
1 Time Series Analysis (時系列分析)

1.1 Introduction

代表的テキスト：

・J.D. Hamilton (1994)Econometric Analysis

　沖本・井上訳 (2006)『時系列解析 (上・下)』

・A.C. Harvey (1981)Time Series Models

　国友・山本訳 (1985)『時系列モデル入門』

・沖本竜義 (2010)『経済・ファイナンスデータの計量時系列分析』
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1. Stationarity (定常性) :

Let y1, y2, · · · , yT be time series data.

(a) Weak Stationarity (弱定常性) :

E(yt) = µ,

E((yt − µ)(yt−τ − µ)) = γ(τ), τ = 0,1,2, · · ·

The first and second moments depend on time difference, not time itself.
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(b) Strong Stationarity (強定常性) :

Let f (yt1, yt2, · · ·, ytr ) be the joint distribution ofyt1, yt2, · · ·, ytr .

f (yt1, yt2, · · · , ytr ) = f (yt1+τ, yt2+τ, · · · , ytr+τ)

All the moments are same for allτ.
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2. Ergodicity (エルゴード性) :

As time difference between two data is large, the two data become indepen-

dent.

y1, y2, · · · , yT is said to be ergodic in mean wheny converges in probability to

E(yt).

3. Auto-covariance Function (自己共分散関数) :

E((yt − µ)(yt−τ − µ)) = γ(τ), τ = 0,1,2, · · ·

γ(τ) = γ(−τ)
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4. Auto-correlation Function (自己相関関数) :

ρ(τ) =
E((yt − µ)(yt−τ − µ))√

Var(yt)
√

Var(yt−τ)
=
γ(τ)
γ(0)

Note that Var(yt) = Var(yt−τ) = γ(0).

5. Sample Mean (標本平均) :

µ̂ =
1
T

T∑
t=1

yt

6. Sample Auto-covariance (標本自己共分散) :

γ̂(τ) =
1
T

T∑
t=τ+1

(yt − µ̂)(yt−τ − µ̂)
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7. Correlogram (コレログラム, or標本自己相関関数) :

ρ̂(τ) =
γ̂(τ)
γ̂(0)

8. Lag Operator (ラグ作要素) :

Lτyt = yt−τ, τ = 1,2, · · ·

6



9. Likelihood Function (尤度関数) — Innovation Form :

The joint distribution ofy1, y2, · · · , yT is written as:

f (y1, , y2, · · · , yT) = f (yT |yT−1, · · · , y1) f (yT−1, · · · , y1)

= f (yT |yT−1, · · · , y1) f (yT−1|yT−2, · · · , y1) f (yT−2, · · · , y1)

...

= f (yT |yT−1, · · · , y1) f (yT−1|yT−2, · · · , y1) · · · f (y2|y1) f (y1)

= f (y1)
T∏

t=2

f (yt|yt−1, · · · , y1).
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Therefore, the log-likelihood function is given by:

log f (y1, y2, · · · , yT) = log f (y1) +
T∑

t=2

log f (yt|yt−1, · · · , y1).

Under the normality assumption,f (yt|yt−1, · · · , y1) is given by the normal

distribution with conditional mean E(yt|yt−1, · · · , y1) and conditional variance

Var(yt|yt−1, · · · , y1).
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1.2 Autoregressive Model (自己回帰モデル or AR モデル)

1. AR( p) Model :

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

which is rewritten as:

φ(L)yt = εt,

where

φ(L) = 1− φ1L − φ2L2 − · · · − φpLp.
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2. Stationarity (定常性) :

Suppose that all thep solutions ofx from φ(x) = 0 are real numbers

When thep solutions are greater than one,yt is stationary.

Suppose that thep solutions include imaginary numbers.

When thep solutions are outside unit circle,yt is stationary.
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3. Partial Autocorrelation Coefficient (偏自己相関係数), φk,k :

The partial autocorrelation coefficient betweenyt andyt−k, denoted byφk,k, is

a measure of strength of the relationship betweenyt andyt−k, after removing

influence ofyt−1, · · ·, yt−k+1.

φ1,1 = ρ(1)

( 1 ρ(1)

ρ(1) 1

) (
φ2,1

φ2,2

)
=

(
ρ(1)

ρ(2)

)
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1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1



φ3,1

φ3,2

φ3,3

 =

ρ(1)

ρ(2)

ρ(3)


...

1 ρ(1) · · · ρ(k− 2) ρ(k− 1)

ρ(1) 1 ρ(k− 3) ρ(k− 2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) 1





φk,1

φk,2

...

φk,k−1

φk,k


=


ρ(1)

ρ(2)
...

ρ(k)
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Use Cramer’s rule (クラメールの公式) to obtainφk,k.

φk,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k− 2) ρ(1)

ρ(1) 1 ρ(k− 3) ρ(2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k− 2) ρ(k− 1)

ρ(1) 1 ρ(k− 3) ρ(k− 2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Example: AR(1) Model: yt = φ1yt−1 + εt

1. The stationarity condition is: the solution ofφ(x) = 1−φ1x = 0, i.e.,x = 1/φ1,

is greater than one, or equivalently,φ1 < 1.

2. Rewriting the AR(1) model,

yt = φ1yt−1 + εt

= φ2
1yt−2 + εt + φ1εt−1

= φ3
1yt−3 + εt + φ1εt−1 + φ

2
1εt−2

...
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= φs
1yt−s+ εt + φ1εt−1 + · · · + φs−1

1 εt−s+1.

As s is large, φs
1 approaches zero.=⇒ Stationarity condition

3. For stationarity, yt = φ1yt−1 + εt is rewritten as:

yt = εt + φ1εt−1 + φ
2
1εt−2 + · · ·

MA representation of AR model.

(MA will be discussed later.)
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4. Mean of AR(1) process,µ

µ = E(yt) = E(εt + φ1εt−1 + φ
2
1εt−2 + · · ·)

= E(εt) + φ1E(εt−1) + φ
2
1E(εt−2) + · · · = 0

5. Autocovariance and autocorrelation functions of the AR(1) process:

Rewriting the AR(1) process, we have:

yt = φ
τ
1yt−τ + εt + φ1εt−1 + · · · + φτ−1

1 εt−τ+1.
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Therefore, the autocovariance function of AR(1) process is:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)

= E
(
(φτ1yt−τ + εt + φ1εt−1 + · · · + φτ−1

1 εt−τ+1)yt−τ
)

= φτ1E(yt−τyt−τ) + E(εtyt−τ) + φ1E(εt−1yt−τ) + · · · + φτ−1
1 E(εt−τ+1yt−τ)

= φτ1γ(0).

The autocorrelation function of AR(1) process is:

ρ(τ) =
γ(τ)
γ(0)

= φτ1.

17



Multiply yt−τ on both sides of the AR(1) process and take the expectation:

E(ytyt−τ) = φ1E(yt−1yt−τ) + E(εtyt−τ)

γ(τ) =

φ1γ(τ − 1), for τ , 0,

φ1γ(τ − 1)+ σ2, for τ = 0.

Usingγ(τ) = γ(−τ), γ(τ) for τ = 0 is given by:

γ(0) = φ1γ(1)+ σ2 = φ2
1γ(0)+ σ2.

Note thatγ(1) = φ1γ(0).
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Therefore,γ(0) is given by:

γ(0) =
σ2

1− φ2
1

6. Partial autocorrelation function of AR(1) process:

φ1,1 = ρ(1) = φ1

φ2,2 =

∣∣∣∣∣∣ 1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ(1)

ρ(1) 1

∣∣∣∣∣∣
=
ρ(2)− ρ(1)2

1− ρ(1)2
= 0
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7. Estimation of AR(1) model:

(a) Likelihood function

log f (yT , · · · , y1) = log f (y1) +
T∑

t=1

log f (yt|yt−1, · · · , y1)

= −1
2

log(2π) − 1
2

log

(
σ2

1− φ2
1

)
− 1

σ2/(1− φ2
1)

y2
1

−T − 1
2

log(2π) − T − 1
2

log(σ2) − 1
σ2

T∑
t=2

(yt − φ1yt−1)
2
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= −T
2

log(2π) − T
2

log(σ2) − 1
2

log

(
1

1− φ2
1

)
− 1

2σ2/(1− φ2
1)

y2
1 −

1
2σ2

T∑
t=2

(yt − φ1yt−1)
2

Note as follows:

f (y1) =
1√

2πσ2/(1− φ2
1)

exp

(
− 1

2σ2/(1− φ2
1)

y2
1

)

f (yt|yt−1, · · · , y1) =
1

√
2πσ2

exp

(
− 1

2σ2
(yt − φ1yt−1)

2

)
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∂ log f (yT , · · · , y1)
∂σ2

= −T
2

1
σ2
+

1

2σ4/(1− φ2
1)

y2
1 +

1
2σ4

T∑
t=2

(yt − φ1yt−1)
2 = 0

∂ log f (yT , · · · , y1)
∂φ1

= − φ1

1− φ2
1

+
φ1

σ2
y2

1 +
1
σ2

T∑
t=2

(yt − φ1yt−1)yt−1 = 0

The MLE ofφ1 andσ2 satisfies the above two equation.

σ̃2 =
1
T

(1− φ̃2
1)y

2
1 +

T∑
t=2

(yt − φ̃1yt−1)
2


φ̃1 =

∑T
t=2 ytyt−1∑T
t=2 y2

t−1

+

(
φ̃1y

2
1 −

σ̃2φ̃1

1− φ̃2
1

) / T∑
t=2

y2
t−1
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(b) Ordinary Least Squares (OLS) Method

S(φ1) =
T∑

t=2

(yt − φ1yt−1)
2

is minimized with respect toφ1.

φ̂1 =

∑T
t=2 yt−1yt∑T
t=2 y2

t−1

= φ1 +

∑T
t=2 yt−1εt∑T
t=2 y2

t−1

= φ1 +
(1/T)

∑T
t=2 yt−1εt

(1/T)
∑T

t=2 y2
t−1

−→ φ1 +
E(yt−1εt)

E(y2
t−1)

= φ1

OLSE ofφ1 is a consistent estimator.
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The following equations are utilized.

E(yt−1εt) = 0

E(y2
t−1) = Var(yt−1) = γ(0)

8. Asymptotic distribution of OLSÊφ1:

√
T(φ̂1 − φ1) −→ N(0,1− φ2

1)

Proof:

yt−1εt, t = 1,2, · · · ,T, are distributed with mean zero and variance
σ4
ε

1− φ2
1

.
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From the central limit theorem,

(1/T)
∑T

t=1 yt−1εt√
σ4
ε/(1− φ2

1)/
√

T
−→ N(0,1)

Rewriting,
1
√

T

T∑
t=1

yt−1εt −→ N(0,
σ4
ε

1− φ2
1

).

Next,
1
T

T∑
t=1

y2
t−1 −→ E(y2

t−1) = γ(0) =
σ2
ε

1− φ2
1
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yields:

√
T(φ̂1 − φ1) =

(1/
√

T)
∑T

t=1 yt−1εt

(1/T)
∑T

t=1 y2
t−1

−→ N(0, 1− φ2
1)

9. Some formulas:

(a) Central Limit Theorem

Random variablesx1, x2, · · ·, xT are mutually independently distributed

with meanµ and varianceσ2.

Definex = (1/T)
∑T

t=1 xt.
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Then,
x− E(x)√

V(x)
=

x− µ
σ/
√

T
−→ N(0,1)

(b) Central Limit Theorem II

Random variablesx1, x2, · · ·, xT are distributed with meanµ and vari-

anceσ2.

Definex = (1/T)
∑T

t=1 xt.

Then,
x− E(x)√

V(x)
−→ N(0,1)
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(c) Let x andy be random variables.

y converges in distribution to a distribution, andx converges in proba-

bility to a fixed value.

Then,xyconverges in distribution.

For example, consider:

y −→ N(µ, σ2), x −→ c.

Then, we obtain:

xy −→ N(cµ, c2σ2)
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10. AR(1) +drift: yt = µ + φ1yt−1 + εt

Mean:

Using the lag operator,

φ(L)yt = µ + εt

whereφ(L) = 1− φ1L.

Multiply φ(L)−1 on both sides. Then, when|φ1| < 1, we have:

yt = φ(L)−1µ + φ(L)−1εt.
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Taking the expectation on both sides,

E(yt) = φ(L)−1µ + φ(L)−1E(εt)

= φ(1)−1µ =
µ

1− φ1
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Example: AR(2) Model: Consideryt = φ1yt−1 + φ2yt−2 + εt.

1. The stationarity condition is: two solutions ofx fromφ(x) = 1−φ1x−φ2x2 = 0

are outside the unit circle.

2. Rewriting the AR(2) model,

(1− φ1L − φ2L2)yt = εt.

Let 1/α1 and 1/α2 be the solutions ofφ(x) = 0.

Then, the AR(2) model is written as:

(1− α1L)(1− α2L)yt = εt,
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which is rewritten as:

yt =
1

(1− α1L)(1− α2L)
εt

=

(
α1/(α1 − α2)

1− α1L
+
−α2/(α1 − α2)

1− α2L

)
εt

3. Mean of AR(2) Model:

Whenyt is stationary, i.e.,α1 andα2 are within the unit circle,

µ = E(yt) = E(φ(L)εt) = 0
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4. Autocovariance Function of AR(2) Model:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)

= E
(
(φ1yt−1 + φ2yt−2 + εt)yt−τ

)
= φ1E(yt−1yt−τ) + φ2E(yt−2yt−τ) + E(εtyt−τ)

=

φ1γ(τ − 1)+ φ2γ(τ − 2), for τ , 0,

φ1γ(τ − 1)+ φ2γ(τ − 2)+ σ2
ε , for τ = 0.

