
6 Bayesian Estimation — Examples

6.1 Heteroscedasticity Model

In Section 6.1, Tanizaki and Zhang (2001) is re-computed using the random number

generators.

Here, we show how to use Bayesian approach in the multiplicative heteroscedastic-

ity model discussed by Harvey (1976).

The Gibbs sampler and the Metropolis-Hastings (MH) algorithm are applied to the

multiplicative heteroscedasticity model, where some sampling densities are consid-

485



ered in the MH algorithm.

We carry out Monte Carlo study to examine the properties of the estimates via

Bayesian approach and the traditional counterparts such as the modified two-step

estimator (M2SE) and the maximum likelihood estimator (MLE).

The results of Monte Carlo study show that the sampling density chosen here is suit-

able, and Bayesian approach shows better performance than the traditional counter-

parts in the criterion of the root mean square error (RMSE) and the interquartile

range (IR).

486



6.1.1 Introduction

For the heteroscedasticity model, we have to estimate both the regression coeffi-

cients and the heteroscedasticity parameters.

In the literature of heteroscedasticity, traditional estimation techniques include the

two-step estimator (2SE) and the maximum likelihood estimator (MLE).

Harvey (1976) showed that the 2SE has an inconsistent element in the heteroscedas-

ticity parameters and furthermore derived the consistent estimator based on the 2SE,

which is called the modified two-step estimator (M2SE).

These traditional estimators are also examined in Amemiya (1985), Judge, Hill,
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Griffiths and Lee (1980) and Greene (1997).

Ohtani (1982) derived the Bayesian estimator (BE) for a heteroscedasticity linear

model.

Using a Monte Carlo experiment, Ohtani (1982) found that among the Bayesian

estimator (BE) and some traditional estimators, the Bayesian estimator (BE) shows

the best properties in the mean square error (MSE) criterion.

Because Ohtani (1982) obtained the Bayesian estimator by numerical integration,

it is not easy to extend to the multi-dimensional cases of both the regression coeffi-

cient and the heteroscedasticity parameter.
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Recently, Boscardin and Gelman (1996) developed a Bayesian approach in which

a Gibbs sampler and the Metropolis-Hastings (MH) algorithm are used to estimate

the parameters of heteroscedasticity in the linear model.

They argued that through this kind of Bayesian approach, we can average over

our uncertainty in the model parameters instead of using a point estimate via the

traditional estimation techniques.

Their modeling for the heteroscedasticity, however, is very simple and limited.

Their choice of the heteroscedasticity is V(yi) = σ2w−θi , wherewi are known “weights”

for the problem andθ is an unknown parameter.
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In addition, they took only one candidate for the sampling density used in the MH

algorithm and compared it with 2SE.

In Section 6.1, we also consider Harvey’s (1976) model of multiplicative heteroscedas-

ticity.

This modeling is very flexible, general, and includes most of the useful formulations

for heteroscedasticity as special cases.

The Bayesian approach discussed by Ohtani (1982) and Boscardin and Gelman

(1996) can be extended to the multi-dimensional and more complicated cases, using

the model introduced here.
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The Bayesian approach discussed here includes the MH within Gibbs algorithm,

where through Monte Carlo studies we examine two kinds of candidates for the

sampling density in the MH algorithm and compare the Bayesian approach with

the two traditional estimators, i.e., M2SE and MLE, in the criterion of the root

mean square error (RMSE) and the interquartile range (IR).

We obtain the results that the Bayesian estimator significantly has smaller RMSE

and IR than M2SE and MLE at least for the heteroscedasticity parameters.

Thus, the results of the Monte Carlo study show that the Bayesian approach per-

forms better than the traditional estimators.
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6.1.2 Multiplicative Heteroscedasticity Regression Model

The multiplicative heteroscedasticity model discussed by Harvey (1976) can be

shown as follows:

yt = Xtβ + ut, ut ∼ N(0, σ2
t ), (7)

σ2
t = σ

2 exp(qtα), (8)

for t = 1,2, · · · ,n, whereyt is the tth observation,Xt andqt are thetth 1× k and

1× (J − 1) vectors of explanatory variables, respectively.

β andα are vectors of unknown parameters.
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The model given by equations (7) and (8) includes several special cases such as the

model in Boscardin and Gelman (1996), in whichqt = logwt andθ = −α.

As shown in Greene (1997), there is a useful simplification of the formulation.

Let zt = (1,qt) andγ = (logσ2, α′)′, wherezt andγ denote 1× J andJ × 1 vectors.

Then, we can simply rewrite equation (8) as:

σ2
t = exp(ztγ). (9)

Note that exp(γ1) providesσ2, whereγ1 denotes the first element ofγ.

As for the variance ofut, hereafter we use (9), rather than (8).
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The generalized least squares (GLS) estimator ofβ, denoted bŷβGLS, is given by:

β̂GLS =
( n∑

t=1

exp(−ztγ)X
′
t Xt

)−1
n∑

t=1

exp(−ztγ)X
′
t yt, (10)

whereβ̂GLS depends onγ, which is the unknown parameter vector.

To obtain the feasible GLS estimator, we need to replaceγ by its consistent esti-

mate.

We have two traditional consistent estimators ofγ, i.e., M2SE and MLE, which are

briefly described as follows.
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Modified Two-Step Estimator (M2SE): First, define the ordinary least squares

(OLS) residual byet = yt − Xtβ̂OLS, whereβ̂OLS represents the OLS estimator, i.e.,

β̂OLS = (
∑n

t=1 X′t Xt)−1 ∑n
t=1 X′t yt.

For 2SE ofγ, we may form the following regression:

loge2
t = ztγ + vt.

The OLS estimator ofγ applied to the above equation leads to the 2SE ofγ, because

et is obtained by OLS in the first step.
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Thus, the OLS estimator ofγ gives us 2SE, denoted by ˆγ2S E, which is given by:

γ̂2S E = (
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t loge2
t .

A problem with this estimator is thatvt, t = 1,2, · · · ,n, have non-zero means and

are heteroscedastic.

If et converges in distribution tout, thevt will be asymptotically independent with

mean E(vt) = −1.2704 and variance V(vt) = 4.9348, which are shown in Harvey

(1976).
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Then, we have the following mean and variance of ˆγ2S E:

E(γ̂2S E) = γ − 1.2704(
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t , (11)

V(γ̂2S E) = 4.9348(
n∑

t=1

z′tzt)
−1.

For the second term in equation (11), the first element is equal to−1.2704 and the

remaining elements are zero, which can be obtained by simple calculation.

Therefore, the first element of ˆγ2S E is biased but the remaining elements are still

unbiased.

To obtain a consistent estimator ofγ1, we consider M2SE ofγ, denoted by ˆγM2S E,
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which is given by:

γ̂M2S E = γ̂2S E + 1.2704(
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t .

Let ΣM2S E be the variance of ˆγM2S E.

Then,ΣM2S E is represented by:

ΣM2S E ≡ V(γ̂M2S E) = V(γ̂2S E) = 4.9348(
n∑

t=1

z′tzt)
−1.

The first element of ˆγ2S E andγ̂M2S E corresponds to the estimate ofσ2, which value

does not influencêβGLS.
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Since the remaining elements of ˆγ2S E are equal to those of ˆγM2S E, β̂2S E is equivalent

to β̂M2S E, whereβ̂2S E andβ̂M2S E denote 2SE and M2SE ofβ, respectively.

Note thatβ̂2S E andβ̂M2S E can be obtained by substituting ˆγ2S E andγ̂M2S E into γ in (10).

Maximum Likelihood Estimator (MLE): The density ofYn = (y1, y2, · · ·, yn)

based on (7) and (9) is:

f (Yn|β, γ) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)

2 + ztγ
) , (12)

which is maximized with respect toβ andγ, using the method of scoring.
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That is, given values forβ( j) andγ( j), the method of scoring is implemented by the

following iterative procedure:

β( j) =
( n∑

t=1

exp(−ztγ
( j−1))X′t Xt

)−1
n∑

t=1

exp(−ztγ
( j−1))X′t yt,

γ( j) = γ( j−1) + 2(
n∑

t=1

z′tzt)
−11

2

n∑
t=1

z′t
(
exp(−ztγ

( j−1))e2
t − 1

)
,

for j = 1,2, · · · , whereet = yt − Xtβ
( j−1).

The starting value for the above iteration may be taken as (β(0), γ(0)) = (β̂OLS, γ̂2S E),

(β̂2S E, γ̂2S E) or (β̂M2S E, γ̂M2S E).

Let θ = (β, γ).
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The limit of θ( j) = (β( j), γ( j)) gives us the MLE ofθ, which is denoted bŷθMLE =

(β̂MLE, γ̂MLE).

