

p = 0.9 ando? = 1 are taken as the true values.

As for the regression céiécients, both MLE and BE gives us the unbiased estima-
tors.

However, we have obtained the result that BB a more dficient than MLE. For
estimation ofor?,

BE is less biased than MLE.

In addition, BE of the autocorrelation déieientp is also less biased than MLE.
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Therefore, as for inference g BE is superior to MLE, because it is plausible to
consider that the estimated variancgd$ biased much more than that®f
Remember that variance gfdepends on both ando2.

Thus, from the simulation studies, we can conclude that BE performs much bette

than MLE.

References

Amemiya, T., 1985Advanced Econometric€ambridge:Harvard University Press.

610



Andrews, D.W.K., 1993, “Exactly Median-Unbiased Estimation of First Order Au-
toregressive¢ Unit Root Models,"EconometricaVol.61, No.1, pp.139 — 165.

Bernardo, J.M. and Smith, A.F.M., 19%ayesian Theoryohn Wiley & Sons.

Boscardin, W.J. and Gelman, A., 1996, “Bayesian Computation for parametrit
Models of Heteroscedasticity in the Linear Model,” Agvances in Econo-
metrics, Vol.11 (Part A)edited by Hill, R.C., pp.87 — 109, Connecticut:JAI

Press Inc.

Carlin, B.P. and Louis, T.A., 199@ayes and Empirical Bayes Methods for Data
Analysis Chapman & Hall.

611



Chen, M.H., Shao, Q.M. and Ibrahim, J.G., 200M@nte Carlo Methods in Bayesian

Computation Springer-Verlag.

Chib, S., 1993, “Bayes Regression with Autoregressive Errors: A Gibbs Samplin
Approach,”Journal of Econometrigs/0l.58, No.3, pp.275 — 294.

Chib, S. and Greenberg, E., 1994, “Bayes Inference in Regression Models wit
ARMA(p,q) Errors,” Journal of Econometrigsvol.64, No.1&2, pp.183 —
206.

Chib, S. and Greenberg, E., 1995, “Understanding the Metropolis-Hastings Algc
rithm,” The American Statisticianvol.49, No.4, pp.327 — 335.

612



Gamerman, D., 1997 Markov Chain Monte Carlo: Stochastic Simulation for

Bayesian InferengeChapman & Hall.

Geweke, J., 1992, “Evaluating the Accuracy of Sampling-Based Approaches to tf
Calculation of Posterior Moments,” iBayesian Statistics, Vol.4edited by
Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M., pp.169 — 193
(with discussion), Oxford University Press.

Greene, W.H., 199'Fconometric AnalysiéThird Edition), Prentice-Hall.

Harvey, A.C., 1976, “Estimating Regression Models with Multiplicative Het-
eroscedasticity,EconometricaVol.44, No.3, pp.461 — 465.

613



Hogg, R.V. and Craig, A.T., 1999ntroduction to Mathematical Statistiq§ifth
Edition), Prentice Hall.

Judge, G., Hill, C., Gfiiths, W. and Lee, T., 1980rhe Theory and Practice of
EconometricsJohn Wiley & Sons.

Mengersen, K.L., Robert, C.P. and Guihenneuc-Jouyaux, C., 1999, “MCMC Con
vergence Diagnostics: A Reviewww,” Bayesian Statistics, Vol.@dited by
Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M., pp.514 — 440

(with discussion), Oxford University Press.

O’Hagan, A., 1994 Kendall's Advanced Theory of Statisticéol.2B (Bayesian

614



Inference), Edward Arnold.

Ohtani, K., 1982, “Small Sample Properties of the Two-step and Three-step Est
mators in a Heteroscedastic Linear Regression Model and the Bayesian A
ternative,”"Economics Letters/0l.10, pp.293 — 298.

Robert, C.P. and Casella, G., 199dponte Carlo Statistical MethodsSpringer-
Verlag.

Smith, A.F.M. and Roberts, G.O., 1993, “Bayesian Computation via Gibbs Sam
pler and Related Markov Chain Monte Carlo Methodsurnal of the Royal
Statistical SocietySer.B, Vol.55, No.1, pp.3 - 23.

615



Tanizaki, H., 2000, “Bias Correction of OLSE in the Regression Model with Lagged
Dependent Variables,Computational Statistics and Data Analysigol.34,
No.4, pp.495 - 511.

Tanizaki, H., 2001, “On Least-Squares Bias in the AR{lodels: Bias Correction
Using the Bootstrap Methods,” Unpublished Manuscript.