The initial condition is obtained by solving the following three equations:

γ(0) = φ1γ(1)+ φ2γ(2)+ σ2
ε ,

33



γ(1) = φ1γ(0)+ φ2γ(1),

γ(2) = φ1γ(1)+ φ2γ(0).

Therefore, the initial conditions are given by:

γ(0) =

(
1− φ2

1+ φ2

)
σ2
ε

(1− φ2)2 − φ2
1

,

γ(1) =
φ1

1− φ2
γ(0) =

(
φ1

1− φ2

) (
1− φ2

1+ φ2

)
σ2
ε

(1− φ2)2 − φ2
1

.

Givenγ(0) andγ(1), we obtainγ(τ) as follows:

γ(τ) = φ1γ(τ − 1)+ φ2γ(τ − 2), for τ = 2, 3, · · ·.
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5. Another solution for γ(0):

Fromγ(0) = φ1γ(1)+ φ2γ(2)+ σ2
ε ,

γ(0) =
σ2
ε

1− φ1ρ(1)− φ2ρ(2)

where

ρ(1) =
φ1

1− φ2
, ρ(2) = φ1ρ(1)+ φ2 =

φ2
1 + (1− φ2)φ2

1− φ2
.

6. Autocorrelation Function of AR(2) Model:

Givenρ(1) andρ(2),

ρ(τ) = φ1ρ(τ − 1)+ φ2ρ(τ − 2), for τ = 3, 4, · · ·,

35



7. φk,k = Partial Autocorrelation Coefficient of AR(2) Process:


1 ρ(1) · · · ρ(k− 2) ρ(k− 1)

ρ(1) 1 ρ(k− 3) ρ(k− 2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) 1





φk,1

φk,2

...

φk,k−1

φk,k


=


ρ(1)

ρ(2)
...

ρ(k)


,

for k = 1,2, · · ·.
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φk,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k− 2) ρ(1)

ρ(1) 1 ρ(k− 3) ρ(2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) · · · ρ(k− 2) ρ(k− 1)

ρ(1) 1 ρ(k− 3) ρ(k− 2)
...

...
...

...

ρ(k− 1) ρ(k− 2) · · · ρ(1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Autocovariance Functions:

γ(1) = φ1γ(0)+ φ2γ(1),

γ(2) = φ1γ(1)+ φ2γ(0),

γ(τ) = φ1γ(τ − 1)+ φ2γ(τ − 2), for τ = 3, 4, · · ·.

Autocorrelation Functions:

ρ(1) = φ1 + φ2ρ(1) =
φ1

1− φ2
,

ρ(2) = φ1ρ(1)+ φ2 =
φ2

1

1− φ2
+ φ2,

ρ(τ) = φ1ρ(τ − 1)+ φ2ρ(τ − 2), for τ = 3,4, · · ·.
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φ1,1 = ρ(1) =
φ1

1− φ2

φ2,2 =

∣∣∣∣∣∣ 1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ(1)

ρ(1) 1

∣∣∣∣∣∣
=
ρ(2)− ρ(1)2

1− ρ(1)2
= φ2
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φ3,3 =

∣∣∣∣∣∣∣∣∣∣
1 ρ(1) ρ(1)

ρ(1) 1 ρ(2)

ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1

∣∣∣∣∣∣∣∣∣∣
=

(ρ(3)− ρ(1)ρ(2))− ρ(1)2(ρ(3)− ρ(1))+ ρ(2)ρ(1)(ρ(2)− 1)
(1− ρ(1)2) − ρ(1)2(1− ρ(2))+ ρ(2)(ρ(1)2 − ρ(2))

= 0.
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8. Log-Likelihood Function — Innovation Form:

log f (yT , · · · , y1) = log f (y2, y1) +
T∑

t=3

log f (yt|yt−1, · · · , y1)

where

f (y2, y1) =
1
2π

∣∣∣∣∣∣ γ(0) γ(1)

γ(1) γ(0)

∣∣∣∣∣∣
−1/2

exp

−1
2

(y1 y2)

(
γ(0) γ(1)

γ(1) γ(0)

)−1 ( y1

y2

) ,
f (yt|yt−1, · · · , y1) =

1√
2πσ2

ε

exp

(
− 1

2σ2
ε

(yt − φ1yt−1 − φ2yt−2)
2

)
.

Note as follows:(
γ(0) γ(1)

γ(1) γ(0)

)
= γ(0)

( 1 ρ(1)

ρ(1) 1

)
= γ(0)

( 1 φ1/(1− φ2)

φ1/(1− φ2) 1

)
.
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9. AR(2) +drift: yt = µ + φ1yt−1 + φ2yt−2 + εt

Mean:

Rewriting the AR(2)+drift model,

φ(L)yt = µ + εt

whereφ(L) = 1− φ1L − φ2L2.

Under the stationarity assumption, we can rewrite the AR(2)+drift model as

follows:

yt = φ(L)−1µ + φ(L)−1εt.
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Therefore,

E(yt) = φ(L)−1µ + φ(L)−1E(εt) = φ(1)−1µ =
µ

1− φ1 − φ2

Example: AR(p) model: Consideryt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt.

1. Variance of AR(p) Process:

Under the stationarity condition (i.e., thep solutions ofx from φ(x) = 0 are

outside the unit circle),

γ(0) =
σ2
ε

1− φ1ρ(1)− · · · − φpρ(p)
.
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Note thatγ(τ) = ρ(τ)γ(0).

Solve the following simultaneous equations forτ = 0,1, · · · , p:

γ(τ) = E((yt − µ)(yt−τ − µ)) = E(ytyt−τ)

=

φ1γ(τ − 1)+ φ2γ(τ − 2)+ · · · + φpγ(τ − p), for τ , 0,

φ1γ(τ − 1)+ φ2γ(τ − 2)+ · · · + φpγ(τ − p) + σ2
ε , for τ = 0.
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2. Estimation of AR(p) Model:

1. OLS:

min
φ1, · · · , φp

T∑
t=p+1

(yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p)
2

2. MLE:

max
φ1, · · · , φp

log f (yT , · · · , y1)

where

log f (yT , · · · , y1) = log f (yp, · · · , y2, y1) +
T∑

t=p+1

log f (yt|yt−1, · · · , y1),
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f (yp, · · · , y2, y1) = (2π)−p/2|V|−1/2 exp


−1

2
(y1 y2 · · · yp)V

−1


y1

y2

...

yp





V = γ(0)


1 ρ(1) · · · ρ(p− 2) ρ(p− 1)

ρ(1) 1 ρ(p− 3) ρ(p− 2)
...

...
...

...

ρ(p− 1) ρ(p− 2) · · · ρ(1) 1


f (yt|yt−1, · · · , y1) =

1√
2πσ2

ε

exp
(
− 1

2σ2
ε

(yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p)
2
)
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3. Yule=Walker (ユール・ウォーカー) Equation:

Multiply yt−1, yt−2, · · ·, yt−p on both sides ofyt = φ1yt−1 + φ2yt−2 + · · · +

φpyt−p + εt = yt, take expectations for each case, and divide by the sample

variance ˆγ(0).


1 ρ̂(1) · · · ρ̂(p− 2) ρ̂(p− 1)

ρ̂(1) 1 ρ̂(p− 3) ρ̂(p− 2)
...

...
...

...

ρ̂(p− 1) ρ̂(p− 2) · · · ρ̂(1) 1





φ1

φ2

...

φp−1

φp


=


ρ̂(1)

ρ̂(2)
...

ρ̂(p)
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where

γ̂(τ) =
1
T

T∑
t=τ+1

(yt − µ̂)(yt−τ − µ̂), ρ̂(τ) =
γ̂(τ)
γ̂(0)

.

3. AR(p) +drift: yt = µ + φ1yt−1 + φ2yt−2 + · · · φpyt−p + εt

Mean:

φ(L)yt = µ + εt

whereφ(L) = 1− φ1L − φ2L2 − · · · − φpLp.

yt = φ(L)−1µ + φ(L)−1εt
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Taking the expectation on both sides,

E(yt) = φ(L)−1µ + φ(L)−1E(εt) = φ(1)−1µ

=
µ

1− φ1 − φ2 − · · · − φp

4. Partial Autocorrelation of AR( p) Process:

φk,k = 0 for k = p+ 1, p+ 2, · · ·.
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1.3 MA Model

MA (Moving Average，移動平均) Model:

1. MA( q)

yt = εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q,

which is rewritten as:

yt = θ(L)εt,

where

θ(L) = 1+ θ1L + θ2L2 + · · · + θqLq.
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2. Invertibility ( 反転可能性):

Theq solutions ofx from θ(x) = 1 + θ1x + θ2x2 + · · · + θqxq = 0の q are

outside the unit circle.

=⇒ MA(q) model is rewritten as AR(∞) model.

Example: MA(1) Model: yt = εt + θ1εt−1

1. Mean of MA(1) Process:

E(yt) = E(εt + θ1εt−1) = E(εt) + θ1E(εt−1) = 0
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2. Autocovariance Function of MA(1) Process:

γ(0) = E(y2
t ) = E(εt + θ1εt−1)

2 = E(ε2
t + 2θ1εtεt−1 + θ

2
1ε

2
t−1)

= E(ε2
t ) + 2θ1E(εtεt−1) + θ

2
1E(ε2

t−1) = (1+ θ2
1)σ

2
ε

γ(1) = E(ytyt−1) = E((εt + θ1εt−1)(εt−1 + θ1εt−2)) = θ1σ
2
ε

γ(2) = E(ytyt−2) = E((εt + θ1εt−1)(εt−2 + θ1εt−3)) = 0
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3. Autocorrelation Function of MA(1) Process:

ρ(τ) =
γ(τ)
γ(0)

=


θ1

1+ θ2
1

, for τ = 1,

0, for τ = 2,3, · · ·.

Let x beρ(1).

θ1

1+ θ2
1

= x, i.e., xθ2
1 − θ + x = 0.

θ1 should be a real number.

1− 4x2 > 0, i.e., − 1
2
≤ ρ(1) ≤ 1

2
.
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4. Invertibility Condition of MA(1) Process:

εt = −θ1εt−1 + yt

= (−θ1)
2εt−2 + yt + (−θ1)yt−1

= (−θ1)
3εt−3 + yt + (−θ1)yt−1 + (−θ1)

2yt−2

...

= (−θ1)
sεt−s+ yt + (−θ1)yt−1 + (−θ1)

2yt−2 + · · · + (−θ1)
t−s+1yt−s+1
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When (−θ1)sεt−s −→ 0, the MA(1) model is written as the AR(∞) model,

i.e.,

yt = −(−θ1)yt−1 − (−θ1)
2yt−2 − · · · − (−θ1)

t−s+1yt−s+1 − · · · + εt

5. Likelihood Function of MA(1) Process:

The autocovariance functions are:γ(0) = (1 + θ2
1)σ

2
ε , γ(1) = θ1σ

2
ε , and

γ(τ) = 0 for τ = 2,3, · · ·.

The joint distribution ofy1, y2, · · · , yT is:

f (y1, y2, · · · , yT) =
1

(2π)T/2
|V|−1/2 exp

(
−1

2
Y′V−1Y

)
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where

Y =


y1

y2

...

yT


, V = σ2

ε



1+ θ2
1 θ1 0 · · · 0

θ1 1+ θ2
1 θ1

. . .
...

0 θ1
. . .

. . . 0
...

. . .
. . . 1+ θ2

1 θ1

0 · · · 0 θ1 1+ θ2
1


.

56



6. MA(1) +drift: yt = µ + εt + θ1εt−1

Mean of MA(1) Process:

yt = µ + θ(L)εt,

whereθ(L) = 1+ θ1L.

Taking the expectation,

E(yt) = µ + θ(L)E(εt) = µ.
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Example: MA(2) Model: yt = εt + θ1εt−1 + θ2εt−2

1. Autocovariance Function of MA(2) Process:

γ(τ) =



(1+ θ2
1 + θ

2
2)σ

2
ε , for τ = 0,

(θ1 + θ1θ2)σ2
ε , for τ = 1,

θ2σ
2
ε , for τ = 2,

0, otherwise.

2. let −1/β1 and−1/β2 be two solutions ofx from θ(x) = 0.

For invertibility condition, bothβ1 andβ2 should be less than one in absolute

value.
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Then, the MA(2) model is represented as:

yt = εt + θ1εt−1 + θ2εt−2

= (1+ θ1L + θ2L2)εt

= (1+ β1L)(1+ β2L)εt

AR(∞) representation of the MA(2) model is given by:

εt =
1

(1+ β1L)(1+ β2L)
yt

=

(
β1/(β1 − β2)

1+ β1L
+
−β2/(β1 − β2)

1+ β2L

)
yt
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3. Likelihood Function:

f (y1, y2, · · · , yT) =
1

(2π)T/2
|V|−1/2 exp

(
−1

2
Y′V−1Y

)
where

Y =


y1

y2

...

yT


, V = σ2

ε



1+ θ2
1 + θ

2
2 θ1 + θ1θ2 θ2 0

θ1 + θ1θ2 1+ θ2
1 + θ

2
2 θ1 + θ1θ2

. . .

θ2 θ1 + θ1θ2
. . .

. . . θ2

. . .
. . . 1+ θ2

1 + θ
2
2 θ1 + θ1θ2

0 θ2 θ1 + θ1θ2 1+ θ2
1 + θ

2
2
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4. MA(2) +drift: yt = µ + εt + θ1εt−1 + θ2εt−2

Mean:

yt = µ + θ(L)εt,

whereθ(L) = 1+ θ1L + θ2L2.