Based on the information matrix, the asymptotic covariance matrix ofθ̂MLE is repre-

sented by:

V(θ̂MLE) =

(
− E

(
∂2 log f (Yn|θ)
∂θ∂θ′

))−1

=

( (∑n
t=1 exp(−ztγ)X′t Xt

)−1
0

0 2(
∑n

t=1 z′tzt)−1

)
. (13)

Thus, from (13), asymptotically there is no correlation betweenβ̂MLE andγ̂MLE, and

furthermore the asymptotic variance of ˆγMLE is represented by:ΣMLE ≡ V(γ̂MLE) =
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2(
∑n

t=1 z′tzt)−1, which implies that ˆγM2S E is asymptotically inefficient becauseΣM2S E−

ΣMLE is positive definite.

Remember that the variance of ˆγM2S E is given by: V(γ̂M2S E) = 4.9348(
∑n

t=1 z′tzt)−1.

6.1.3 Bayesian Estimation

We assume that the prior distributions of the parametersβ andγ are noninformative,

which are represented by:

fβ(β) = constant, fγ(γ) = constant. (14)
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Combining the prior distributions (14) and the likelihood function (12), the poste-

rior distribution f
βγ

(β, γ|y) is obtained as follows:

f
βγ

(β, γ|Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)

2 + ztγ
) .

The posterior means ofβ andγ are not operationally obtained.

Therefore, by generating random draws ofβ andγ from the posterior densityf
βγ

(β, γ|Yn),

we consider evaluating the mathematical expectations as the arithmetic averages

based on the random draws.

Now we utilize the Gibbs sampler, which has been introduced in Section 5.7.5, to

sample random draws ofβ andγ from the posterior distribution.
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Then, from the posterior densityf
βγ

(β, γ|Yn), we can derive the following two con-

ditional densities:

f
γ|β(γ|β,Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)

2 + ztγ
) , (15)

f
β|γ(β|γ,Yn) = N(B1,H1), (16)

where

H−1
1 =

n∑
t=1

exp(−ztγ)X
′
t Xt, B1 = H1

n∑
t=1

exp(−ztγ)X
′
t yt.

Sampling from (16) is simple since it is ak-variate normal distribution with mean

B1 and varianceH1.
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However, since theJ-variate distribution (15) does not take the form of any standard

density, it is not easy to sample from (15).

In this case, the MH algorithm discussed in Section 5.7.3 can be used within the

Gibbs sampler.

See Tierney (1994) and Chib and Greeberg (1995) for a general discussion.

Let γi−1 be the (i − 1)th random draw ofγ andγ∗ be a candidate of theith random

draw ofγ.

The MH algorithm utilizes another appropriate distribution functionf∗(γ|γi), which

is called the sampling density or the proposal density.
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Let us define the acceptance rateω(γi−1, γ
∗) as:

ω(γi−1, γ
∗) = min

(
f
γ|β(γ

∗|βi−1,Yn)/ f∗(γ∗|γi−1)

f
γ|β(γi−1|βi−1,Yn)/ f∗(γi−1|γ∗)

, 1

)
.

The sampling procedure based on the MH algorithm within Gibbs sampling is as

follows:

(i) Set the initial valueβ−M, which may be taken aŝβM2S E or β̂MLE.

(ii) Givenβi−1, generate a random draw ofγ, denoted byγi, from the conditional

densityf
γ|β(γ|βi−1,Yn), where the MH algorithm is utilized for random number

generation because it is not easy to generate random draws ofγ from (15).
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The Metropolis-Hastings algorithm is implemented as follows:

(a) Givenγi−1, generate a random drawγ∗ from f∗(·|γi−1) and compute the

acceptance rateω(γi−1, γ
∗).

We will discuss later about the sampling densityf∗(γ|γi−1).

(b) Setγi = γ
∗ with probabilityω(γi−1, γ

∗) andγi = γi−1 otherwise,

(iii) Givenγi, generate a random draw ofβ, denoted byβi, from the conditional

density f
β|γ(β|γi ,Yn), which isβ|γi ,Yn ∼ N(B1,H1) as shown in (16).

(iv) Repeat (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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Note that the iteration of Steps (ii) and (iii) corresponds to the Gibbs sampler, which

iteration yields random draws ofβ andγ from the joint densityf
βγ

(β, γ|Yn) wheni

is large enough.

It is well known that convergence of the Gibbs sampler is slow whenβ is highly

correlated withγ.

That is, a large number of random draws have to be generated in this case.

Therefore, depending on the underlying joint density, we have the case where the

Gibbs sampler does not work at all.

For example, see Chib and Greenberg (1995) for convergence of the Gibbs sampler.

508



In the model represented by (7) and (8), however, there is asymptotically no corre-

lation between̂βMLE andγ̂MLE, as shown in (13).

It might be expected that correlation betweenβ̂MLE andγ̂MLE is not too high even in

the small sample.

Therefore, it might be appropriate to consider that the Gibbs sampler works well in

this model.

In Step (ii), the sampling densityf∗(γ|γi−1) is utilized.

We consider the multivariate normal density function for the sampling distribution,

which is discussed as follows.
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Choice of the Sampling Density in Step (ii): Several generic choices of the sam-

pling density are discussed by Tierney (1994) and Chib and Greenberg (1995).

Here, we takef∗(γ|γi−1) = f∗(γ) as the sampling density, which is called the inde-

pendence chain because the sampling density is not a function ofγi−1.

We consider taking the multivariate normal sampling density in the independence

MH algorithm, because of its simplicity.

Therefore,f∗(γ) is taken as follows:

f∗(γ) = N(γ+, c2Σ+), (17)

which represents theJ-variate normal distribution with meanγ+ and variancec2Σ+.
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The tuning parameterc is introduced into the sampling density (17).

We have mentioned that for the independence chain (Sampling Density I) the sam-

pling density with the variance which gives us the maximum acceptance probability

is not necessarily the best choice.

From some Monte Carlo experiments, we have obtained the result that the sampling

density with the 1.5 – 2.5 times larger standard error is better than that with the

standard error which maximizes the acceptance probability.

Therefore,c = 2 is taken in the next section, and it is the larger value than thec

which gives us the maximum acceptance probability.
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This detail discussion is given in Section 6.1.4.

Thus, the sampling density ofγ is normally distributed with meanγ+ and variance

c2Σ+.

As for (γ+,Σ+), in the next section we choose one of (ˆγM2S E, ΣM2S E) and (γ̂MLE, ΣMLE)

from the criterion of the acceptance rate.

As shown in Section 2, both of the two estimators ˆγM2S E and γ̂MLE are consistent

estimates ofγ.

Therefore, it might be very plausible to consider that the sampling density is dis-

tributed around the consistent estimates.
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Bayesian Estimator: From the convergence theory of the Gibbs sampler and the

MH algorithm, asi goes to infinity we can regardγi andβi as random draws from

the target densityf
βγ

(β, γ|Yn).

Let M be a sufficiently large number.γi andβi for i = 1,2, · · · ,N are taken as the

random draws from the posterior densityf
βγ

(β, γ|Yn).

Therefore, the Bayesian estimators ˆγBZZ andβ̂BZZ are given by:

γ̂BZZ =
1
N

N∑
i=1

γi , β̂BZZ =
1
N

N∑
i=1

βi ,

where we read the subscript BZZ as the Bayesian estimator which uses the multi-

variate normal sampling density with mean ˆγZZ and varianceΣZZ. ZZ takes M2SE
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or MLE.

We consider two kinds of candidates of the sampling density for the Bayesian esti-

mator, which are denoted by BM2SE and BMLE.

Thus, in Section 6.1.4, we compare the two Bayesian estimators (i.e, BM2SE and

BMLE) with the two traditional estimators (i.e., M2SE and MLE).

6.1.4 Monte Carlo Study

Setup of the Model: In the Monte Carlo study, we consider using the artificially

simulated data, in which the true data generating process (DGP) is presented in
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Judge, Hill, Griffiths and Lee (1980, p.156).

The DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, (18)

whereut, t = 1,2, · · · , n, are normally and independently distributed with E(ut) = 0,

E(u2
t ) = σ

2
t and,

σ2
t = exp(γ1 + γ2x2,t), for t = 1,2, · · · ,n. (19)

As it is discussed in Judge, Hill, Griffiths and Lee (1980), the parameter values are

set to be (β1, β2, β3, γ1, γ2) = (10,1,1,−2,0.25).
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From (18) and (19), Judge, Hill, Griffiths and Lee (1980, pp.160 – 165) generated

one hundred samples ofy with n = 20.

In the Monte Carlo study, we utilizex2,t andx3,t given in Judge, Hill, Griffiths and

Lee (1980, pp.156), which is shown in Table 1, and generateG samples ofyt given

theXt for t = 1,2, · · · ,n.

That is, we performG simulation runs for each estimator, whereG = 104 is taken.