Tanizaki, H. and Zhang, X., 2001, “Posterior Analysis of the Multiplicative Het-
eroscedasticity Model,Communications in Statistics, Theory and Methods
Vol.30, No.2, pp.855 — 874.

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributiondje An-

616



nals of StatisticsVol.22, No.4, pp.1701 — 1762.

Zellner, A., 1971,An Introduction to Bayesian Inference in Econometrigshn
Wiley & Sons.

617



6.3 Marginal Likelihood, Convergence Diagnostic and so on
6.3.1 Marginal Likelihood (B2 L)

Model Selection— Marginal Likelihood
60) = [ fulve) o)

Evaluation of Marginal Likelihood = Proper Prior
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(i) Importance Sampling: Use of Prior Distribution

N
H0) = EGui0) = < D (v,

whered, is theith random draw generated from the prior distributipf).
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(i) Importance Sampling: Use of the Appropriate Importance Distribution

[ Tya(¥16) Fo(6) o Fe(¥16) f(6)

fue(Y16:) To(61)
< O,

whereg; is theith random draw generated from the appropriately chosen importanc

distributiong(9).
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(iif) Harmonic Mean = Gelfand and Dey (1994) and Newton and Raftery (1994)

L 90 4 o(6)
B 0 d
fY(y) fy(y) f fy(y) f@\y(ely) Iy(9|)’) 0

9(6) 9(6)
f Loy @) MNP~ Z Ok

whereé; is theith random draw generated from the posterir distributigigly).

Thus, the marginal distribution is evaluated by:

-1
[(
f(y) ~ ( ; fyw(yle.)fe(e)] , =  Gelfand and Dey (1994).
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Wheng(0) = f4(0) is taken, the marginal distribution is given by:
-1

1w 1
f(y) ~ [N le fy|e(y|9i)) ., = Newton and Raftery (1994).
i=

(iv) Chib (1995) and Chib and Jeliazkov (2001)

fy(Y16) f(6)
fely(9|Y)

log f,(y) = log fys(y16) + log f,(8) — log fay(ly),

fy(y) =

whered denotes the Bayes estimates.

We need to evaluate Idgy(ély), using the Gibbs sampler or the MH algorithm.
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6.3.2 Convergence DiagnosticlR ZR¥ 7€)

We need to check whether tharn-in period is enough and whether MCMC con-
verges to thénvariant distribution ( 7Z2%).

Geweke (1992)

Divide the sample path into three periods, excluding the burn-in period..

Test whether the first period isfterent from the third period.

Suppose that we have the MCMC sequence,l.,1, - - -, 6o, 01, - - -, On.
The burn-in period is denoted Iy, 1, - - -, 6.

6y, - - -, Oy are divided by three periods.
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The first period is given by, - - -, 6y;.
The second period is given By .1, - - -, On,-
The third period is given b¥y,.1, - - -, On.

Consider a functiom(-).

1 & 1 9
Define @, = — Z g(6) and g;= N Z 0(6;)) for Ng = N—Ny—Nj.
Ny & 3 i=Ny+No+1
1. & 1 N
Estimate V() g(6)) and LV > u@)),
Ny i=1 3 i=Np+Np+l

which are denoted bg ands3, respectively.
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By the central limit theorem,

g, - E@) — N(O,1) and 0; — E(Gs)
si/ VNi ss/ VN3
Therefore, under the null hypothesis : E(g;) = E(G5),

— N(O, 1).

01— 03
\JSi/Ni + S5/N3

The case 0§(6)) = 6 = Testing whether the two means (i.e., first-moments) are

— N(O, 1).

equal.

The case ofj(¢) = 0> — Testing whether the two second-moments are equal.
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Computation ofs? and s; has to be careful, becaugé,), - - -, g(dn) are serially
correlated.

— Long-run variance.

Ny
Take an example off, which is an estimate OI\%V(Z a(6)).
1 =3
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N1 Ni

1. 1
EV(; 90)) = §; 2, 2, Cove@). 90))

i=1 j=1
. Nil(le(O) 42Ny — 1)y(1) + 20Ny — 2)y(2) + -~ + 2y(Ns — 1))

N1-1
=v(0)+ 2 Z k(NL))/(T), = Bartlett Kernel (Newy-West Est.)
=1 1

wherey(r) = Cov(@(6)), 9(6i+)).
We may choose the other kernels (for example, Parzen kernel or second-order sp

trum kernel; see p.166-167) f&(x).
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Thus,s] is estimated by:
d T
S =7(0)+2) K 7))
=1

forg< N; - 1. — Choice ofg andk(-).
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