Therefore,

E(yt) = µ + θ(L)E(εt) = µ
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Example: MA(q) Model: yt = εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

1. Mean of MA(q) Process:

E(yt) = E(εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q) = 0

2. Autocovariance Function of MA(q) Process:

γ(τ) =


σ2
ε (θ0θτ + θ1θτ+1 + · · · + θq−τθq) = σ

2
ε

q−τ∑
i=0

θiθτ+i , τ = 1,2, · · · ,q,

0, τ = q+ 1,q+ 2, · · · ,

whereθ0 = 1.
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3. MA( q) process is stationary.

4. MA( q) +drift: yt = µ + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

Mean:

yt = µ + θ(L)εt,

whereθ(L) = 1+ θ1L + θ2L2 + · · · + θqLq.

Therefore, we have:

E(yt) = µ + θ(L)E(εt) = µ.
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1.4 ARMA Model

ARMA (Autoregressive Moving Average，自己回帰移動平均) Process

1. ARMA( p,q)

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q,

which is rewritten as:

φ(L)yt = θ(L)εt,

whereφ(L) = 1−φ1L−φ2L2− · · · −φpLp andθ(L) = 1+θ1L+θ2L2+ · · · +θqLq.
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2. Likelihood Function:

The variance-covariance matrix ofY, denoted byV, has to be computed.

Example: ARMA(1,1) Process: yt = φ1yt−1 + εt + θ1εt−1

Obtain the autocorrelation coefficient.

The mean ofyt is to take the expectation on both sides.

E(yt) = φ1E(yt−1) + E(εt) + θ1E(εt−1),

where the second and third terms are zeros.
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Therefore, we obtain:

E(yt) = 0.

The autocovariance ofyt is to take the expectation, multiplyingyt−τ on both sides.

E(ytyt−τ) = φ1E(yt−1yt−τ) + E(εtyt−τ) + θ1E(εt−1yt−τ).

Each term is given by:

E(ytyt−τ) = γ(τ), E(yt−1yt−τ) = γ(τ − 1),
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E(εtyt−τ) =

σ
2
ε , τ = 0,

0, τ = 1,2, · · · ,
E(εt−1yt−τ) =


(φ1 + θ1)σ2

ε , τ = 0,

σ2
ε , τ = 1,

0, τ = 2,3, · · · .

Therefore, we obtain;

γ(0) = φ1γ(1)+ (1+ φ1θ1 + θ
2
1)σ

2
ε ,

γ(1) = φ1γ(0)+ θ1σ
2
ε ,

γ(τ) = φ1γ(τ − 1), τ = 2,3, · · · .
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From the first two equations,γ(0) andγ(1) are computed by:( 1 −φ1

−φ1 1

) (
γ(0)

γ(1)

)
= σ2

ε

( 1+ φ1θ1 + θ
2
1

θ1

)

(
γ(0)

γ(1)

)
= σ2

ε

( 1 −φ1

−φ1 1

)−1 ( 1+ φ1θ1 + θ
2
1

θ1

)

=
σ2
ε

1− φ2
1

( 1 φ1

φ1 1

) ( 1+ φ1θ1 + θ
2
1

θ1

)
=

σ2
ε

1− φ2
1

( 1+ 2φ1θ1 + θ
2
1

(1+ φ1θ1)(φ1 + θ1)

)
.
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Thus, the initial value of the autocorrelation coefficient is given by:

ρ(1) =
(1+ φ1θ1)(φ1 + θ1)

1+ 2φ1θ1 + θ
2
1

.

We have:

ρ(τ) = φ1ρ(τ − 1).
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ARMA( p,q) +drift:

yt = µ + φ1yt−1 + φ2yt−2 + · · · φpyt−p + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q.

Mean of ARMA(p,q) Process: φ(L)yt = µ + θ(L)εt,

whereφ(L) = 1− φ1L− φ2L2− · · · − φpLp andθ(L) = 1+ θ1L+ θ2L2+ · · · + θqLq.

yt = φ(L)−1µ + φ(L)−1θ(L)εt.

Therefore,

E(yt) = φ(L)−1µ + φ(L)−1θ(L)E(εt) = φ(1)−1µ =
µ

1− φ1 − φ2 − · · · − φp
.
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1.5 ARIMA Model

Autoregressive Integrated Moving Average (ARIMA，自己回帰和分移動平均)

Model

ARIMA( p,d,q) Process

φ(L)∆dyt = θ(L)εt,

where∆dyt = ∆
d−1(1 − L)yt = ∆

d−1yt − ∆d−1yt−1 = (1 − L)dyt for d = 1,2, · · ·, and

∆0yt = yt.
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1.6 SARIMA Model

Seasonal ARIMA (SARIMA) Process:

1. SARIMA(p, d,q)

φ(L)∆d∆syt = θ(L)εt,

where

∆syt = (1− Ls)yt = yt − yt−s.

s = 4 whenyt denotes quarterly date ands = 12 whenyt represents monthly

data.
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1.7 Optimal Prediction

1. AR(p) Process:yt = φ1yt−1 + · · · + φpyt−p + εt

(a) Define:

E(yt+k|Yt) = yt+k|t,

whereYt denotes all the information available at timet.

Taking the conditional expectation ofyt+k = φ1yt+k−1+ · · · +φpyt+k−p+εt+k

on both sides,

yt+k|t = φ1yt+k−1|t + · · · + φpyt+k−p|t,

73



whereys|t = ys for s≤ t.

(b) Optimal prediction is given by solving the above differential equation.

2. MA(q) Process:yt = εt + θ1εt−1 + · · · + θqεt−q

(a) Let ε̂T , ε̂T−1, · · ·, ε̂1 be the estimated errors.

(b) yt+k = εt+k + θ1εt+k−1 + · · · + θqεt+k−q

(c) Therefore,

yt+k|t = εt+k|t + θ1εt+k−1|t + · · · + θqεt+k−q|t,

whereεs|t = 0 for s> t andεs|t = ε̂s for s≤ t.
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3. ARMA( p,q) Process:yt = φ1yt−1 + · · · + φpyt−p + εt + θ1εt−1 + · · · + θqεt−q

(a) yt+k = φ1yt+k−1 + · · · + φpyt+k−p + εt+k + θ1εt+k−1 + · · · + θqεt+k−q

(b) Optimal prediction is:

yt+k|t = φ1yt+k−1|t + · · · + φpyt+k−p|t + εt+k|t + θ1εt+k−1|t + · · · + θqεt+k−q|t,

whereys|t = ys andεs|t = ε̂s for s≤ t, andεs|t = 0 for s> t.
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1.8 Identification

1. Based on AIC or SBIC givend, s, we obtainp,q.

(a) AIC (Akaike’s Information Criterion)

AIC = −2 log(likelihood)+ 2k,

wherek = p+ q, which is the number of parameters estimated.

(b) SBIC (Shwarz’s Bayesian Information Criterion)

SBIC= −2 log(likelihood)+ k logT,
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whereT denotes the number of observations.

2. From the sample autocorrelation coefficient function ˆρ(k) and the partial au-

tocorrelation coefficient functionφ̂k,k for k = 1,2, · · ·, we obtainp, d,q, s.

AR(p) Process MA(q) Process

Autocorrelation Function Gradually decreasingρ(k) = 0,

k = q+ 1,q+ 2, · · ·

Partial Autocorrelation Functionφ(k, k) = 0, Gradually decreasing

k = p+ 1, p+ 2, · · ·

(a) Compute∆syt to remove seasonality.
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Compute the autocovariance functions of∆syt.

If the autocovariance functions have periods, we take (1− Ls), again.

(b) Determine the order of difference.

Compute the partial autocovariance functions every time.

If the autocovariance functions decrease asτ is large, go to the next step.

(c) Determine the order of AR terms (i.e.,p).

Compute the partial autocovariance functions every time.

The partial autocovariance functions are close to zero after someτ, go

to the next step.
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(d) Determine the order of MA terms (i.e.,q).

Compute the autocovariance functions every time.

If the autocovariance functions are randomly around zero, end of the

procedure.
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1.9 Example of SARIMA using Consumption Data

Construct SARIMA model using monthly and seasonally unadjusted consumption

expenditure data and STATA12.

Estimation Period: Jan., 1970 — Dec., 2012 (T = 516)

. gen time=_n

. tsset time
time variable: time, 1 to 516

delta: 1 unit

. corrgram expend
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-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
-------------------------------------------------------------------------------
1 0.8488 0.8499 373.88 0.0000 |------ |------
2 0.8231 0.3858 726.18 0.0000 |------ |---
3 0.8716 0.5266 1122 0.0000 |------ |----
4 0.8706 0.4025 1517.6 0.0000 |------ |---
5 0.8498 0.3447 1895.3 0.0000 |------ |--
6 0.8085 0.0074 2237.9 0.0000 |------ |
7 0.8378 0.1528 2606.5 0.0000 |------ |-
8 0.8460 0.1467 2983 0.0000 |------ |-
9 0.8342 0.3006 3349.9 0.0000 |------ |--
10 0.7735 -0.1518 3666 0.0000 |------ -|
11 0.7852 -0.1185 3992.3 0.0000 |------ |
12 0.9234 0.9442 4444.5 0.0000 |------- |-------
13 0.7754 -0.5486 4764.1 0.0000 |------ ----|
14 0.7482 -0.3248 5062.1 0.0000 |----- --|
15 0.7963 -0.2392 5400.5 0.0000 |------ -|

. gen dexp=expend-l.expend
(1 missing value generated)
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. corrgram dexp

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
-------------------------------------------------------------------------------
1 -0.4316 -0.4329 96.485 0.0000 ---| ---|
2 -0.2546 -0.5441 130.13 0.0000 --| ----|
3 0.1721 -0.4091 145.53 0.0000 |- ---|
4 0.0667 -0.3459 147.85 0.0000 | --|
5 0.0715 -0.0036 150.52 0.0000 | |
6 -0.2428 -0.1489 181.36 0.0000 -| -|
7 0.0711 -0.1400 184.01 0.0000 | -|
8 0.0668 -0.2900 186.36 0.0000 | --|
9 0.1704 0.1681 201.64 0.0000 |- |-
10 -0.2485 0.1306 234.21 0.0000 -| |-
11 -0.4293 -0.9305 331.56 0.0000 ---| -------|
12 0.9773 0.6768 837.12 0.0000 |------- |-----
13 -0.4152 0.3778 928.56 0.0000 ---| |---
14 -0.2583 0.2688 964.03 0.0000 --| |--
15 0.1712 0.0406 979.63 0.0000 |- |

. gen sdex=dexp-l12.dexp
(13 missing values generated)
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. corrgram sdex

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
-------------------------------------------------------------------------------
1 -0.4752 -0.4753 114.28 0.0000 ---| ---|
2 -0.0244 -0.3235 114.58 0.0000 | --|
3 0.1163 -0.0759 121.46 0.0000 | |
4 -0.1246 -0.1365 129.37 0.0000 | -|
5 0.0341 -0.1016 129.96 0.0000 | |
6 -0.0151 -0.1136 130.08 0.0000 | |
7 -0.0395 -0.1413 130.88 0.0000 | -|
8 0.1123 0.0092 137.35 0.0000 | |
9 -0.0664 -0.0100 139.62 0.0000 | |
10 0.0168 0.0069 139.76 0.0000 | |
11 0.1642 0.2422 153.68 0.0000 |- |-
12 -0.3888 -0.2469 231.9 0.0000 ---| -|
13 0.2242 -0.1205 257.96 0.0000 |- |
14 -0.0147 -0.0941 258.07 0.0000 | |
15 -0.0708 -0.0591 260.68 0.0000 | |
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. arima sdex, ar(1,2) ma(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = -5107.4608
Iteration 1: log likelihood = -5102.391
Iteration 2: log likelihood = -5099.9071
Iteration 3: log likelihood = -5099.4216
Iteration 4: log likelihood = -5099.2463
(switching optimization to BFGS)
Iteration 5: log likelihood = -5099.2361
Iteration 6: log likelihood = -5099.2346
Iteration 7: log likelihood = -5099.2346
Iteration 8: log likelihood = -5099.2346

ARIMA regression

Sample: 14 - 516 Number of obs = 503
Wald chi2(3) = 973.93

Log likelihood = -5099.235 Prob > chi2 = 0.0000
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------------------------------------------------------------------------------
| OPG

sdex | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sdex |

_cons | -15.64573 59.17574 -0.26 0.791 -131.628 100.3366
-------------+----------------------------------------------------------------
ARMA |

ar |
L1. | .1271774 .0581883 2.19 0.029 .0131304 .2412244
L2. | .1009983 .053626 1.88 0.060 -.0041068 .2061034

|
ma |
L1. | -.8343264 .0419364 -19.90 0.000 -.9165202 -.7521326

-------------+----------------------------------------------------------------
/sigma | 6111.128 139.0105 43.96 0.000 5838.673 6383.584

------------------------------------------------------------------------------
Note: The test of the variance against zero is one sided, and the two-sided

confidence interval is truncated at zero.
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. estat ic

-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------
. | 503 . -5099.235 5 10208.47 10229.57

-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note
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1.10 ARCH and GARCH Models

Autoregressive Conditional Heteroskedasticity (ARCH)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

1. ARCH (p) Model

εt|εt−1, εt−2, · · · , ε1 ∼ N(0,ht),

where，

ht = α0 + α1ε
2
t−1 + · · · + αpε

2
t−p.
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The unconditional variance ofεt is:

σ2
ε =

α0

1− α1 − α2 − · · · − αp

2. GARCH (p,q) Model

εt|εt−1, εt−2, · · · , ε1 ∼ N(0,ht),

where

ht = α0 + α1ε
2
t−1 + · · · + αpε

2
t−p + β1ht−1 + · · · + βqht−q.
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3. Application to OLS (Case of ARCH(1) Model):

yt = xtβ + εt, εt|εt−1, εt−2, · · · , ε1 ∼ N(0, α0 + α1ε
2
t−1).