The simulation procedure is as follows:

(i) Given γ and x2,t for t = 1,2, · · · , n, generate random numbers ofut for

t = 1, 2, · · · ,n, based on the assumptions:ut ∼ N(0, σ2
t ), where (γ1, γ2) =
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Table 1: The Exogenous Variablesx1,t andx2,t

t 1 2 3 4 5 6 7 8 9 10

x2,t 14.53 15.30 15.92 17.41 18.37 18.83 18.84 19.71 20.01 20.26

x3,t 16.74 16.81 19.50 22.12 22.34 17.47 20.24 20.37 12.71 22.98

t 11 12 13 14 15 16 17 18 19 20

x2,t 20.77 21.17 21.34 22.91 22.96 23.69 24.82 25.54 25.63 28.73

x3,t 19.33 17.04 16.74 19.81 31.92 26.31 25.93 21.96 24.05 25.66
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(−2,0.25) andσ2
t = exp(γ1 + γ2x2,t) are taken.

(ii) Given β, (x2,t, x3,t) andut for t = 1,2, · · · ,n, we obtain a set of datayt, t =

1,2, · · · ,n, from equation (18), where (β1, β2, β3) = (10,1,1) is assumed.

(iii) Given (yt,Xt) for t = 1,2, · · · ,n, perform M2SE, MLE, BM2SE and BMLE

discussed in Sections 6.1.2 and 6.1.3 in order to obtain the estimates ofθ =

(β, γ), denoted bŷθ.

Note thatθ̂ takesθ̂M2S E, θ̂MLE, θ̂BM2S E andθ̂BMLE.

(iv) Repeat (i) – (iii)G times, whereG = 104 is taken as mentioned above.

(v) FromG estimates ofθ, compute the arithmetic average (AVE), the root mean
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square error (RMSE), the first quartile (25%), the median (50%), the third

quartile (75%) and the interquartile range (IR) for each estimator.

AVE and RMSE are obtained as follows:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE=

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)

2
)1/2
,

for j = 1,2, · · · ,5, whereθ j denotes thejth element ofθ and θ̂(g)
j represents

the j-element of̂θ in thegth simulation run.

As mentioned above,̂θ denotes the estimate ofθ, whereθ̂ takesθ̂M2S E, θ̂MLE,

θ̂BM2S E andθ̂BMLE.
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Figure 2: Acceptance Rates in Average:M = 5000 andN = 104
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Choice of (γ+, Σ+) and c: For the Bayesian approach, depending on (γ+, Σ+) we

have BM2SE and BMLE, which denote the Bayesian estimators using the multi-

variate normal sampling density whose mean and covariance matrix are calibrated

on the basis of M2SE or MLE.

We consider the following sampling density:f∗(γ) = N(γ+, c2Σ+), wherec denotes

the tuning parameter and (γ+,Σ+) takes (γM2S E,ΣM2S E) or (γMLE ,ΣMLE).

Generally, for choice of the sampling density, the sampling density should not have

too large variance and too small variance.

Chib and Greenberg (1995) pointed out that if standard deviation of the sampling
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density is too low, the Metropolis steps are too short and move too slowly within

the target distribution; if it is too high, the algorithm almost always rejects and stays

in the same place.

The sampling density should be chosen so that the chain travels over the support of

the target density.

First, we consider choosing (γ+,Σ+) andc which maximizes the arithmetic average

of the acceptance rates obtained fromG simulation runs.

The results are in Figure 2, wheren = 20, M = 5000, N = 104, G = 104 and

c = 0.1,0.2, · · · ,4.0 are taken (choice ofN and M is discussed in Appendix of
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Section 6.1.6).

In the case of (γ+,Σ+) = (γMLE ,ΣMLE) andc = 1.2, the acceptance rate in average is

0.5078, which gives us the largest one.

It is important to reduce positive correlation betweenγi andγi−1 and keep random-

ness.

Therefore, (γ+,Σ+) = (γMLE, ΣMLE) is adopted, rather than (γ+,Σ+) = (γM2S E, ΣM2S E),

because BMLE has a larger acceptance probability than BM2SE for allc (see Figure

2).

However, the sampling density with the largest acceptance probability is not neces-
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sarily the best choice.

We have the result that the optimal standard error should be 1.5 – 2.5 times larger

than the standard error which gives us the largest acceptance probability.

Here, (γ+,Σ+) = (γMLE ,ΣMLE) andc = 2 are taken.

Whenc is larger than 2, both the estimates and their standard errors become stable

although here we do not show these facts.

Therefore, in this Monte Carlo study,f∗(γ) = N(γMLE ,2
2ΣMLE) is chosen for the

sampling density.

Hereafter, we compare BMLE with M2SE and MLE (i.e., we do not consider

524



BM2SE anymore).

As for computational CPU time, the case ofn = 20, M = 5000, N = 104 and

G = 104 takes about 76 minutes for each ofc = 0.1,0.2, · · · ,4.0 and each of

BM2SE and BMLE, where Dual Pentium III 1GHz CPU, Microsoft Windows 2000

Professional Operating System and Open Watcom FORTRAN 77/32 Optimizing

Compiler (Version 1.0) are utilized.

Note that WATCOM Fortran 77 Compiler is downloaded from

http://www.openwatcom.org/.
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Results and Discussion: Through Monte Carlo simulation studies, the Bayesian

estimator (i.e., BMLE) is compared with the traditional estimators (i.e., M2SE and

MLE).

The arithmetic mean (AVE) and the root mean square error (RMSE) have been

usually used in Monte Carlo study.

Moreover, for comparison with the standard normal distribution, Skewness and

Kurtosis are also computed.

Moments of the parameters are needed in the calculation of AVE, RMSE, Skewness

and Kurtosis.
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However, we cannot assure that these moments actually exist.

Therefore, in addition to AVE and RMSE, we also present values for quartiles, i.e.,

the first quartile (25%), median (50%), the third quartile (75%) and the interquartile

range (IR).

Thus, for each estimator, AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and

IR are computed fromG simulation runs.

The results are given in Table 3, where BMLE is compared with M2SE and MLE.

The case ofn = 20, M = 5000 andN = 104 is examined in Table 3.

A discussion on choice ofM andN is given in Appendix 6.1.6, where we examine
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whetherM = 5000 andN = 104 are sufficient.
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Table 3: The AVE, RMSE and Quartiles:n = 20

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.064 0.995 1.002 −0.988 0.199

RMSE 7.537 0.418 0.333 3.059 0.146

Skewness 0.062 −0.013 −0.010 −0.101 −0.086

M2SE Kurtosis 4.005 3.941 2.988 3.519 3.572

25% 5.208 0.728 0.778 −2.807 0.113

50% 10.044 0.995 1.003 −0.934 0.200

75% 14.958 1.261 1.227 0.889 0.287

IR 9.751 0.534 0.449 3.697 0.175
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Table 3: The AVE, RMSE and Quartiles:n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.029 0.997 1.002 −2.753 0.272

RMSE 7.044 0.386 0.332 2.999 0.139

Skewness 0.081 −0.023 −0.014 0.006 −0.160

MLE Kurtosis 4.062 3.621 2.965 4.620 4.801

25% 5.323 0.741 0.775 −4.514 0.189

50% 10.066 0.998 1.002 −2.710 0.273

75% 14.641 1.249 1.229 −0.958 0.355

IR 9.318 0.509 0.454 3.556 0.165
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Table 3: The AVE, RMSE and Quartiles:n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.034 0.996 1.002 −2.011 0.250

RMSE 6.799 0.380 0.328 2.492 0.117

Skewness 0.055 −0.016 −0.013 −0.016 −0.155

BMLE Kurtosis 3.451 3.340 2.962 3.805 3.897

25% 5.413 0.745 0.778 −3.584 0.176

50% 10.041 0.996 1.002 −1.993 0.252

75% 14.538 1.246 1.226 −0.407 0.325

IR 9.125 0.501 0.448 3.177 0.150

c = 2.0, M = 5000 andN = 104 are chosen for BMLE
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First, we compare the two traditional estimators, i.e., M2SE and MLE.

Judge, Hill, Griffiths and Lee (1980, pp.141–142) indicated that 2SE ofγ1 is in-

consistent although 2SE of the other parameters is consistent but asymptotically

inefficient.

For M2SE, the estimate ofγ1 is modified to be consistent.

But M2SE is still asymptotically inefficient while MLE is consistent and asymptot-

ically efficient.

Therefore, forγ, MLE should have better performance than M2SE in the sense of

efficiency.
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In Table 3, for all the parameters except for IR ofβ3, RMSE and IR of MLE are

smaller than those of M2SE.

For both M2SE and MLE, AVEs ofβ are close to the true parameter values.

Therefore, it might be concluded that M2SE and MLE are unbiased forβ even in

the case of small sample.

However, the estimates ofγ are different from the true values for both M2SE and

MLE.