The joint density ofε1, ε2, · · · , εT is:

f (ε1, · · · , εT) = f (ε1)
T∏

t=2

f (εt|εt−1, · · · , ε1)

= (2π)−1/2

(
α0

1− α1

)−1/2

exp

(
− 1

2α0/(1− α1)
ε2

1

)
× (2π)−(T−1)/2

T∏
t=2

(α0 + α1ε
2
t−1)
−1/2 exp

−1
2

T∑
t=2

ε2
t

α0 + α1ε
2
t−1

 .
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The log-likelihood function is:

logL(β, α0, α1; y1, · · · , yT)

= −1
2

log(2π) − 1
2

log

(
α0

1− α1

)
− 1

2α0/(1− α1)
(y1 − x1β)2

−T − 1
2

log(2π) − 1
2

T∑
t=2

log
(
α0 + α1(yt−1 − xt−1β)2

)
−1

2

T∑
t=2

(yt − xtβ)2

α0 + α1(yt−1 − xt−1β)2
.

Obtainα0, α1 andβ such that the log-likelihood function is maximized.

α0 > 0 andα1 > 0 have to be satisfied.
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These two conditions are explicitly included, when the model is modified to:

E(ε2
t |εt−1, εt−2, · · · , ε1) = α2

0 + α
2
1ε

2
t−1.

Testing the ARCH(1) Effect:

(a) Estimateyt = xtβ + ut by OLS, and computêβ andût = yt − xtβ̂.

(b) Estimate ˆu2
t = α0 + α1û2

t−1 by OLS. If α̂1 is significant, there is the

ARCH(1) effect in the error term.

This test corresponds to LM test.
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2 Vector Autoregressive (VAR) Model – Causality, Im-

pulse Response Function and etc

Vector Autoregressive Process:

yt = µ + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

where

yt : k× 1, µ : k× 1, εt : k× 1, φi : k× k.
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Rewriting the above equation,

φ(L)yt = µ + εt,

whereφ(L) = Ik − φ1L − φ2L2 − · · · − φpLp.
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VAR(1) Model:

yt = φ1yt−1 + εt, i.e., (Ik − φ1L)yt = εt.

Whenyt is stationary, we obtain:

yt = (Ik − φ1L)−1εt

= (Ik + φ1L + φ2
1L2 + φ3

1L3 + · · ·)εt

= εt + φ1εt−1 + φ
2
1εt−2 + φ

3
1εt−3 + · · ·

VAR(1)=VMA(∞)
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VAR(2) Model:

yt = φ1yt−1 + φ2yt−2 + εt, i.e., (Ik − φ1L − φ2L2)yt−1 = εt.

Whenyt is stationary, we obtain:

yt−1 = (Ik − φ1L − φ2L2)−1εt

= εt + θ1εt−1 + θ2εt−2 + · · ·

VAR(2)=VMA(∞)
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VAR(p) Model:

yt = µ + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

i.e.,

(Ik − φ1L − φ2L2 − · · · − φpLp)yt−1 = εt.

Whenyt is stationary, we obtain:

yt = (Ik − φ1L − φ2L2 − · · · − φpLp)−1εt

= εt + θ1εt−1 + θ2εt−2 + · · ·

VAR(p)=VMA(∞)
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2.1 Autocovariance Matrix and Autocorrelation Matrix

Let yt be ak× 1 vector.

Autocovariance Function Matrix:

Γ(τ) = E((yt − µ)(yt−τ − µ)′), τ = 0,1,2, · · ·,

where E(yt) = µ. Γ(τ) is ak× k matrix.

Γ(τ) = Γ(−τ)′
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Autocorrelation Function Matrix:

ρ(τ) = D−1/2Γ(τ)D−1/2,

where the (i, j)th element ofD is given byγii (τ) = V(yit) for i = j and zero other-

wise.

ρ(τ) = ρ(−τ)′

98



2.2 Granger Cuasality Test (グレンジャー因果性テスト)

Consider a bivariate case.

Unrestricted Model (Sum of Squared Residuals, denoted by SSR1):( y1,t

y2,t

)
=

(
µ1

µ2

)
+

(
φ11,1 φ12,1

φ21,1 φ22,1

) ( y1,t−1

y2,t−1

)
+ · · · +

(
φ11,p φ12,p

φ21,p φ22,p

) ( y1,t−p

y2,t−p

)
+

(
ε1

ε2

)
H0 : φ12,1 = φ12,2 = · · · = φ12,p = 0

WhenH0 is correct, we say there is no causality fromy2 to y1.

=⇒ Granger Causality Test.
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Restricted Model (Sum of Squared Residuals, denoted by SSR0):( y1,t

y2,t

)
=

(
µ1

µ2

)
+

(
φ11,1 0

φ21,1 φ22,1

) ( y1,t−1

y2,t−1

)
+ · · · +

(
φ11,p 0

φ21,p φ22,p

) ( y1,t−p

y2,t−p

)
+

(
ε1

ε2

)

Asymptotically, we have the following distribution:

F =
(SSR0 − SSR1)/p

SSR1/(T − 2p− 1)
∼ F(p,T − 2p− 1),

or

pF ∼ χ2(p).
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In general, we consider testing the Granger causality fromy j to yi.

yt = µ + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt.

yt : k× 1, µ : k× 1, φp : k× k, εt : k× 1.

The null hypothesis is:H0 : φi j,1 = φi j,2 = · · · = φi j,p = 0.

The alternative hypothesis is:H1 : not H0.

SSR0 = Sum of Squared Residuals underH0

SSR1 = Sum of Squared Residuals underH1
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UnderH0, the asymptotic distribution is given by:

F =
(SSR0 − SSR1)/p

SSR1/(T − kp− 1)
∼ F(p,T − kp− 1),

or

pF ∼ χ2(p).
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2.3 Impulse Response Function (インパルス応答関数):

∂yi,t+k

∂ε j,t
, k = 1,2, · · · ,

wherei, j = 1,2, · · · , k.

Example: AR(p) Process:

Whenyt is stationary, we obtain:

yt = (Ik − φ1L − φ2L2 − · · · − φpLp)−1εt

= εt + θ1εt−1 + θ2εt−2 + · · ·
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∂yi,t+k

∂ε j,t
= θi j,k, k = 1, 2, · · · ,

whereθi j,k denotes the (i, j)th element ofθk.
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3 Unit Root (単位根) and Cointegration (共和分)

3.1 Unit Root (単位根) Test (Dickey-Fuller (DF) Test)

1. Why is a unit root problem important?

(a) Economic variables increase over time in general.

One of the assumptions of OLS is stationarity onyt andxt.

This assumption implies that
1
T

X′X converges to a fixed matrix asT is

large.
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That is, asymptotic normality of OLS estimator goes not hold.

(b) In nonstationary time series, the unit root is the most important.

In the case of unit root, OLSE of the first-order autoregressive coeffi-

cient is consistent.

OLSE is
√

T-consistent in the case of stationary AR(1) process, but

OLSE isT-consistent in the case of nonstationay AR(1) process.

(c) A lot of economic variables increase over time.

It is important to check an economic variable is trend stationary (i.e.,

yt = a0 + a1t + εt) or difference stationary (i.e.,yt = b0 + yt−1 + εt).
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Considerk-step ahead prediction for both cases.

(Trend Stationarity) yt+k|t = a0 + a1(t + k)

(Difference Stationarity) yt+k|t = b0k+ yt

2. The Case of|φ1| < 1:

yt = φ1yt−1 + εt, εt ∼ i.i.d. N(0, σ2
ε ), y0 = 0, t = 1, · · · ,T
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Then, OLSE ofφ1 is:

φ̂1 =

T∑
t=1

yt−1yt

T∑
t=1

y2
t−1

.

In the case of|φ1| < 1,

φ̂1 = φ1 +

1
T

T∑
t=1

yt−1εt

1
T

T∑
t=1

y2
t−1

−→ φ1 +
E(yt−1εt)

E(y2
t−1)

= φ1.
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Note as follows:
1
T

T∑
t=1

yt−1εt −→ E(yt−1εt) = 0.

By the central limit theorem,

yε − E(yε)√
V(yε)

−→ N(0,1)

where

yε =
1
T

T∑
t=1

yt−1εt.
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E(yε) = 0,

V(yε) = V(
1
T

T∑
t=1

yt−1εt) = E
(
(
1
T

T∑
t=1

yt−1εt)
2
)

=
1
T2

E
( T∑

t=1

T∑
s=1

yt−1ys−1εtεs

)
=

1
T2

E
( T∑

t=1

y2
t−1ε

2
t

)
=

1
T
σ2γ(0).

Therefore,

yε√
σ2γ(0)/T

=
1

σε

√
γ(0)

1
√

T

T∑
t=1

yt−1εt −→ N(0,1),
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which is rewritten as:

1
√

T

T∑
t=1

yt−1εt −→ N(0, σ2
εγ(0)).

Using
1
T

T∑
t=1

y2
t−1 −→ E(y2

t−1) = γ(0), we have the following asymptotic

distribution:

√
T(φ̂1 − φ1) =

1
√

T

T∑
t=1

yt−1εt

1
T

T∑
t=1

y2
t−1

−→ N

(
0,

σ2
ε

γ(0)

)
= N

(
0,1− φ2

1

)
.
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Note thatγ(0) =
σ2
ε

1− φ2
1

.

3. In the case ofφ1 = 1, as expected, we have:

√
T(φ̂1 − 1) −→ 0.

That is,φ̂1 has the distribution which converges in probability toφ1 = 1 (i.e.,

degenerated distribution).

Is this true?

4. 　 The Case ofφ1 = 1: =⇒ Random Walk Process
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yt = yt−1 + εt with y0 = 0 is written as:

yt = εt + εt−1 + εt−2 + · · · + ε1.

Therefore, we can obtain:

yt ∼ N(0, σ2
ε t).

The variance ofyt depends on timet. =⇒ yt is nonstationary.

5. Remember that̂φ1 = φ1 +

∑
yt−1εt∑
y2

t−1

.

(a) First, consider the numerator
∑

yt−1εt.
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We havey2
t = (yt−1 + εt)2 = y2

t−1 + 2yt−1εt + ε
2
t .

Therefore, we obtain:

yt−1εt =
1
2

(y2
t − y2

t−1 − ε2
t ).

Taking into accounty0 = 0, we have:

T∑
t=1

yt−1εt =
1
2

y2
T −

1
2

T∑
t=1

ε2
t .

Divided byσ2
εT on both sides, we have the following:

1
σ2
εT

T∑
t=1

yt−1εt =
1
2

(
yT

σε

√
T

)2

− 1
2σ2

ε

1
T

T∑
t=1

ε2
t .
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Fromyt ∼ N(0, σ2
ε t), we obtain the following result:(

yT

σε

√
T

)2

∼ χ2(1).

Moreover, the second term is derived from:

1
T

T∑
t=1

ε2
t −→ σ2

ε .

Therefore,

1
σ2
εT

T∑
t=1

yt−1εt =
1
2

(
yT

σ
√

T

)2

− 1
2σ2

ε

1
T

T∑
t=1

ε2
t −→

1
2

(χ2(1)− 1).
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(b) Next, consider
∑

y2
t−1.

E

 T∑
t=1

y2
t−1

 = T∑
t=1

E(y2
t−1) =

T∑
t=1

σ2
ε (t − 1) = σ2

ε

T(T − 1)
2

.

Thus, we obtain the following result:

1
T2

E

 T∑
t=1

y2
t−1

 −→ a fixed value.

Therefore,
1
T2

T∑
t=1

y2
t−1 −→ a distribution.
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6. Summarizing the results up to now,T(φ̂1−φ1), not
√

T(φ̂1−φ1), has limiting

distribution in the case ofφ1 = 1.

T(φ̂1 − φ1) =
(1/T)

∑
yt−1εt

(1/T2)
∑

y2
t−1

−→ a distribution.

7. Basic Concepts of Random Walk Process:

(a) Model: yt = yt−1 + εt, y0 = 0, εt ∼ N(0,1).

Then,

yt = εt + εt−1 + · · · + ε1.
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Therefore,

yt ∼ N(0, t).

=⇒ Nonstationary Process (i.e., variance depends on timet.)

Difference betweenys andyt (s> t) is:

ys− yt = εs+ εs−1 + · · · + εt+2 + εt+1.

The distribution ofys− yt is:

ys− yt ∼ N(0, s− t).
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(b) Rewrite as follows:

yt = yt−1 + εt

= yt−1 + e1,t + e2,t + · · · + eN,t,

whereεt = e1,t + e2,t + · · · + eN,t.

e1,t,e2,t, · · · ,eN,t are iid withei,t ∼ N(0,1/N).

That is, suppose that there areN subperiods between timet and time

t + 1.
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The limit whenN→ ∞ is acontinuous time (連続時間) process known

asstandard Brownian motion or Wiener process.

The value of this process at timet is denoted byW(t).

Definition:

Standard Brownian motionW(t) denotes a continuous-time variable at

time t and a stochastic function.

W(t) for t ∈ [0, 1] satisfies the following:

i. W(0) = 0
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ii. For any time periods 0≤ r1 < r2 < · · · < rk ≤ 1, W(r2) −W(r1),

W(r3) −W(r2), · · ·, W(rk) −W(rk−1) are independently multivariate

normal withW(s) −W(t) ∼ N(0, s− t) for s> t.

iii. W(t) is continuous int with probability 1.

An example:

σW(t) ∼ N(0, σ2t),

which denotes the Brownian motion with varianceσ2.