That is, AVE and 50% ofγ1 are−0.988 and−0.934 for M2SE, and−2.753 and

−2.710 for MLE, which are far from the true value−2.0.
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Similarly, AVE and 50% ofγ2 are 0.199 and 0.200 for M2SE, which are different

from the true value 0.25.

But 0.272 and 0.273 for MLE are slightly larger than 0.25 and they are close to

0.25.

Thus, the traditional estimators work well for the regression coefficientsβ but not

for the heteroscedasticity parametersγ.

Next, the Bayesian estimator (i.e., BMLE) is compared with the traditional ones

(i.e., M2SE and MLE).

For all the parameters ofβ, we can find from Table 3 that BMLE shows better
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performance in RMSE and IR than the traditional estimators, because RMSE and

IR of BMLE are smaller than those of M2SE and MLE.

Furthermore, from AVEs of BMLE, we can see that the heteroscedasticity parame-

ters as well as the regression coefficients are unbiased in the small sample.

Thus, Table 3 also shows the evidence that for bothβ andγ, AVE and 50% of

BMLE are very close to the true parameter values.

The values of RMSE and IR also indicate that the estimates are concentrated around

the AVE and 50%, which are vary close to the true parameter values.

For the regression coefficientβ, all of the three estimators are very close to the true
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parameter values. However, for the heteroscedasticity parameterγ, BMLE shows a

good performance but M2SE and MLE are poor.

The larger values of RMSE for the traditional counterparts may be due to “outliers”

encountered with the Monte Carlo experiments.

This problem is also indicated in Zellner (1971, pp.281).

Compared with the traditional counterparts, the Bayesian approach is not charac-

terized by extreme values for posterior modal values.

Now we compare empirical distributions for M2SE, MLE and BMLE in Figures 3

– 7.

536



Figure 3: Empirical Distributions ofβ1
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Figure 4: Empirical Distributions ofβ2

M2SE

−0.5 0.0 0.5 1.0 1.5 2.0

MLE

−0.5 0.0 0.5 1.0 1.5 2.0

BMLE

−0.5 0.0 0.5 1.0 1.5 2.0

538



Figure 5: Empirical Distributions ofβ3
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Figure 6: Empirical Distributions ofγ1
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Figure 7: Empirical Distributions ofγ2
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For the posterior densities ofβ1 (Figure 3),β2 (Figure 4),β3 (Figure 5) andγ1

(Figure 6), all of M2SE, MLE and BMLE are almost symmetric (also, see Skewness

in Table 3).

For the posterior density ofγ2 (Figure 7), both MLE and BMLE are slightly skewed

to the left because Skewness ofγ2 in Table 3 is negative, while M2SE is almost

symmetric.

As for Kurtosis, all the empirical distributions except forβ3 have a sharp kurtosis

and fat tails, compared with the normal distribution.

Especially, for the heteroscedasticity parametersγ1 andγ2, MLE has the largest
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kurtosis of the three.

For all figures, location of the empirical distributions indicates whether the estima-

tors are unbiased or not.

For β1 in Figure 3,β2 in Figure 4 andβ3 in Figure 5, M2SE is biased while MLE

and BMLE are distributed around the true value.

For γ1 in Figure 6 andγ2 in Figure 7, the empirical distributions of M2SE, MLE

and BMLE are quite different.

For γ1 in Figure 6, M2SE is located in the right-hand side of the true parameter

value, MLE is in the left-hand side, and BMLE is also slightly in the left-hand side.
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Moreover, forγ2 in Figure 7, M2SE is downward-biased, MLE is overestimated,

and BMLE is distributed around the true parameter value.

On the Sample Sizen: Finally, we examine how the sample sizen influences

precision of the parameter estimates.

Since we utilize the exogenous variableX shown in Judge, Hill, Griffiths and Lee

(1980), we cannot examine the case wheren is greater than 20.

In order to see the effect of the sample sizen, here the case ofn = 15 is compared

with that ofn = 20.
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The casen = 15 of BMLE is shown in Table 4, which should be compared with

BMLE in Table 3.

As a result, all the AVEs are very close to the corresponding true parameter values.

Therefore, we can conclude from Tables 3 and 4 that the Bayesian estimator is

unbiased even in the small sample such asn = 15,20.

However, RMSE and IR become large asn decreases.

That is, for example, RMSEs ofβ1, β2, β3, γ1 andγ2 are given by 6.799, 0.380,

0.328, 2.492 and 0.117 in Table 3, and 8.715, 0.455, 0.350, 4.449 and 0.228 in

Table 4.
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Thus, we can see that RMSE and IR decrease asn is large.
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Table 4: BMLE:n = 15,c = 2.0, M = 5000 andN = 104

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.060 0.995 1.002 −2.086 0.252

RMSE 8.715 0.455 0.350 4.449 0.228

Skewness 0.014 0.033 −0.064 −0.460 0.308

Kurtosis 3.960 3.667 3.140 4.714 4.604

25% 4.420 0.702 0.772 −4.725 0.107

50% 10.053 0.995 1.004 −1.832 0.245

75% 15.505 1.284 1.237 0.821 0.391

IR 11.085 0.581 0.465 5.547 0.284
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6.1.5 Summary

In Section 6.1, we have examined the multiplicative heteroscedasticity model dis-

cussed by Harvey (1976), where the two traditional estimators are compared with

the Bayesian estimator.

For the Bayesian approach, we have evaluated the posterior mean by generating

random draws from the posterior density, where the Markov chain Monte Carlo

methods (i.e., the MH within Gibbs algorithm) are utilized.

In the MH algorithm, the sampling density has to be specified.

We examine the multivariate normal sampling density, which is the independence
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chain in the MH algorithm.

For mean and variance in the sampling density, we consider using the mean and

variance estimated by the two traditional estimators (i.e., M2SE and MLE).

The Bayesian estimators with M2SE and MLE are called BM2SE and BMLE in

Section 6.1.

Through the Monte Carlo studies, the results are summarized as follows:

(i) We compare BM2SE and BMLE with respect to the acceptance rates in the

MH algorithm.

In this case, BMLE shows higher acceptance rates than BM2SE for allc,
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which is shown in Figure 2.

For the sampling density, we utilize the independence chain through Section

6.1.

The high acceptance rate implies that the chain travels over the support of the

target density.

For the Bayesian estimator, therefore, BMLE is preferred to BM2SE.

However, note as follows.

The sampling density which yields the highest acceptance rate is not neces-
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sarily the best choice and the tuning parameterc should be larger than the

value which gives us the maximum acceptance rate.

Therefore, we have focused on BMLE withc = 2 (remember that BMLE

with c = 1.2 yields the maximum acceptance rate).

(ii) For the traditional estimators (i.e., M2SE and MLE), we have obtained the

result that MLE has smaller RMSE than M2SE for all the parameters, because

for one reason the M2SE is asymptotically less efficient than the MLE.

Furthermore, for M2SE, the estimates ofβ are unbiased but those ofγ are

different from the true parameter values (see Table 3).
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(iii) From Table 3, BMLE performs better than the two traditional estimators in

the sense of RMSE and IR, because RMSE and IR of BMLE are smaller than

those of the traditional ones for all the cases.

(iv) Each empirical distribution is displayed in Figures 3 – 7.

The posterior densities of almost all the estimates are distributed to be sym-

metric (γ2 is slightly skewed to the left), but the posterior densities of both the

regression coefficients (except forβ3) and the heteroscedasticity parameters

have fat tails.

Also, see Table 3 for skewness and kurtosis.
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(v) As for BMLE, the case ofn = 15 is compared withn = 20.

The casen = 20 has smaller RMSE and IR thann = 15, while AVE and 50%

are close to the true parameter values forβ andγ.

Therefore, it might be expected that the estimates of BMLE go to the true

parameter values asn is large.
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6.1.6 Appendix: Are M = 5000and N = 104 Sufficient?

Table 5: BMLE:n = 20 andc = 2.0

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.028 0.997 1.002 −2.008 0.250

RMSE 6.807 0.380 0.328 2.495 0.117

Skewness 0.041 −0.007 −0.012 0.017 −0.186

M = 1000 Kurtosis 3.542 3.358 2.963 3.950 4.042

N = 104 25% 5.413 0.745 0.778 −3.592 0.176

50% 10.027 0.996 1.002 −1.998 0.252

75% 14.539 1.245 1.226 −0.405 0.326

IR 9.127 0.500 0.448 3.187 0.150554



Table 5: BMLE:n = 20 andc = 2.0 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.033 0.996 1.002 −2.010 0.250

RMSE 6.799 0.380 0.328 2.491 0.117

Skewness 0.059 −0.016 −0.011 −0.024 −0.146

M = 5000 Kurtosis 3.498 3.347 2.961 3.764 3.840

N = 5000 25% 5.431 0.747 0.778 −3.586 0.176

50% 10.044 0.995 1.002 −1.997 0.252

75% 14.532 1.246 1.225 −0.406 0.326

IR 9.101 0.499 0.447 3.180 0.149
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In Section 6.1.4, only the case of (M,N) = (5000,104) is examined.

In this appendix, we check whetherM = 5000 andN = 104 are sufficient.

For the burn-in periodM, there are some diagnostic tests, which are discussed in

Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999).

However, since their tests are applicable in the case of one sample path, we cannot

utilize them.

BecauseG simulation runs are implemented in Section 6.1.4 (see p.516 for the

simulation procedure), we haveG test statistics if we apply the tests.

It is difficult to evaluateG testing results at the same time.

556



Therefore, we consider using the alternative approach to see ifM = 5000 and

N = 104 are sufficient.

For choice ofM andN, we consider the following two issues.

(i) Given fixedM = 5000, compareN = 5000 andN = 104.

(ii) Given fixedN = 104, compareM = 1000 andM = 5000.

(i) examines whetherN = 5000 is sufficiently large, while (ii) checks whether

M = 1000 is large enough. If the case of (M,N) = (5000,5000) is close to that of

(M,N) = (5000,104), we can conclude thatN = 5000 is sufficiently large.
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Similarly, if the case of (M,N) = (1000,104) is not too different from that of

(M,N) = (5000,104), it might be concluded thatM = 1000 is also sufficient.

The results are in Table 5, where AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75%

and IR are shown for each of the regression coefficients and the heteroscedasticity

parameters.

BMLE in Table 3 should be compared with Table 5.

From Tables 3 and 5, the three cases, i.e., (M,N) = (5000,104), (1000,104), (5000,5000),

are very close to each other.

Therefore, we can conclude that bothM = 1000 andN = 5000 are large enough in
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the simulation study shown in Section 6.1.4.

We take the case ofM = 5000 andN = 104 for safety in Section 6.1.4, although we

obtain the results that bothM = 1000 andN = 5000 are large enough.

6.2 Autocorrelation Model

In the previous section, we have considered estimating the regression model with

the heteroscedastic error term, where the traditional estimators such as MLE and

M2SE are compared with the Bayesian estimators.

In this section, using both the maximum likelihood estimator and the Bayes estima-
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tor, we consider the regression model with the first order autocorrelated error term,

where the initial distribution of the autocorrelated error is taken into account.

As for the autocorrelated error term, the stationary case is assumed, i.e., the auto-

correlation coefficient is assumed to be less than one in absolute value.

The traditional estimator (i.e., MLE) is compared with the Bayesian estimator. Uti-

lizing the Gibbs sampler, Chib (1993) discussed the regression model with the au-

tocorrelated error term in a Bayesian framework, where the initial condition of the

autoregressive process is not taken into account.

In this section, taking into account the initial density, we compare the maximum
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likelihood estimator and the Bayesian estimator.

For the Bayes estimator, the Gibbs sampler and the Metropolis-Hastings algorithm

are utilized to obtain random draws of the parameters.

As a result, the Bayes estimator is less biased and more efficient than the maxi-

mum likelihood estimator. Especially, for the autocorrelation coefficient, the Bayes

estimate is much less biased than the maximum likelihood estimate.

Accordingly, for the standard error of the estimated regression coefficient, the Bayes

estimate is more plausible than the maximum likelihood estimate.
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6.2.1 Introduction

In Section 6.2, we consider the regression model with the first order autocorrelated

error term, where the error term is assumed to be stationary, i.e., the autocorrelation

coefficient is assumed to be less than one in absolute value.

The traditional estimator, i.e., the maximum likelihood estimator (MLE), is com-

pared with the Bayes estimator (BE).

Utilizing the Gibbs sampler, Chib (1993) and Chib and Greenberg (1994) discussed

the regression model with the autocorrelated error term in a Bayesian framework,

where the initial condition of the autoregressive process is ignored.
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Here, taking into account the initial density, we compare MLE and BE, where the

Gibbs sampler and the Metropolis-Hastings (MH) algorithm are utilized in BE.

As for MLE, it is well known that the autocorrelation coefficient is underestimated

in small sample and therefore that variance of the estimated regression coefficient

is also biased.

See, for example, Andrews (1993) and Tanizaki (2000, 2001).

Under this situation, inference on the regression coefficient is not appropriate, be-

cause variance of the estimated regression coefficient depends on the estimated au-

tocorrelation coefficient.
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We show in Section 6.2 that BE is superior to MLE because BEs of both the auto-

correlation coefficient and the variance of the error term are closer to the true values,

compared with MLEs.

6.2.2 Setup of the Model

Let Xt be a 1× k vector of exogenous variables andβ be ak× 1 parameter vector.

Consider the following regression model:

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ N(0, σ2
ε ),

for t = 1,2, · · · , n, whereε1, ε2, · · ·, εn are assumed to be mutually independently
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distributed.

In this model, the parameter to be estimated is given byθ = (β, ρ, σ2
ε ).

The unconditional density ofyt is:

f (yt|β, ρ, σ2
ε ) =

1√
2πσ2

ε/(1− ρ2)
exp

(
− 1

2σ2
ε/(1− ρ2)

(yt − Xtβ)
2
)
.

Let Yt be the information set up to timet, i.e.,Yt = {yt, yt−1, · · · , y1}.

The conditional density ofyt givenYt−1 is:

f (yt|Yt−1, β, ρ, σ
2
ε ) = f (yt|yt−1, β, ρ, σ

2
ε )

=
1√

2πσ2
ε

exp
(
− 1

2σ2
ε

((yt − ρyt−1) − (Xt − ρXt−1)β)
2
)
.
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Therefore, the joint density ofYn, i.e., the likelihood function, is given by :

f (Yn|β, ρ, σ2
ε ) = f (y1|β, ρ, σ2

ε )
n∏

t=2

f (yt|Yt−1, β, ρ, σ
2
ε )

= (2πσ2
ε )
−n/2(1− ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
, (20)

wherey∗t andX∗t represent the following transformed variables:

y∗t = y∗t (ρ) =


√

1− ρ2yt, for t = 1,

yt − ρyt−1, for t = 2,3, · · · ,n,
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X∗t = X∗t (ρ) =


√

1− ρ2Xt, for t = 1,

Xt − ρXt−1, for t = 2,3, · · · ,n,

which depend on the autocorrelation coefficientρ.

Maximum Likelihood Estimator: We have shown above that the likelihood func-

tion is given by equation (20).

Maximizing equation (20) with respect toβ andσ2
ε , we obtain the following expres-

sions:

β̂ ≡ β̂(ρ) = (
n∑

t=1

X∗t
′X∗t )−1

n∑
t=1

X∗t
′y∗t ,
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σ̂2
ε ≡ σ̂2

ε (ρ) =
1
n

n∑
t=1

(y∗t − X∗t β̂)
2. (21)

By substitutingβ̂ andσ̂2
ε into β andσ2

ε in equation (20), we have the concentrated

likelihood function:

f (Yn|β̂, ρ, σ̂2
ε ) =

(
2πσ̂2

ε (ρ)
)−n/2

(1− ρ2)1/2 exp(−n
2

), (22)

which is a function ofρ.

Equation (22) has to be maximized with respect toρ.

In the next section, we obtain the maximum likelihood estimate ofρ by a simple

grid search, in which the concentrated likelihood function (22) is maximized by
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changing the parameter value ofρ by 0.0001 in the interval between−0.9999 and

0.9999.

Once the solution ofρ, denoted by ˆρ, is obtained,̂β(ρ̂) andσ̂2
ε (ρ̂) lead to the maxi-

mum likelihood estimates ofβ andσ2
ε .

Hereafter,β̂, σ̂2
ε andρ̂ are taken as the maximum likelihood estimates ofβ, σ2

ε and

ρ, i.e., β̂(ρ̂) andσ̂2
ε (ρ̂) are simply written aŝβ andσ̂2

ε .

Variance of the estimate ofθ = (β′, σ2, ρ)′ is asymptotically given by: V(̂θ) = I−1(θ),

whereI (θ) denotes the information matrix, which is represented as:

I (θ) = −E

(
∂2 log f (Yn|θ)
∂θ∂θ′

)
.
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Therefore, variance of̂β is given by V(̂β) = σ2(
∑n

t=1 X∗t
′X∗t )−1 in large sample, where

ρ in X∗t is replaced by ˆρ, i.e.,X∗t = X∗t (ρ̂).

For example, suppose thatX∗t has a tendency to rise over timet and that we have

ρ > 0.

If ρ is underestimated, then V(β̂) is also underestimated, which yields incorrect

inference on the regression coefficientβ.

Thus, unlessρ is properly estimated, the estimate of V(β̂) is also biased.

In large sample, ˆρ is a consistent estimator ofρ and therefore V(̂β) is not biased.

However, in small sample, since it is known that ˆρ is underestimated (see, for exam-

570



ple, Andrews (1993), Tanizaki (2000, 2001)), clearly V(β̂) is also underestimated.