Another example;

W(t)2 ∼ t × χ2(1).
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(c) Assumeεt ∼ iid (0, σ2
ε ). DefineXT(r) for r ∈ [0,1] as follows:

XT(r) =



0, 0 ≤ r <
1
T

ε1

T
,

1
T
≤ r <

2
T

ε1 + ε2

T
,

2
T
≤ r <

3
T

...
...

ε1 + ε2 + · · · + εT

T
, r = 1
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Let [Tr] be the largest integer which is less than or equal toT × r.

XT(r) ≡ 1
T

[Tr]∑
t=1

εt,
√

T XT(r) −→ N(0, rσ2
ε ).

Note that

1
T

[Tr]∑
t=1

εt =
[Tr]
T

1
[Tr]

[Tr]∑
t=1

εt,

[Tr]
T
−→ r,

1
√

[Tr]

[Tr]∑
t=1

εt −→ N(0, σ2
ε ),

√
T XT(r) =

[Tr]
T

√
T

[Tr]
1
√

[Tr]

[Tr]∑
t=1

εt,

√
T

[Tr]
−→ 1

√
r
.
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Therefore, we obtain:

√
T XT(r) −→ N(0, rσ2

ε ).

Moreover, we have the following results:

√
T (XT(r2) − XT(r1))

σε

−→ N(0, r2 − r1),
√

T XT(r)
σε

−→ W(r)
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For example, consider:

XT(1) =
1
T

T∑
t=1

εt.

Then, √
T XT(1)
σε

=
1

σε

√
T

T∑
t=1

εt −→W(1) = N(0,1).
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(d) Consideryt = yt−1 + εt, y0 = 0 andεt ∼ N(0, σ2
ε ).

XT(r) is defined as follows:

XT(r) =



0, 0 ≤ r <
1
T
,

y1

T
,

1
T
≤ r <

2
T
,

y2

T
,

2
T
≤ r <

3
T
,

...
...

yT−1

T
,

T − 1
T
≤ r < 1,

yT

T
, r = 1.
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DefineST(r) as follows:

ST(r) =



0, 0 ≤ r <
1
T
,

y2
1

T
,

1
T
≤ r <

2
T
,

y2
2

T
,

2
T
≤ r <

3
T
,

...
...

y2
T−1

T
,

T − 1
T
≤ r < 1,

y2
T

T
, r = 1.
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To obtain
∫ 1

0
XT(r)dr and

∫ 1

0
ST(r)dr, we compute a sum of rectangu-

lars as follows:∫ 1

0
XT(r)dr ≈ y1

T

(
2
T
− 1

T

)
+

y2

T

(
3
T
− 2

T

)
+ · · · + yT−1

T

(
1− T − 1

T

)
=

y1

T2
+

y2

T2
+ · · · + yT−1

T2
=

1
T2

T∑
t=1

yt,

∫ 1

0
ST(r)dr ≈

y2
1

T

(
2
T
− 1

T

)
+

y2
2

T

(
3
T
− 2

T

)
+ · · · +

y2
T−1

T

(
1− T − 1

T

)
=

y2
1

T2
+

y2
2

T2
+ · · · +

y2
T−1

T2
=

1
T2

T∑
t=1

y2
t .
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We have already known that
√

T XT(r) −→ σεW(r).

Therefore, ∫ 1

0

√
T XT(r)dr −→ σε

∫ 1

0
W(r)dr.

That is,
1

T3/2

T∑
t=1

yt −→ σε

∫ 1

0
W(r)dr.
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FromST(r) ≡
(√

T XT(r)
)2

,

ST(r) −→ σ2
ε (W(r))2 ,

which is called the continuous mapping theorem.

(*) Continuous Mapping Theorem (連続写像定理):

if xT −→ x (convergence in distribution) andg(·) is a continuous func-

tion, theng(xT) −→ g(x) (convergence in distribution).
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Threfore, we have the follwoing result:

1
T2

T∑
t=1

y2
t −→

∫ 1

0
ST(r)dr = σ2

ε

∫ 1

0
(W(r))2 dr.

(e) DecomposeT−3/2
T∑

t=1

yt−1 as follows:

T−3/2
T∑

t=1

yt−1 = T−3/2(ε1 + (ε1 + ε2) + (ε1 + ε2 + ε3) + · · ·

+(ε1 + ε2 + · · · + εT−1))
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= T−3/2((T − 1)ε1 + (T − 2)ε2 + (T − 3)ε3 + · · ·

+2εT−2 + εT−1)

= T−3/2
T∑

t=1

(T − t)εt = T−1/2
T∑

t=1

εt − T−3/2
T∑

t=1

tεt

We utilize the following fact:
T−1/2

T∑
t=1

εt

T−3/2
T∑

t=1

t εt

 −→ N
( ( 0

0

)
, σ2

ε

 1
1
2

1
2

1
3

 )

εt is stationary.=⇒ Apply CLT to (1/T)
∑T

t=1 εt.
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tεt/T is stationary.=⇒ Apply CLT to (1/T)
∑T

t=1 tεt/T.

Using a matrix form, we ca rewrite as follows:

T−3/2
T∑

t=1

yt−1 = (1 − 1)


T−1/2

T∑
t=1

εt

T−3/2
T∑

t=1

t εt

 .
Then, the variance ofT−3/2 ∑T

t=1 yt−1 is given by:

V
(
T−3/2

T∑
t=1

yt−1

)
= σ2

ε (1 − 1)

 1
1
2

1
2

1
3


( 1

−1

)
=
σ2
ε

3
.

Therefore,T−3/2 ∑T
t=1 yt−1 ∼ N(0, σ2

ε/3).
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We have already known:

T−3/2
T∑

t=1

yt−1 −→ σε

∫ 1

0
W(r)dr,

1
T

T∑
t=1

εt −→ σεW(1).

That is, the following relationship holds:

σε

∫ 1

0
W(r)dr ≈ T−3/2

T∑
t=1

yt−1 = T−1/2
T∑

t=1

εt − T−3/2
T∑

t=1

tεt

≈ σεW(1)− T−3/2
T∑

t=1

tεt
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Therefore, we obatain the following result:

T−3/2
T∑

t=1

tεt −→ σεW(1)− σε

∫ 1

0
W(r)dr = N(0,

σ2
ε

3
).

(f) Some Formulas: Model: yt = yt−1 + εt.

i. T−1/2
T∑

t=1

εt −→ σε W(1) = N(0, σ2
ε )

ii. T−1
T∑

t=1

yt−1εt −→
1
2
σ2
ε

(
(W(1))2 − 1

)
=

1
2
σ2
ε

(
χ2(1)− 1

)
Note that we obtain(W(1))2 ∼ χ2(1) fromW(1) = N(0,1).

iii. T−3/2
T∑

t=1

t εt −→ σε W(1)− σε

∫ 1

0
W(r)dr = N(0,

σ2
ε

3
)
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iv. T−3/2
T∑

t=1

yt−1 −→ σε

∫ 1

0
W(r)dr = N(0,

σ2
ε

3
)

v. T−2
T∑

t=1

y2
t−1 −→ σ2

ε

∫ 1

0
(W(r))2 dr

vi. T−5/2
T∑

t=1

t yt−1 −→ σε

∫ 1

0
r W(r)dr

vii. T−3
T∑

t=1

t y2
t−1 −→ σ2

ε

∫ 1

0
r (W(r))2 dr

viii. T−(ν+1)
T∑

t=1

tν −→ 1
ν + 1

for ν = 0,1, · · ·.
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8. Asymptotic Distribution of AR(1) Model:

(a) H0 : yt = yt−1 + εt and H1 : yt = φ1yt−1 + εt for |φ1| < 1

OLSE ofφ1, denoted bŷφ1, is given by:

φ̂1 =

∑T
t=1 yt−1yt∑T
t=1 y2

t−1

= φ1 +

∑T
t=1 yt−1εt∑T
t=1 y2

t−1

Usingφ1 = 1 and some formulas shown above, we obtain:

T(φ̂1 − 1) =
T−1 ∑T

t=1 yt−1ut

T−2
∑T

t=1 y2
t−1

−→

1
2

(
(W(1))2 − 1

)
∫ 1

0
(W(r))2 dr
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Remember that

T−1
T∑

t=1

yt−1ut −→
1
2
σ2
ε

(
(W(1))2 − 1

)
and

T−2
T∑

t=1

y2
t−1 −→ σ2

ε

∫ 1

0
(W(r))2 dr,

where(W(1))2 = χ2(1).

We say that̂φ1 is super-consistent (超一致性) or T-consistent.

Remember that when|φ1| < 1 we have
√

T(φ̂1 − φ1) −→ N(0, 1 − φ2
1),

and in this case we say thatφ̂1 is
√

T-consistent.
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Conventionalt test statistic is given by:

tT =
φ̂1 − 1

sφ
,

where

sφ =

s2
T

/ T∑
t=1

y2
t−1

1/2

and s2
T =

1
T − 1

T∑
t=1

(yt − φ̂1yt−1)
2.
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Next, considert statistic.

Thet test statistic, denoted bytT , is represented as follows:

tT =
φ̂1 − 1

sφ
=

T(φ̂1 − 1)
T sφ

The denominator is:

T sφ =

s2
T

/ 1
T2

T∑
t=1

y2
t−1

1/2

−→
(
σ2
ε

/(
σ2
ε

∫ 1

0
(W(r))2 dr

))1/2

=

(∫ 1

0
(W(r))2 dr

)−1/2

,

wheres2 −→ σ2
ε is utilized.
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Therefore, we have the following asymptotic distribution:

tT =
φ̂1 − 1

sφ
−→

1
2

(
(W(1))2 − 1

)
∫ 1

0
(W(r))2 dr

/ (∫ 1

0
(W(r))2 dr

)−1/2

=

1
2

(
(W(1))2 − 1

)
(∫ 1

0
(W(r))2 dr

)1/2
.

Therefore, the distribution of thetT statistic shown above is different

from thet distribution.
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(b) H0 : yt = yt−1 + εt and H1 : yt = α0 + φ1yt−1 + εt for |φ1| < 1

(
α̂0

φ̂1

)
=

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)−1 ( ∑
yt∑

yt−1yt

)

=

(
α0

φ1

)
+

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)−1 ( ∑
εt∑

yt−1εt

)
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In the true model,α0 = 0 andφ1 = 1.(
α̂0

φ̂1 − 1

)
=

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)−1 ( ∑
εt∑

yt−1εt

)
=

( Op(T) Op(T3/2)

Op(T3/2) Op(T2)

)−1 ( Op(T1/2)

Op(T)

)
(*) For random variablex and constantk, x = Op(k) implies thatx/k

converges in distribution.

To change each element of the matrices toOp(1), we use the following

matrix:

Γ =

( T1/2 0

0 T

)
.
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Multiplying the above matrix from the left, we obtain the following:

Γ

(
α̂0

φ̂1 − 1

)
=

( T1/2α̂0

T(φ̂1 − 1)

)
= Γ

( Op(T) Op(T3/2)

Op(T3/2) Op(T2)

)−1

ΓΓ−1

( Op(T1/2)

Op(T)

)

=

(
Γ−1

( Op(T) Op(T3/2)

Op(T3/2) Op(T2)

)
Γ−1

)−1

Γ−1

( Op(T1/2)

Op(T)

)

=

(
Γ−1

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)
Γ−1

)−1

Γ−1

( ∑
εt∑

yt−1εt

)

=

( 1 T−3/2 ∑
yt−1

T−3/2 ∑
yt−1 T−2 ∑

y2
t−1

)−1 ( T−1/2 ∑
εt

T−1 ∑
yt−1εt

)
.
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Each matrix converges in distribution as follows:( 1 T−3/2 ∑
yt−1

T−3/2 ∑
yt−1 T−2 ∑

y2
t−1

)
−→

 1 σε

∫ 1

0
W(r)dr

σε

∫ 1

0
W(r)dr σ2

ε

∫ 1

0
(W(r))2 dr


=

( 1 0

0 σε

)  1
∫ 1

0
W(r)dr∫ 1

0
W(r)dr

∫ 1

0
(W(r))2 dr


( 1 0

0 σε

)
,

( T−1/2 ∑
εt

T−1 ∑
yt−1εt

)
−→

 σεW(1)

1
2
σ2
ε

(
(W(1))2 − 1

)
 = σε

( 1 0

0 σε

)  W(1)

1
2

(
(W(1))2 − 1

)
 .
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Therefore,

( T1/2α̂0

T(φ̂1 − 1)

)
−→


( 1 0

0 σε

)  1
∫ 1

0
W(r)dr∫ 1

0
W(r)dr

∫ 1

0
(W(r))2 dr


( 1 0

0 σε

)
−1

×σε

( 1 0

0 σε

)  W(1)

1
2

(
(W(1))2 − 1

)
 .