In addition toρ̂, the estimate ofσ2 also influences inference ofβ, because we have

V(β̂) = σ2(
∑n

t=1 X∗t
′X∗t )−1 as mentioned above.

If σ2 is underestimated, the estimated variance ofβ is also underestimated.

σ̂2 is a consistent estimator ofσ2 in large sample, but it is appropriate to consider

thatσ̂2 is biased in small sample, because ˆσ2 is a function of ˆρ as in (21).

Therefore, the biased estimate ofρ gives us the serious problem on inference ofβ.
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Bayesian Estimator: We assume that the prior density functions ofβ, ρ andσ2
ε

are the following noninformative priors:

fβ(β) ∝ constant, for −∞ < β < ∞, (23)

fρ(ρ) ∝ constant, for −1 < ρ < 1, (24)

fσε (σ
2
ε ) ∝

1
σ2
ε

, for 0 < σ2
ε < ∞. (25)

In equation (24), theoretically we should have−1 < ρ < 1.

As for the prior density ofσ2
ε , since we consider that logσ2

ε has the flat prior for

−∞ < logσ2
ε < ∞, we obtainfσε (σ

2
ε ) ∝ 1/σ2

ε .
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Note that in Section 6.1 the first element of the heteroscedasticity parameterγ is

also assumed to be diffuse, where it is formulated as the logarithm of variance of

the error term, i.e., logσ2
ε .

Combining the four densities (20) and (23) – (25), the posterior density function of

β, ρ andσ2
ε , denoted byfβρσε (β, ρ, σ

2
ε |Yn), is represented as follows:

fβρσε (β, ρ, σ
2
ε |Yn)

∝ f (Yn|β, ρ, σ2
ε ) fβ(β) fρ(ρ) fσε (σ

2
ε )

∝ (σ2
ε )
−(n/2+1)(1− ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
. (26)
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We want to have random draws ofβ, ρ andσ2
ε givenYn.

However, it is not easy to generate random draws ofβ, ρ andσ2
ε from fβρσε (β, ρ, σ

2
ε |Yn).

Therefore, we perform the Gibbs sampler in this problem.

According to the Gibbs sampler, we can sample from the posterior density function

(26), using the three conditional distributionsfβ|ρσε (β|ρ, σ2
ε ,Yn), fρ|βσε (ρ|β, σ2

ε ,Yn)

and fσε |βρ(σ
2
ε |β, ρ,Yn), which are proportional tofβρσ(β, ρ, σ2|Yn) and are obtained

as follows:

• fβ|ρσε (β|ρ, σ2
ε ,Yn) is given by:

fβ|ρσε (β|ρ, σ2
ε ,Yn)
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∝ fβρσε (β, ρ, σ
2
ε |Yn) ∝ exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)

= exp
(
− 1

2σ2
ε

n∑
t=1

(
(y∗t − X∗t β̂) − Xt(β − β̂)

)2)
= exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β̂)
2 − 1

2σ2
ε

(β − β̂)′(
n∑

t=1

X∗t
′X∗t )(β − β̂)

)
∝ exp

(
−1

2
(β − β̂)′( 1

σ2
ε

n∑
t=1

X∗t
′X∗t )(β − β̂)

)
, (27)

which indicates thatβ ∼ N(β̂, σ2
ε (
∑n

t=1 X∗t
′X∗t )−1), whereβ̂ represents the OLS esti-

mate, i.e.,̂β = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ).
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Thus, (27) implies thatβ can be sampled from the multivariate normal distribution

with meanβ̂ and varianceσ2
ε (
∑n

t=1 X∗t
′X∗t )−1.

• fρ|βσε (ρ|β, σ2
ε ,Yn) is obtained as:

fρ|βσε (ρ|β, σ2
ε ,Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ (1− ρ2)1/2 exp
(
− 1

2σ2
ε

n∑
t=1

(
y∗t − X∗t β

)2)
, (28)

for −1 < ρ < 1, which cannot be represented in a known distribution.

Note thaty∗t = y∗t (ρ) andX∗t = X∗t (ρ).

Sampling from (28) is implemented by the MH algorithm.
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A detail discussion on sampling will be given later.

• fσε |βρ(σ
2
ε |β, ρ,Yn) is represented as:

fσε |βρ(σ
2
ε |β, ρ,Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ 1
(σ2
ε )n/2+1

exp
(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
, (29)

which is written as follows:σ2
ε ∼ IG(n/2, 2/

∑n
t=1 ε

2
t ), or equivalently, 1/σ2

ε ∼

G(n/2, 2/
∑n

t=1 ε
2
t ), whereεt = y∗t − X∗t β.

Thus, in order to generate random draws ofβ, ρ andσ2
ε from the posterior density

fβρσε (β, ρ, σ
2
ε |Yn), the following procedures have to be taken:
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(i) Let βi, ρi andσ2
ε,i be theith random draws ofβ, ρ andσ2

ε .

Take the initial values of (β, ρ, σ2
ε ) as (β−M, ρ−M, σ2

ε,−M).

(ii) From equation (27), generateβi given ρi−1, σ2
ε,i−1 and Yn, usingβ ∼ N(β̂,

σ2
ε,i−1(

∑n
t=1 X∗t

′X∗t )−1), where β̂ = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ), y∗t = y∗t (ρi−1)

andX∗t = X∗t (ρi−1).

(iii) From equation (28), generateρi givenβi, σ2
ε,i−1 andYn.

Since it is not easy to generate random draws from (27), the Metropolis-

Hastings algorithm is utilized, which is implemented as follows:
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(a) Generateρ∗ from the uniform distribution between−1 and 1, which

implies that the sampling density ofρ is given by f∗(ρ|ρi−1) = 1/2 for

−1 < ρ < 1.

Compute the acceptance probabilityω(ρi−1, ρ
∗), which is defined as:

ω(ρi−1, ρ
∗) = min

 fρ|βσε (ρ
∗|βi , σ

2
ε,i−1,Yn)/ f∗(ρ∗|ρi−1)

fρ|βσε (ρi−1|βi , σ
2
ε,i−1,Yn)/ f∗(ρi−1|ρ∗)

, 1


= min

 fρ|βσε (ρ
∗|βi , σ

2
ε,i−1,Yn)

fρ|βσε (ρi−1|βi , σ
2
ε,i−1,Yn)

, 1

 .
(b) Setρi = ρ

∗ with probabilityω(ρi−1, ρ
∗) andρi = ρi−1 otherwise.
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(iv) From equation (29), generateσ2
ε,i given βi, ρi andYn, using 1/σ2

ε ∼ G(n/2,

2/
∑n

t=1 u2
t ), whereut = y∗t − X∗t β, y∗t = y∗t (ρi) andX∗t = X∗t (ρi).

(v) Repeat Steps (ii) – (iv) fori = −M +1,−M +2, · · · ,N, whereM indicates the

burn-in period.

Repetition of Steps (ii) – (iv) corresponds to the Gibbs sampler.

For sufficiently largeM, we have the following results:

1
N

N∑
i=1

g(βi) −→ E(g(β)),
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1
N

N∑
i=1

g(ρi) −→ E(g(ρ)),

1
N

N∑
i=1

g(σ2
ε,i) −→ E(g(σ2

ε )),

whereg(·) is a function, typicallyg(x) = x or g(x) = x2.

We define the Bayesian estimates ofβ, ρ andσ2
ε as̃β ≡ (1/N)

∑N
i=1 βi, ρ̃ ≡ (1/N)

∑N
i=1 ρi

andσ̃2
ε ≡ (1/N)

∑N
i=1σ

2
ε,i, respectively.

Thus, using both the Gibbs sampler and the MH algorithm, we have shown that we

can sample fromfβρσε (β, ρ, σ
2
ε |Yn).

See, for example, Bernardo and Smith (1994), Carlin and Louis (1996), Chen, Shao
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and Ibrahim (2000), Gamerman (1997), Robert and Casella (1999) and Smith and

Roberts (1993) for the Gibbs sampler and the MH algorithm.

6.2.3 Monte Carlo Experiments

For the exogenous variables, again we take the data used in Section 6.1, in which

the true data generating process (DGP) is presented in Judge, Hill, Griffiths and Lee

(1980, p.156).

As in equation (18), the DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, ut = ρut−1 + εt, (30)
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whereεt, t = 1,2, · · · ,n, are normally and independently distributed with E(εt) = 0

and E(ε2t ) = σ2
ε .

As in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to be (β1,

β2, β3) = (10,1,1).

We utilizex2,t andx3,t given in Judge, Hill, Griffiths and Lee (1980, pp.156), which

is shown in Table 1, and generateG samples ofyt given theXt for t = 1,2, · · · ,n.

That is, we performG simulation runs for each estimator, whereG = 104 is taken.