146



Finally, T(φ̂1 − 1) converges to the following distribution:

T(φ̂1 − 1) −→

1
2

(
(W(1))2 − 1

)
−W(1)

∫ 1

0
W(r)dr∫ 1

0
(W(r))2 dr −

(∫ 1

0
W(r)dr

)2
.
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Thet test statistic is:

tT =
φ̂1 − 1(
s2
φ

)1/2
=

T(φ̂1 − 1)(
T2s2

φ

)1/2
,

where

s2
φ = s2

T ( 0 1 )

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)−1 ( 0

1

)
,

s2
T =

1
T − 2

T∑
t=1

(yt − α̂0 − φ̂1yt−1)
2.
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The denominatorT2s2
φ converges in distribution as follows:

T2s2
φ −→ σ2

ε ( 0 1 )

( ( 1 0

0 σε

)  1
∫ 1

0
W(r)dr∫ 1

0
W(r)dr

∫ 1

0
(W(r))2 dr


( 1 0

0 σε

) )−1 ( 0

1

)

=
1∫ 1

0
(W(r))2 dr −

(∫ 1

0
W(r)dr

)2
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Thus, thet test statistic converges to the following distribution:

tT −→

1
2

(
(W(1))2 − 1

)
−W(1)

∫ 1

0
W(r)dr∫ 1

0
(W(r))2 dr −

(∫ 1

0
W(r)dr

)21/2
.
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(c) H0 : yt = α0 + yt−1 + εt and H1 : yt = α0 + φ1yt−1 + εt for |φ1| < 1

The model is written as follows:

yt = y0 + α0t + (ε1 + ε2 + · · · + εt)

= y0 + α0t + ut,

whereut = ε1 + ε2 + · · · + εt.
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○　 For
T∑

t=1

yt−1,

T∑
t=1

yt−1 =

T∑
t=1

y0 +

T∑
t=1

α0(t − 1)+
T∑

t=1

ut−1

= Op(T) +Op(T
2) +Op(T

3/2).

Therefore, we obtain:

T−2
T∑

t=1

yt−1 −→
α0

2
.
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○　 For
T∑

t=1

y2
t−1,

T∑
t=1

y2
t−1 =

T∑
t=1

(y0 + α0(t − 1)+ ut−1)
2

=

T∑
t=1

y2
0 +

T∑
t=1

α2
0(t − 1)2 +

T∑
t=1

u2
t−1 +

T∑
t=1

2y0α0(t − 1)+
T∑

t=1

2y0ut−1 +

T∑
t=1

2α0(t − 1)ut−1

= Op(T) +Op(T
3) +Op(T

2) +Op(T
2) +Op(T

3/2) +Op(T
5/2)

Therefore, we have:

T−3
T∑

t=1

y2
t−1 −→

α2
0

3
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○　 For
T∑

t=1

yt−1εt,

T∑
t=1

yt−1εt =

T∑
t=1

(y0 + α0(t − 1)+ ut−1) εt

=

T∑
t=1

y0εt +

T∑
t=1

α0(t − 1)εt +

T∑
t=1

ut−1εt

= Op(T
1/2) +Op(T

3/2) +Op(T).

Therefore, we have:

T−3/2
T∑

t=1

yt−1εt −→ N(0,
α2

0

3
σ2ε).
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Therefore, OLSE is:(
α̂0 − α0

φ̂1 − 1

)
=

( T
∑

yt−1∑
yt−1

∑
y2

t−1

)−1 ( ∑
εt∑

yt−1εt

)
=

( Op(T) Op(T2)

Op(T2) Op(T3)

)−1 ( Op(T1/2)

Op(T3/2)

)
.

Set:

Γ =

( T1/2 0

0 T3/2

)
.

Multiplying Γ from the left,( T1/2(α̂0 − α0)

T3/2(φ̂1 − 1)

)
−→ N


( 0

0

)
, σ2

ε


1

α0

2

α0

2

α2
0

3


 .
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(d) H0 : yt = α0 + yt−1 + εt and

H1 : yt = α0 + α1t + φ1yt−1 + εt for |φ1| < 1

(abbr.)

9. The distributions of thet statistic:
φ̂1 − 1

sφ
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t Distribution

T 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990

25 −2.49 −2.06 −1.71 −1.32 1.32 1.71 2.06 2.49

50 −2.40 −2.01 −1.68 −1.30 1.30 1.68 2.01 2.40

100 −2.36 −1.98 −1.66 −1.29 1.29 1.66 1.98 2.36

250 −2.34 −1.97 −1.65 −1.28 1.28 1.65 1.97 2.34

500 −2.33 −1.96 −1.65 −1.28 1.28 1.65 1.96 2.33

∞ −2.33 −1.96 −1.64 −1.28 1.28 1.64 1.96 2.33
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(a) H0 : yt = yt−1 + εt

H1 : yt = φ1yt−1 + εt for φ1 < 1 or −1 < φ1

T 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990

25 −2.66 −2.26 −1.95 −1.60 0.92 1.33 1.70 2.16

50 −2.62 −2.25 −1.95 −1.61 0.91 1.31 1.66 2.08

100 −2.60 −2.24 −1.95 −1.61 0.90 1.29 1.64 2.03

250 −2.58 −2.23 −1.95 −1.62 0.89 1.29 1.63 2.01

500 −2.58 −2.23 −1.95 −1.62 0.89 1.28 1.62 2.00

∞ −2.58 −2.23 −1.95 −1.62 0.89 1.28 1.62 2.00
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(b) H0 : yt = yt−1 + εt

H1 : yt = α0 + φ1yt−1 + εt for φ1 < 1 or −1 < φ1

T 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990

25 −3.75 −3.33 −3.00 −2.63 −0.37 0.00 0.34 0.72

50 −3.58 −3.22 −2.93 −2.60 −0.40 −0.03 0.29 0.66

100 −3.51 −3.17 −2.89 −2.58 −0.42 −0.05 0.26 0.63

250 −3.46 −3.14 −2.88 −2.57 −0.42 −0.06 0.24 0.62

500 −3.44 −3.13 −2.87 −2.57 −0.43 −0.07 0.24 0.61

∞ −3.43 −3.12 −2.86 −2.57 −0.44 −0.07 0.23 0.60
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(d) H0 : yt = α0 + yt−1 + εt

H1 : yt = α0 + α1t + φ1yt−1 + εt for φ1 < 1 or −1 < φ1

T 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990

25 −4.38 −3.95 −3.60 −3.24 −1.14 −0.80 −0.50 −0.15

50 −4.15 −3.80 −3.50 −3.18 −1.19 −0.87 −0.58 −0.24

100 −4.04 −3.73 −3.45 −3.15 −1.22 −0.90 −0.62 −0.28

250 −3.99 −3.69 −3.43 −3.13 −1.23 −0.92 −0.64 −0.31

500 −3.98 −3.68 −3.42 −3.13 −1.24 −0.93 −0.65 −0.32

∞ −3.96 −3.66 −3.41 −3.12 −1.25 −0.94 −0.66 −0.33

160



3.2 Serially Correlated Errors

Consider the case where the error term is serially correlated.

3.2.1 Augmented Dickey-Fuller (ADF) Test

Consider the following AR(p) model:

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt, εt ∼ iid(0, σ2
ε ),

which is rewritten as:

φ(L)yt = εt.
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When the above model has a unit root, we haveφ(1) = 0, i.e.,φ1+φ2+ · · ·+φp = 1.

The above AR(p) model is written as:

yt = ρyt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

whereρ = φ1 + φ2 + · · · + φp andδ j = −(φ j+1 + φ j+2 + · · · + φp).

The null and alternative hypotheses are:

H0 : ρ = 1 (Unit root),

H1 : ρ < 1 (Stationary).

Use thet test, where we have the same asymptotic distributions.
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We can utilize the same tables as before.

Choosep by AIC or SBIC.

UseN(0,1) to testH0 : δ j = 0 againstH1 : δ j , 0 for j = 1,2, · · · , p− 1.

Reference

Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Develop-

ment and Perspective,”Japan Statistical Society, Vol.38, Series J, No.1, pp.39 –

57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html
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3.2.2 Phillips-Perron (PP) Test

The model is given by:

yt = φ1yt−1 + ut, ut =

∞∑
s=0

ψsεt−s, εt ∼ iid(0, σ2
ε ),

whereψ0 = 0 and
∑∞

s=0 s|ψs| < ∞.

Note that the errors are serially correlated and heteroskedastic.

The autocovariance function ofut is:

γ(τ) = E(utut−τ) = σ
2
ε

∞∑
s=0

ψsψs+τ, τ = 0,1,2, · · · .
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Define the long-run variance ofut as:

λ2 = lim
T→∞

1
T

E((
T∑

t=1

ut)
2) =

∞∑
τ=−∞

γ(τ) = γ(0)+ 2
∞∑
τ=1

γ(τ) = σ2
ε (
∞∑
j=0

ψ j)
2.

The PP test statistic̃tT is:

t̃T =

(
γ(0)
λ2

)1/2

tT −
1
2λ

T sφ
sT

(λ2 − γ(0)),

where

tT denotes thet statistic ofφ̂1, sφ is the standard error of̂φ1, and

s2
T =

1
T − 1

T∑
t=1

(yt − φ̂1yt−1)
2.
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Estimateλ by:

λ̂ = γ̂(0)+ 2
q∑
τ=1

k1(
τ

q+ 1
)γ̂(τ),

which is calledNewey-West estimator, wherek1(x) = 1−|x| for x ≤ 1 andk1(x) = 0

for x > 1, which is calledBartlett kernel , or

λ̂ = γ̂(0)+ 2
q∑
τ=1

k2(
τ

q+ 1
)γ̂(τ),

wherek2(x) = 1 − 6x2 + 6x3 for 0 ≤ x ≤ 1
2, k2(x) = 2(1− x)3 for 1

2 ≤ x ≤ 1 and

k2(x) = 0 for x > 1, which is calledParzen kernel, or
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λ̂ =
T

T − 1

γ̂(0)+
T−1∑
τ=1

k3(
τ

q+ 1
)γ̂(τ)

 ,
wherek3(x) =

3
(6πx/5)2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
, which is called thesecond-

order spectrum kernel.

We need to choose the bandwidthq.

Use the same statistical tables as before to testH0 : φ1 = 1 againstH1 : φ1 < 1.
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Some Formulas:

For proof, we use following formulas.

Let ut = ψ(L)εt =
∑∞

j=0ψ jεt− j, where
∑∞

j=0 j|ψ j | < ∞ and{εt} is an i.i.d. sequence

with mean zero, varianceσ2 and finite fourth moment.

Define:

γ( j) = E(utut− j) = σ2 ∑∞
s=0ψsψs+ j for j = 0, 1,2, · · ·,

λ = σ
∑∞

j=0ψ j = σψ(1),

ξt =
∑t

i=1 ui for t = 1,2, · · · ,T and ξ0 = 0.
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Then,

1. T−1/2
T∑

t=1

ut −→ λW(1)

2. T−1/2
T∑

t=1

ut− jεt −→ N(0, σ2γ(0)), for j = 1,2, · · ·

3. T−1
T∑

t=1

utut− j −→ γ( j), for j = 1,2, · · ·

4. T−1
T∑

t=1

ξt−1εt −→
1
2
σλ(W(1)2 − 1)
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5. T−1
T∑

t=1

ξt−1ut− j −→


1
2

(λ2W(1)2 − γ(0)), for j = 0,

1
2

(λ2W(1)2 − γ(0))+
j−1∑
i=0

γ(i), for j = 1,2, · · ·

6. T−3/2
T∑

t=1

ξt−1 −→ λ

∫ 1

0
W(r)dr

7. T−3/2
T∑

t=1

tut− j −→ λ

(
W(1)−

∫ 1

0
W(r)dr

)
, for j = 0,1,2, · · ·

8. T−2
T∑

t=1

ξ2
t−1 −→ λ2

∫ 1

0
(W(r))−2dr
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9. T−5/2
T∑

t=1

tξt−1 −→ λ

∫ 1

0
rW(r)dr

10. T−3
T∑

t=1

tξt−1 −→ λ2

∫ 1

0
r(W(r))2dr

11. T−(µ−1)
T∑

t=1

tµ −→ 1
µ + 1

, for µ = 0,1,2, · · ·
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3.3 Cointegration (共和分)

1. For a scalaryt, when∆yt = yt − yt−1 is a white noise (i.e., iid), we write

∆yt ∼ I (1).

2. Definition of Cointegration:

Suppose that each series in ag× 1 vectoryt is I (1), i.e., each series has unit

root, and that a linear combination of each series (i.e,a′yt for a nonzero vector

a) is I (0), i.e., stationary.

Then, we say thatyt has a cointegration.
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3. Example:

Suppose thatyt = (y1,t, y2,t)′ is the following vector autoregressive process:

y1,t = φ1y2,t + ε1,t,

y2,t = y2,t−1 + ε2,t.

Then,

∆y1,t = φ1ε2,t + ε1,t − ε1,t−1, (MA(1) process),

∆y2,t = ε2,t,

where bothy1,t andy2,t areI (1) processes.
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The linear combinationy1,t − φ1y2,t is I (0).

In this case, we say thatyt = (y1,t, y2,t)′ is cointegrated witha = (1, −φ1).

a = (1, −φ1) is called the cointegrating vector, which is not unique.

Therefore, the first element ofa is set to be one.

4. Suppose thatyt ∼ I (1) andxt ∼ I (1).

For the regression modelyt = xtβ + ut, OLS does not work well if we do not

have theβ which satisfiesut ∼ I (0).

=⇒ Spurious regression (見せかけの回帰)
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5. Suppose thatyt ∼ I (1), yt is ag× 1 vector andyt =

( y1,t

y2,t

)
.

y2,t is ak× 1 vector, wherek = g− 1.

Consider the following regression model:

y1,t = α + γ
′y2,t + ut, t = 1,2, · · · ,T.

OLSE is given by:(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t∑

y1,ty2,t

)
.
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Next, consider testing the null hypothesisH0 : Rγ = r, whereR is am× k

matrix (m≤ k) andr is am× 1 vector.

TheF statistic, denoted byFT , is given by:

FT =
1
m

(Rγ̂ − r)′
s2

T ( 0 R)

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( 0

R′

)−1

(Rγ̂ − r),

where

s2
T =

1
T − g

T∑
t=1

(y1,t − α̂ − γ̂′y2,t)
2.

When we have theγ such thaty1,t − γy2,t is stationary, OLSE ofγ, i.e., γ̂, is

not statistically equal to zero.
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When the sample sizeT is large enough,H0 is rejected by theF test.

6. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Economet-

rics,” Journal of Econometrics, Vol.33, pp.95 – 131.

Consider ag× 1 vectoryt whose first difference is described by:

∆yt = Ψ(L)εt =

∞∑
s=0

Ψsεt−s,

for εt an i.i.d.g× 1 vector with mean zero , variance E(εtε
′
t ) = PP′, and finite

fourth moments and where{sΨs}∞s=0 is absolutely summable.
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Let k = g− 1 andΛ = Ψ(1)P.

Partitionyt asyt =

( y1,t

y2,t

)
andΛΛ′ asΛΛ′ =

(
Σ11 Σ′21

Σ21 Σ22

)
, wherey1,t andΣ11

are scalars,y2,t andΣ21 arek× 1 vectors, andΣ22 is ak× k matrix.

Suppose thatΛΛ′ is nonsingular,and defineσ∗21 = Σ11− Σ′21Σ
−1
22Σ21.

Let L22 denote the Cholesky factor ofΣ−1
22, i.e., L22 is the lower triangular

matrix satisfyingΣ−1
22 = L22L′22.

Then, (a) – (c) hold.
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(a) OLSEs ofα andγ in the regression modely1,t = α + γ
′y2,t + ut, denoted

by α̂T andγ̂T , are characterized by:( T−1/2α̂T

γ̂T − Σ−1
22Σ21

)
−→

(
σ∗1h1

σ∗1L22h2

)
,

where( h1

h2

)
=

( 1
∫ 1

0
W∗

2(r)′dr∫ 1

0
W∗

2(r)dr
∫ 1

0
W∗

2(r)W∗
2(r)′dr

)−1 ( ∫ 1

0
W∗

1(r)dr∫ 1

0
W∗

2(r)W∗
1(r)dr

)
,

whereW∗
1(r) andW∗

2(r) denote scalar andg-dimensional standard Brow-

nian motions, andW∗
1(r) is independent ofW∗

2(r).
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(b) The sum of squared residuals, denoted by RSST =
∑T

t=1 û2
t , satisfies

T−2RSST −→ σ∗21 H,

where

H =
∫ 1

0
(W∗

1(r))2dr −
(

∫ 1

0
W∗

1(r)dr∫ 1

0
W∗

2(r)W∗
1(r)dr

)′ ( h1

h2

)−1

.
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(c) TheFT test satisfies:

T−1FT −→
1
m

(σ∗1R
∗h2 − r∗)′

×
σ∗21 H ( 0 R∗ )

( 1
∫ 1

0
W∗

2(r)′dr∫ 1

0
W∗

2(r)dr
∫ 1

0
W∗

2(r)W∗
2(r)′dr

)−1

( 0 R∗ )′
−1

×(σ∗1R
∗h2 − r∗),

whereR∗ = RL22 andr∗ = r − RΣ−1
22Σ21.
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(a) indicates that OLSE ˆγT is not consistent.

(b) indicates thats2
T =

1
T − g

T∑
t=1

û2
t diverges.

(c) indicates thatFT diverges.

=⇒ Spurious regression (見せかけの回帰)
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7. Resolution for Spurious Regression:

Suppose thaty1,t = α + γ
′y2,t + ut is a spurious regression.

(1) Estimatey1,t = α + γ
′y2,t + φy1,t−1 + δy2,t−1 + ut.

Then,γ̂T is
√

T-consistent, and thet test statistic goes to the standard normal

distribution underH0 : γ = 0.

(2) Estimate∆y1,t = α+ γ
′∆y2,t + ut. Then,α̂T andβ̂T are

√
T-consistent, and

thet test andF test make sense.
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(3) Estimatey1,t = α + γ
′y2,t + ut by the Cochrane-Orcutt method, assuming

thatut is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value ofφ is not one, i.e., less than one.

(ii) y1,t andy2,t are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regres-

sion.

184



8. Cointegrating Vector:

Suppose that each element ofyt is I (1) and thata′yt is I (0).

a is called acointegrating vector (共和分ベクトル), which is not unique.

Setzt = a′yt, wherezt is scalar, anda andyt areg× 1 vectors.
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Forzt ∼ I (0) (i.e., stationary)，

T−1
T∑

t=1

z2
t = T−1

T∑
t=1

(a′yt)
2 −→ E(z2

t ).

Forzt ∼ I (1) (i.e., nonstationary, i.e.,a is not a cointegrating vector),

T−2
T∑

t=1

(a′yt)
2 −→ λ2

∫ 1

0
(W(r))2 dr,

whereW(r) denotes a standard Brownian motion andλ2 indicates variance of

(1− L)zt.

If a is not a cointegrating vector,T−1 ∑T
t=1 z2

t diverges.
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=⇒ We can obtain a consistent estimate of a cointegrating vector by mini-

mizing
∑T

t=1 z2
t with respect toa, where a normalization condition ona has to

be imposed.

The estimator of thea including the normalization condition is super-consistent

(T-consistent).
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Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of

Cointegrating Vectors,”Econometrica, Vol.55, pp.1035 – 1056.

Proposition:

Let y1,t be a scalar,y2,t be ak×1 vector, and (y1,t, y′2,t)
′ be ag×1 vector, where

g = k+ 1.

Consider the following model:

y1,t = α + γ
′y2,t + z∗t

∆y2,t = u2,t
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( z∗t

u2,t

)
= Ψ∗(L)εt

εt is ag× 1 i.i.d. vector with E(εt) = 0 and E(εtε
′
t ) = PP′.

OLSE is given by:(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t∑

y1,ty2,t

)
.

Defineλ∗1, which is ag×1 vector, andΛ∗2, which is ak×g matrix, as follows:

Ψ∗(1) P =

(
λ∗1
′

Λ∗2

)
.
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Then, we have the following results:( T1/2(α̂ − α)

T(γ̂ − γ)

)
−→

 1

(
Λ∗2

∫
W(r)dr

)′
Λ∗2

∫
W(r)dr Λ∗2

(∫
(W(r)) (W(r))′ dr

)
Λ∗2
′


−1 ( h1

h2

)
,

where ( h1

h2

)
=

 λ∗1
′W(1)

Λ∗2

(∫
W(r) (dW(r))′

)
λ∗1 +

∞∑
τ=0

E(u2,tz
∗
t+τ)

 .
W(r) denotes ag-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even thoughut is serially

correlated.
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2) The consistency of OLSE implies thatT−1 ∑
û2

t −→ σ2.

3) BecauseT−1 ∑
(y1,t − y1)

2 goes to infinity, a coefficient of determination,

R2, goes to one.
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3.4 Testing Cointegration

3.4.1 Engle-Granger Test

yt ∼ I (1)

y1,t = α + γ
′y2,t + ut

• ut ∼ I (0) =⇒ Cointegration

• ut ∼ I (1) =⇒ Spurious Regression

Estimatey1,t = α + γ
′y2,t + ut by OLS, and obtain ˆut.

Estimate ˆut = ρût−1 + δ1∆ût−1 + δ2∆ût−2 + · · · + δp−1∆ût−p+1 + et by OLS.
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ADF Test:

• H0 : ρ = 1 (Sprious Regression)

• H1 : ρ < 1 (Cointegration)

=⇒ Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen

(1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, (a) Regressors have no drift (b) Some regressors have drift

excluding constant 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 −3.96 −3.64 −3.37 −3.07 −3.96 −3.67 −3.41 −3.13

2 −4.31 −4.02 −3.77 −3.45 −4.36 −4.07 −3.80 −3.52

3 −4.73 −4.37 −4.11 −3.83 −4.65 −4.39 −4.16 −3.84

4 −5.07 −4.71 −4.45 −4.16 −5.04 −4.77 −4.49 −4.20

5 −5.28 −4.98 −4.71 −4.43 −5.36 −5.02 −4.74 −4.46
J.D. Hamilton (1994),Time Series Analysis, p.766.
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3.4.2 Error Correction Representation

VAR(p) model:

yt = α + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

whereyt, α andεt indicateg× 1 vectors fort = 1, 2, · · · ,T, andφs is ag× g matrix

for s= 1,2, · · · , p.
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Rewrite:

yt = α + ρyt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where

ρ = φ1 + φ2 + · · · + φp,

δs = −(φs+1 + δs+2 + · · · + φp), for s= 1,2, · · · , p− 1.
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Again, rewrite:

∆yt = α + δ0yt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where

δ0 = ρ − Ig = −φ(1),

for φ(L) = Ig − δ1L − δ2L2 − · · · − δpLp.
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If yt hash cointegrating relations, we have the following error correction represen-

tation:

∆yt = α − BA′yt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

whereA′yt−1 is a stationaryh×1 vector (i.e.,h I(0) processes), andB andA areg×h

matrices.

Note that φ(1) = BA′ for φ(L) = Ig − δ1L − δ2L2 − · · · − δpLp.

Each row ofA′ denotes the cointegrating vector, i.e.,A′ consists ofh cointegrating

vectors.
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Suppose thatεt ∼ N(0,Σ). The log-likelihood function is:

log l(α, δ1, · · · , δp−1, B|A)

= −Tg
2

log(2π) − T
2

log |Σ|

−1
2

T∑
t=1

(∆yt − α + BA′yt−1 − δ1∆yt−1 − · · · − δp−1∆yt−p+1)
′Σ−1

×(∆yt − α + BA′yt−1 − δ1∆yt−1 − · · · − δp−1∆yt−p+1)

GivenA andh, maximize logl with respect toα, δ1, · · · , δp−1, B.

Then, givenh, how do we estimateA? =⇒ Johansen (1988, 1991)
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(*) Canonical Correlatoion (正準相関)

x′ = (x1, x2, · · · , xn) andy′ = (y1, y2, · · · , ym), wheren ≤ m.

u = a′x = a1x1 + a2x2 + · · · + anxn,

v = b′y = b1y1 + b2y2 + · · · + bmym,

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.

Define:

V(x) = Σxx, E(xy′) = Σxy, V(y) = Σyy, E(yx′) = Σyx = Σ
′
xy.
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The correlation coefficient betweenu andv, denoted byρ, is:

ρ =
Cov(u, v)
√

V(u)
√

V(v)
= a′Σxyb,

where V(u) = a′Σxxa = 1 and V(v) = b′Σyyb = 1.

Maximizeρ = a′Σxyb subject toa′Σxxa = 1 andb′Σyyb = 1.

The Lagrangian is:

L = a′Σxyb−
1
2
λ(a′Σxxa− 1)− 1

2
µ(b′Σyyb− 1).
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Take a derivative with respect toa andb.

∂L
∂a
= Σxyb− λΣxxa = 0,

∂L
∂b
= Σ′xya− µΣyyb = 0.

Usinga′Σxxa = 1 andb′Σyyb = 1, we obtain:

λ = µ = a′Σxyb.

From the first equation, we obtain:

a =
1
λ
Σ−1

xxΣxyb,
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which is substituted into the second equation as follows:

1
λ
Σ′xyΣ

−1
xxΣxyb− λΣyyb = 0,

i.e.,

(Σ−1
yyΣ

′
xyΣ
−1
xxΣxy− λ2Im)b = 0,

i.e.,

|Σ−1
yyΣ

′
xyΣ
−1
xxΣxy− λ2Im| = 0.

The solution ofλ2 is given by the maximum eigen value ofΣ−1
yyΣ

′
xyΣ
−1
xxΣxy, andb is

the corresponding eigen vector.
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Back to the Cointegration:

Estimate the following two regressions:

∆yt = b1,0 + b1,1∆yt−1 + b1,2∆yt−2 + · · · + b1,p−1∆yt−p+1 + u1,t

yt−1 = b2,0 + b2,1∆yt−1 + b2,2∆yt−2 + · · · + b2,p−1∆yt−p+1 + u2,t

Obtainûi,t for i = 1,2 andt = 1,2, · · · ,T, and compute as follow:

Σ̂11 =
1
T

T∑
t=1

û1,tû
′
1,t, Σ̂22 =

1
T

T∑
t=1

û2,tû
′
2,t,

Σ̂12 =
1
T

T∑
t=1

û1,tû
′
2,t, Σ̂21 = Σ̂

′
12.
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From Σ̂−1
22Σ̂21Σ̂

−1
11Σ̂12, computeh biggest eigenvalues, denoted byλ̂1, λ̂2, · · ·, λ̂h, and

the corresponding eigen vectors, denoted by ˆa1, â2, · · ·, âh, whereλ̂1 > λ̂2 > · · · >

λ̂h,

The estimate ofA, Â, is given byÂ = (â1, â2, · · · , âh).

How do we obtainh?
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3.5 Testing the Number of Cointegrating Vectors

Trace Test (トレース検定):

H0 : λh+1 = 0 and H1 : λh > 0.

2(logl1 − log l0) = −T
g∑

i=h+1

log(1− λ̂i) −→ tr(Q),

where

Q =

(∫ 1

0
W(r)dW(r)′

)′ (∫ 1

0
W(r)W(r)′dr

)−1 (∫ 1

0
W(r)dW(r)′

)
.
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Trace Test for # of Cointegrating Relations

# of Random (a) Regressors have no drift (b) Some regressors have drift

Walks (g− h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 11.576 9.658 8.083 6.691 6.936 5.332 3.962 2.816

2 21.962 19.611 17.844 15.58319.310 17.299 15.197 13.338

3 37.291 34.062 31.256 28.43635.397 32.313 29.509 26.791

4 55.551 51.801 48.419 45.24853.792 50.424 47.181 43.964

5 77.911 73.031 69.977 65.95676.955 72.140 68.905 65.063
J.D. Hamilton (1994),Time Series Analysis, p.767.
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Largest Eigenvalue Test (最大固有値検定):

H0 : λh+1 = 0 and H1 : λh > 0.