The simulation procedure is as follows:

(i) Given ρ, generate random numbers ofut for t = 1,2, · · · ,n, based on the
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Figure 8: The Arithmetic Average from the 104 MLE’s of AR(1) Coeff.
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Figure 9: The Arithmetic Average from the 104 BE’s of AR(1) Coeff.

——— M = 5000 andN = 104 ———
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Table 2: MLE:n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.012 0.999 1.000 0.559 0.752

SER 3.025 0.171 0.053 0.240 0.276

RMSE 3.025 0.171 0.053 0.417 0.372

Skewness 0.034 −0.045 −0.008 −1.002 0.736

Kurtosis 2.979 3.093 3.046 4.013 3.812

5% 5.096 0.718 0.914 0.095 0.363

10% 6.120 0.785 0.933 0.227 0.426

25% 7.935 0.883 0.965 0.426 0.550

50% 10.004 0.999 1.001 0.604 0.723

75% 12.051 1.115 1.036 0.740 0.913

90% 13.913 1.217 1.068 0.825 1.120

95% 15.036 1.274 1.087 0.863 1.255
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Table 3: BE withM = 5000 andN = 104: n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.782 0.160 0.051 0.188 0.380

RMSE 2.782 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.022 −1.389 0.725

Kurtosis 3.018 3.049 2.942 5.391 3.783

5% 5.498 0.736 0.915 0.285 0.515

10% 6.411 0.798 0.934 0.405 0.601

25% 8.108 0.891 0.966 0.572 0.776

50% 10.018 1.000 1.001 0.707 1.011

75% 11.888 1.107 1.036 0.799 1.275

90% 13.578 1.205 1.067 0.852 1.555

95% 14.588 1.258 1.085 0.875 1.750
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Table 4: BE withM = 5000 andN = 5000:n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.011 0.999 1.000 0.661 1.051

SER 2.785 0.160 0.051 0.189 0.380

RMSE 2.785 0.160 0.052 0.305 0.384

Skewness 0.004 −0.027 −0.022 −1.390 0.723

Kurtosis 3.028 3.056 2.938 5.403 3.776

5% 5.500 0.736 0.915 0.285 0.514

10% 6.402 0.797 0.934 0.405 0.603

25% 8.117 0.891 0.966 0.572 0.775

50% 10.015 1.000 1.001 0.707 1.011

75% 11.898 1.107 1.036 0.799 1.277

90% 13.612 1.205 1.066 0.852 1.559

95% 14.600 1.257 1.085 0.876 1.747
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Table 5: BE withM = 1000 andN = 104: n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.783 0.160 0.051 0.188 0.380

RMSE 2.783 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.021 −1.391 0.723

Kurtosis 3.031 3.055 2.938 5.404 3.774

5% 5.495 0.736 0.915 0.284 0.514

10% 6.412 0.797 0.935 0.404 0.602

25% 8.116 0.891 0.966 0.573 0.774

50% 10.014 1.000 1.001 0.706 1.011

75% 11.897 1.107 1.036 0.799 1.275

90% 13.587 1.204 1.067 0.852 1.558

95% 14.588 1.257 1.085 0.876 1.746
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assumptions:ut = ρut−1 + εt andεt ∼ N(0,1).

(ii) Given β, (x2,t, x3,t) andut for t = 1,2, · · · ,n, we obtain a set of datayt, t =

1,2, · · · ,n, from equation (30), where (β1, β2, β3) = (10,1,1) is assumed.

(iii) Given (yt,Xt) for t = 1,2, · · · ,n, obtain the estimates ofθ = (β, ρ, σ2
ε ) by the

maximum likelihood estimation (MLE) and the Bayesian estimation (BE)

discussed in Sections 6.2.2, which are denoted byθ̂ andθ̃, respectively.

(iv) Repeat (i) – (iii)G times, whereG = 104 is taken.

(v) FromG estimates ofθ, compute the arithmetic average (AVE), the standard

error (SER), the root mean square error (RMSE), the skewness (Skewness),
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the kurtosis (Kurtosis), and the 5, 10, 25, 50, 75, 90 and 95 percent points

(5%, 10%, 25%, 50%, 75%, 90% and 95%) for each estimator.

For the maximum likelihood estimator (MLE), we compute:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE=

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)

2
)1/2
,

for j = 1,2, · · · ,5, whereθ j denotes thejth element ofθ and θ̂(g)
j represents

the jth element of̂θ in thegth simulation run.

For the Bayesian estimator (BE),θ̂ in the above equations is replaced byθ̃,

and AVE and RMSE are obtained.
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(vi) Repeat (i) – (v) forρ = −0.99,−0.98, · · ·, 0.99.

Thus, in Section 6.2.3, we compare the Bayesian estimator (BE) with the maximum

likelihood estimator (MLE) through Monte Carlo studies.

In Figures 8 and 9, we focus on the estimates of the autocorrelation coefficientρ.

In Figure 8 we draw the relationship betweenρ and ρ̂, whereρ̂ denotes the arith-

metic average of the 104 MLEs, while in Figure 9 we display the relationship be-

tweenρ andρ̃, wherẽρ indicates the arithmetic average of the 104 BEs.

In the two figures the cases ofn = 10, 15,20 are shown, and (M,N) = (5000,104)

is taken in Figure 9 (we will discuss later aboutM andN).
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If the relationship betweenρ andρ̂ (or ρ̃) lies on the 45◦ degree line, we can con-

clude that MLE (or BE) ofρ is unbiased.

However, from the two figures, both estimators are biased.

Take an example ofρ = 0.9 in Figures 8 and 9.

When the true value isρ = 0.9, the arithmetic averages of 104 MLEs are given by

0.142 forn = 10, 0.422 forn = 15 and 0.559 forn = 20 (see Figure 8), while those

of 104 BEs are 0.369 forn = 10, 0.568 forn = 15 and 0.661 forn = 20 (see Figure

9).

As n increases the estimators are less biased, because it is shown that MLE gives us
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the consistent estimators.

Comparing BE and MLE, BE is less biased than MLE in the small sample, because

BE is closer to the 45◦ degree line than MLE.

Especially, asρ goes to one, the difference between BE and MLE becomes quite

large.

Tables 2 – 5 represent the basic statistics such as arithmetic average, standard error,

root mean square error, skewness, kurtosis and percent points, which are computed

from G = 104 simulation runs, where the case ofn = 20 andρ = 0.9 is examined.

Table 2 is based on the MLEs while Tables 3 – 5 are obtained from the BEs.
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Figure 10: Empirical Distributions ofβ1
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Figure 11: Empirical Distributions ofβ2
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Figure 12: Empirical Distributions ofβ3
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Figure 13: Empirical Distributions ofρ
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Figure 14: Empirical Distributions ofσ2
ε
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To check whetherM andN are enough large, Tables 3 – 5 are shown for BE.

Comparison between Tables 3 and 4 shows whetherN = 5000 is large enough and

we can see from Tables 3 and 5 whether the burn-in periodM = 1000 is large

enough.

We can conclude thatN = 5000 is enough if Table 3 is very close to Table 4 and

thatM = 1000 is enough if Table 3 is close to Table 5.

The difference between Tables 3 and 4 is at most 0.034 (see 90% inβ1) and that

between Tables 3 and 5 is less than or equal to 0.013 (see Kurtosis inβ1).

Thus, all the three tables are very close to each other.
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Therefore, we can conclude that (M,N) = (1000,5000) is enough.

For safety, hereafter we focus on the case of (M,N) = (5000,104).

We compare Tables 2 and 3.

Both MLE and BE give us the unbiased estimators of regression coefficientsβ1, β2

andβ3, because the arithmetic averages from the 104 estimates ofβ1, β2 andβ3,

(i.e., AVE in the tables) are very close to the true parameter values, which are set to

be (β1, β2, β3) = (10,1,1).

However, in the SER and RMSE criteria, BE is better than MLE, because SER and

RMSE of BE are smaller than those of MLE. From Skewness and Kurtosis in the
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two tables, we can see that the empirical distributions of MLE and BE of (β1, β2, β3)

are very close to the normal distribution. Remember that the skewness and kurtosis

of the normal distribution are given by zero and three, respectively.

As forσ2
ε , AVE of BE is closer to the true value than that of MLE, because AVE of

MLE is 0.752 (see Table 2) and that of BE is 1.051 (see Table 3).

However, in the SER and RMSE criteria, MLE is superior to BE, since SER and

RMSE of MLE are given by 0.276 and 0.372 (see Table 2) while those of BE are

0.380 and 0.384 (see Table 3).

The empirical distribution obtained from 104 estimates ofσ2
ε is skewed to the right
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(Skewness is positive for both MLE and BE) and has a larger kurtosis than the

normal distribution because Kurtosis is greater than three for both tables.

Forρ, AVE of MLE is 0.559 (Table 2) and that of BE is given by 0.661 (Table 3).

As it is also seen in Figures 8 and 9, BE is less biased than MLE from the AVE

criterion.

Moreover, SER and RMSE of MLE are 0.240 and 0.417, while those of BE are

0.188 and 0.304.

Therefore, BE is more efficient than MLE.

Thus, in the AVE, SER and RMSE criteria, BE is superior to MLE with respect to
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ρ.

The empirical distributions of MLE and BE ofρ are skewed to the left because

Skewness is negative, which value is given by−1.002 in Table 2 and−1.389 in

Table 3.

We can see that MLE is less skewed than BE.

For Kurtosis, both MLE and BE ofρ are greater than three and therefore the em-

pirical distributions of the estimates ofρ have fat tails, compared with the normal

distribution.

Since Kurtosis in Table 3 is 5.391 and that in Table 2 is 4.013, the empirical distri-
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bution of BE has more kurtosis than that of MLE.

Figures 10 – 14 correspond to the empirical distributions for each parameter, which

are constructed from theG estimates used in Tables 2 and 3.

As we can see from Skewness and Kurtosis in Tables 2 and 3,β̂i andβ̃i, i = 1,2,3,

are very similar to normal distributions in Figures 10 – 12.

Forβi, i = 1, 2,3, the empirical distributions of MLE have the almost same centers

as those of BE, but the empirical distributions of MLE are more widely distributed

than those of BE.

We can also observe these facts from AVEs and SERs in Tables 2 and 3.
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In Figure 13, the empirical distribution of ˆρ is quite different from that of̃ρ.

ρ̃ is more skewed to the left than ˆρ andρ̃ has a larger kurtosis than ˆρ.

Since the true value ofρ is 0.9, BE is distributed at the nearer place to the true value

than MLE.

Figure 14 displays the empirical distributions ofσ2
ε . MLE σ̂2

ε is biased and under-

estimated, but it has a smaller variance than BEσ̃2
ε .

In addition, we can see that BẼσ2
ε is distributed around the true value.
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6.2.4 Summary

In Section 6.2, we have compared MLE with BE, using the regression model with

the autocorrelated error term.

Chib (1993) applied the Gibbs sampler to the autocorrelation model, where the

initial density of the error term is ignored.

Under this setup, the posterior distribution ofρ reduces to the normal distribution.

Therefore, random draws ofρ givenβ, σ2
ε and (yt,Xt) can be easily generated.

However, when the initial density of the error term is taken into account, the pos-

terior distribution ofρ is not normal and it cannot be represented in an explicit
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functional form.

Accordingly, in Section 6.2, the Metropolis-Hastings algorithm have been applied

to generate random draws ofρ from its posterior density.

The obtained results are summarized as follows.

Givenβ′ = (10,1,1) andσ2 = 1, in Figure 8 we have the relationship betweenρ

andρ̂, andρ̃ corresponding toρ is drawn in Figure 9.

In the two figures, we can observe:

(i) both MLE and BE approach the true parameter value asn is large, and

(ii) BE is closer to the 45◦ degree line than MLE and accordingly BE is superior to
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MLE.

Moreover, we have compared MLE with BE in Tables 2 and 3, whereβ′ = (10,1,1),

ρ = 0.9 andσ2 = 1 are taken as the true values.

As for the regression coefficientβ, both MLE and BE gives us the unbiased estima-

tors.

However, we have obtained the result that BE ofβ is more efficient than MLE. For

estimation ofσ2,

BE is less biased than MLE.

In addition, BE of the autocorrelation coefficientρ is also less biased than MLE.
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Therefore, as for inference onβ, BE is superior to MLE, because it is plausible to

consider that the estimated variance ofβ̂ is biased much more than that ofβ̃.

Remember that variance ofβ̂ depends on bothρ andσ2.

Thus, from the simulation studies, we can conclude that BE performs much better

than MLE.
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6.3 Marginal Likelihood, Convergence Diagnostic and so on

6.3.1 Marginal Likelihood (周辺尤度)

Model Selection=⇒ Marginal Likelihood

fy(y) =
∫

fy|θ(y|θ) fθ(θ)dθ

Evaluation of Marginal Likelihood =⇒ Proper Prior
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(i) Importance Sampling: Use of Prior Distribution

fy(y) = Eθ( fy|θ(y|θ)) ≈
1
N

N∑
i=1

fy|θ(y|θi),

whereθi is theith random draw generated from the prior distributionfθ(θ).
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(ii) Importance Sampling: Use of the Appropriate Importance Distribution

fy(y) =
∫

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ = E

( fy|θ(y|θ) fθ(θ)

g(θ)

)
≈ 1

N

N∑
i=1

fy|θ(y|θi) fθ(θi)

g(θi)
,

whereθi is theith random draw generated from the appropriately chosen importance

distributiong(θ).
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(iii) Harmonic Mean =⇒Gelfand and Dey (1994) and Newton and Raftery (1994)

1
fy(y)

=

∫
g(θ)
fy(y)

dθ =
∫

g(θ)
fy(y) fθ|y(θ|y)

fθ|y(θ|y)dθ

=

∫
g(θ)

fy|θ(y|θ) fθ(θ)
fθ|y(θ|y)dθ ≈ 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

,

whereθi is theith random draw generated from the posterir distributionfθ|y(θ|y).

Thus, the marginal distribution is evaluated by:

fy(y) ≈
 1
N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

−1

, =⇒ Gelfand and Dey (1994).
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Wheng(θ) = fθ(θ) is taken, the marginal distribution is given by:

fy(y) ≈
 1
N

N∑
i=1

1
fy|θ(y|θi)

−1

, =⇒ Newton and Raftery (1994).

(iv) Chib (1995) and Chib and Jeliazkov (2001)

fy(y) =
fy|θ(y|θ) fθ(θ)

fθ|y(θ|y)

log fy(y) = log fy|θ(y|θ̂) + log fθ(θ̂) − log fθ|y(θ̂|y),

whereθ̂ denotes the Bayes estimates.

We need to evaluate logfθ|y(θ̂|y), using the Gibbs sampler or the MH algorithm.
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6.3.2 Convergence Diagnostic (収束判定)

We need to check whether theburn-in period is enough and whether MCMC con-

verges to theinvariant distribution ( 不変分布).

Geweke (1992)

Divide the sample path into three periods, excluding the burn-in period..

Test whether the first period is different from the third period.

Suppose that we have the MCMC sequence, i.e.,θ−M+1, · · ·, θ0, θ1, · · ·, θN.

The burn-in period is denoted byθ−M+1, · · ·, θ0.

θ1, · · ·, θN are divided by three periods.

623



The first period is given byθ1, · · ·, θN1.

The second period is given byθN1+1, · · ·, θN2.

The third period is given byθN2+1, · · ·, θN.

Consider a functiong(·).

Define g1 =
1
N1

N1∑
i=1

g(θi) and g3 =
1
N3

N∑
i=N1+N2+1

g(θi) for N3 = N−N2−N1.

Estimate
1
N1

V(
N1∑
i=1

g(θi)) and
1
N3

V(
N∑

i=N1+N2+1

g(θi)),

which are denoted bys2
1 ands2

3, respectively.
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By the central limit theorem,

g1 − E(g1)

s1/
√

N1

−→ N(0,1) and
g3 − E(g3)

s3/
√

N3

−→ N(0,1).

Therefore, under the null hypothesisH0 : E(g1) = E(g3),

g1 − g3√
s2

1/N1 + s2
3/N3

−→ N(0,1).

The case ofg(θi) = θi =⇒ Testing whether the two means (i.e., first-moments) are

equal.

The case ofg(θi) = θ2i =⇒ Testing whether the two second-moments are equal.
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Computation ofs2
1 and s2

3 has to be careful, becauseg(θ1), · · ·, g(θN) are serially

correlated.

=⇒ Long-run variance.

Take an example ofs2
1, which is an estimate of

1
N1

V(
N1∑
i=1

g(θi)).
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1
N1

V(
N1∑
i=1

g(θi)) =
1
N1

N1∑
i=1

N1∑
j=1

Cov(g(θi),g(θ j))

=
1
N1

(N1γ(0)+ 2(N1 − 1)γ(1)+ 2(N1 − 2)γ(2)+ · · · + 2γ(N1 − 1))

= γ(0)+ 2
N1−1∑
τ=1

k(
τ

N1
)γ(τ), =⇒ Bartlett Kernel (Newy-West Est.)

whereγ(τ) = Cov(g(θi),g(θi+τ)).

We may choose the other kernels (for example, Parzen kernel or second-order spec-

trum kernel; see p.166-167) fork(x).
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Thus,s2
1 is estimated by:

s2
1 = γ̂(0)+ 2

q∑
τ=1

k(
τ

q+ 1
)γ̂(τ),

for q ≤ N1 − 1. =⇒ Choice ofq andk(·).
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