2(logl1 − log l0) = −T log(1− λ̂h+1) −→ maxmum eigen value ofQ,
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Maximum Eigenvalue Test for # of Cointegrating Relations

# of Random (a) Regressors have no drift (b) Some regressors have drift

Walks (g− h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 11.576 9.658 8.083 6.691 6.936 5.332 3.962 2.816

2 18.782 16.403 14.595 12.78317.936 15.810 14.036 12.099

3 26.154 23.362 21.279 18.95925.521 23.002 20.778 18.697

4 32.616 29.599 27.341 24.91731.943 29.335 27.169 24.712

5 38.858 35.700 33.262 30.81838.341 35.546 33.178 30.774
J.D. Hamilton (1994),Time Series Analysis, p.768.
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4 GMM (Generalized Mothod of Moments,一般化積

率法)

1. Method of Moments (積率法):

Regression Model:yt = xtβ + εt

From the assumption, E(x′tεt) = 0.

The sample mean is given by:

1
T

T∑
t=1

x′tεt =
1
T

T∑
t=1

x′t(yt − xtβ) = 0.
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Therefore,

βMM =

 1
T

T∑
t=1

x′t xt

−1  1
T

T∑
t=1

x′tyt

 ,
which is equivalent to OLS.

2. Generalized Mothod of Moments (GMM,一般化積率法):

E(h(θ; wt)) = 0

θ is ak× 1 parameter vector to be estimated.

wt is an observed vectorwt = (yt, xt).
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h(θ; wt) is ar × 1 vector function, wherer ≥ k.

Defineg(θ; WT) as follows:

g(θ; WT) =
1
T

T∑
t=1

h(θ; wt),

whereWT = {wT ,wT−1, · · · ,w1}.

Compute:

min
θ

g(θ; WT)′S−1g(θ; WT)

The solution ofθ, denoted bŷθT , corresponds to the GMM estimator, where
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S is defined as follows:

S = lim
T→∞

1
T

T∑
t=1

∞∑
τ=−∞

E
(
h(θ; wt)h(θ; wt−τ)

′) .
In empirical studies,S is replaced by its estimate, i.e.,ŜT .

Whenh(θ; wt), t = 1,2, · · · ,T, are not serially correlated, the followinĝST is

consistent, i.e.,

ŜT =
1
T

T∑
t=1

h(θ̂T ; wt)h(θ̂T ; wt)
′ −→ S.
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Whenh(θ; wt), t = 1, 2, · · · ,T, are serially correlated,

ŜT = Γ̂(0)+
q∑
τ=1

k(
τ

q+ 1
)(Γ̂(τ) + Γ̂(τ)′),

whereΓ̂(τ) =
1
T

T∑
t=τ+1

h(θ̂T ; wt)h(θ̂T ; wt−s)
′.

k(x) = 1− x =⇒ Bartlett kernel (Newwey-west estimator),

k(x) =⇒ Parzen kernel, and etc.

Then, we obtain:

√
T(θ̂T − θ) −→ N

(
0, (DS−1D′)−1

)
,
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where

D =
∂g(θ; WT)

∂θ′
.

Note thatD is ar × k matrix.

Let D̂T be an estimate ofD.

The variance estimator ofθ̂T is given by:

D̂T =
∂g(θ̂T ; WT)

∂θ′
.
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Asymptotic Normality:

Assumption 1：　 θ̂T −→ θ,

Assumption 2：　
√

Tg(θ; WT) −→ N(0,S).

Then, we have the following first-order approximation:

g(θ; WT) ≈ g(θ̂T ; WT) +
∂g(θ̂T ; WT)

∂θ′
(θ − θ̂T)

= g(θ̂T ; WT) + D̂T(θ − θ̂T),

whereg(θ; WT) is linearized aroundθ = θ̂T .
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The first-order condition for the minimization problem is:(∂g(θ; WT)
∂θ′

)′
S−1

(
g(θ; WT)

)
= 0.

Substituting the approximation into the above equation, we obtain the

following:

D′S−1
(
g(θ; WT)

)
= D′S−1

(
g(θ̂T ; WT) + D̂T(θ − θ̂T)

)
= D′S−1g(θ̂T ; WT) + D′S−1D̂T(θ − θ̂T).

Therefore,

√
T(θ̂T − θ) ≈ (D′S−1D̂T)−1D′S−1

√
T

(
g(θ̂T ; WT) − g(θ; WT)

)
.
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Thus, GMM estimator,̂θT , has the following asymptotic distribution:

√
T(θ̂T − θ) −→ N

(
0, (D′S−1D)−1

)
,

whereD̂T −→ D is utilized.

From Assumption 2, we have the following asymptotic distribution:

(√
Tg(θ; WT)

)′
S−1

(√
Tg(θ; WT)

)
−→ χ2(r).
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Whenθ is replaced by GMM estimator̂θT , we have the following dis-

tribution:

(√
Tg(θ̂T ; WT)

)′
Ŝ−1

T

(√
Tg(θ̂T ; WT)

)
−→ χ2(r − k),

which is called a test of the overidentifying restrictions.

=⇒ J test by Hansen (1982)

k linear combinations consisting of ar × 1 vectorg(θ̂T ; WT) are zeros.

Therefore, the degrees of freedom arer − k.
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Some Examples:

(a) OLS:

Regression Model: yt = xtβ + εt, E(xtεt) = 0

h(θ; wt) is taken as:

h(θ; wt) = xt(yt − xtβ).

(b) IV (Instrumental Variable, 操作変数法):

Regression Model: yt = xtβ + εt, E(xtεt) , 0, E(ztεt) = 0
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h(θ; wt) is taken as:

h(θ; wt) = zt(yt − xtβ),

wherezt is a vector of instrumental variables.

(c) NLS (Nonlinear Least Squares,非線形最小二乗法):

Regression Model: f (yt, xt, β) = εt, E(xtεt) , 0, E(ztεt) = 0

h(θ; wt) is taken as:

h(θ; wt) = zt f (yt, xt, β)

wherezt is a vector of instrumental variables.
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5.1 Introduction

Two Events: A andB

Conditional Probability:

P(A|B) =
P(A∩ B)

P(B)
=

P(B|A)P(A)
P(B)

Posterior Distribution (事後分布): fθ|y(θ|y):

fθ|y(θ|y) =
fy|θ(y|θ) fθ(θ)

fy(y)
=

fy|θ(y|θ) fθ(θ)∫
fy|θ(y|θ) fθ(θ)dθ

∝ fy|θ(y|θ) fθ(θ),

where fθ(θ) is called the prior distribution (事前分布).
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Example 1: Let x be the number of successes in a series ofn trials with proba-

bility θ of success in each.

That is,x has the binomial probability function, givenθ,

fx|θ(x|θ) =
( n

x

)
θx(1− θ)n−x, x = 0,1, · · · ,n.

θ is assumed to be the beta distribution:

fθ(θ) =
1

B(p,q)
θp−1(1− θ)q−1,

for ≤ θ ≤ 1, which corresponds to a prior distribution.
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Before applying Bayes’ theorem,fx(x) is given by:

fx(x) =
∫

fx|θ(x|θ) fθ(θ)dθ

=

( n

r

)
1

B(p,q)

∫ 1

0
θp+x−1(1− θ)q+n−x−1dθ

=

( n

r

)
B(p+ x,q+ n− x)

B(p, q)
.

The posterior distribution ofθ is:

fθ|x(θ|x) =
1

B(p+ x,q+ n− x)
θp+x−1(1− θ)q+n−x−1,

which is also a beta distribution with prametersp+ x andq+ n− x.
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The posterior mean and variance are:

E(θ|x) =
p+ x

p+ q+ n
, V(θ|x) =

(p+ x)(q+ n− x)
(p+ q+ n)2(p+ q+ n+ 1)

.

Example 2: x|θ ∼ N(θ, v), wherev is known.

θ ∼ N(m,w), wherem andw are known.=⇒ prior dist.

Then, the posterior distribution ofθ is:

θ|x ∼ N
(wx+ vm

w+ v
,

vw
w+ v

)
.
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Example 3: x1, x2, · · ·, xn are mutually independently and identically distributed

asN(µ, σ2), whereµ andσ2 are unknown.

fx|θ(x|θ) =
n∏

i=1

(2πσ2)−1/2 exp
(
− 1

2σ2
(xi − µ)2

)
= (2πσ2)−n/2 exp

(
− 1

2σ2
(s2 + n(x− µ)2)

)
,

wherex = (1/n)
∑n

i=1 xi ands2 =
∑n

i=1(xi − x)2.

The prior density is:

fθ(θ) = k(a,b,w)σb+3 exp

(
− 1

2σ2

(
a+

(µ −m)2

w

))
,
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where k(a, b,w) =
ab/22−(b+1)/2(πw)−1/2

Γ(1
2b)

is a constant.

The posterior density is:

fθ|x(θ|x) = k(a1,b1,w1)σ
−(b1+3) exp

(
− 1

2σ2

(
a1 +

(µ −m1)2

w1

))
,

where w1 =
w

1+ nw
, m1 =

m+ nwx
1+ nw

, b1 = b+ n, a1 = a+ s2 +
n(x−m)2

1+ nw
.

Inference onµ: The posterior density ofµ is:

f (µ|x) =
∫ ∞

0
f (θ|x)dσ2 = kµ(t1,b1)

(
1+

(µ −m1)2

b1t1

)−(b1+1)/2

,
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where t1 =
w1a1

b1
and kµ(t1,b1) =

1
√

t1k1B(1
2,

1
2b1)

.

Thus,
µ −m1√

t1
has at distribution withb1 degrees of freedom.

Inference ofσ2: The posterior density ofσ2 is:

f (σ2|x) =
∫ ∞

−∞
f (θ|x)dµ = kσ2(a1, b1)σ

−(b1+2) exp
(
− a1

2σ2

)
,

where kσ2(a1,b1) =
(1

2a1)b1/2

Γ(1
2b1)

.

Thus,
a1

σ2
is chi-squared withb1 degrees of freedom.
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5.2 Inference

Posterior Distribution (事後分布): fθ|y(θ|y)

5.2.1 Point Estimate

Posterior Mean (事後平均):

θ =

∫ ∞

−∞
θ fθ|y(θ|y)dθ.

Posterior Mode (事後モード):

θ̂ = argmaxθ fθ|x(θ|y).
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Posterior Median (事後メディアン):

θ̃ such that
∫ θ̃

−∞
fθ|y(θ|y)dθ = 0.5.

5.2.2 Interval Estimate

∫
R

fθ|y(θ|y)dθ = 1− α,

whereR is called confidence interval.
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Bayesian confidence interval (ベイズ信頼区間) or credible interval (信用区間):

P(θL < θ < θU) = 1− α.

θL andθU lead to lower and upper bounds.

(θL, θU) is called Bayesian confidence interval or credible interval.

Highest posterior density interval (最高事後密度区間):

fθ|y(θ0|y) ≥ fθ|y(θ1|y), for θ0 ∈ Randθ1 < R.
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5.2.3 Marginal Likelihood (周辺尤度)

Marginal Likelihood =⇒ Fitness of the Model:

fy(y) =
∫

fy|θ(y|θ) fθ(θ)dθ,

which corresponds to the denominator in the posterior distribution.
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5.3 Example: Linear Regression

Regression Model:

y = Xβ + u, u ∼ N(0, σ2In),

wherey andu aren× 1 vectors,X is ann× k matrix andβ is ak× 1 vector.

Likelihood Function: θ = (β, σ2)

fy|θ(y|θ) = (2πσ2)−n/2 exp
(
− 1

2σ2
(y− Xβ)′(y− Xβ)

)
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Prior Distributions:

fθ(β, σ
2) = fβ|σ2(β|σ2) fσ2(σ2),

where

fβ|σ2(β|σ2) = N(β0, σ
2A−1) = (2πσ2)−k/2|A|1/2 exp

(
− 1

2σ2
(β − β0)

′A(β − β0)
)
,

fσ2(σ2) = IG
(ν0

2
,
λ0

2

)
=

(λ0/2)ν0/2

Γ(ν0/2)
(σ2)−ν0/2−1 exp

(
− λ0

2σ2

)
.

β0, A, ν0 andλ0 are called the hyper-parameters.

Note thatY ∼ IG(a, b) for X ∼ G(a,b) andY =
1
X

.
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The posterior distribution ofβ andσ2 is:

fθ|y(β, σ
2|y) ∝ fy|θ(y|β, σ2) fβ|σ2(β|σ2) fσ2(σ2)

= (2πσ2)−n/2 exp
(
− 1

2σ2
(y− Xβ)′(y− Xβ)

)
×(2πσ2)−k/2|A|1/2 exp

(
− 1

2σ2
(β − β0)

′A(β − β0)
)

× (λ0/2)ν0/2

Γ(ν0/2)
(σ2)−ν0/2−1 exp

(
− λ0

2σ2

)
∝ (σ2)−(n+k+ν0)/2−1 exp

(
− (y− Xβ)′(y− Xβ) + (β − β0)′A(β − β0) + λ0

2σ2

)
∝ |σ2Â|−1/2 exp

(
− (β − β̂)′Â−1(β − β̂)

2σ2

)
× (σ2)−ν̂/2−1 exp

(
− λ̂

2σ2

)
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∝ fβ|σ2,y(β|σ2, y) × fσ2|y(σ
2|y) = N(β̂, σ2Â) × IG(

ν̂

2
,
λ̂

2
)

where

β̂ = (X′X + A)−1(X′Xβ̂OLS + Aβ0), β̂OLS = (X′X)−1X′y,

Â = (X′X + A)−1, ν̂ = ν0 + n,

λ̂ = λ0 + (y− Xβ̂)′(y− Xβ̂) + (β0 − β̂OLS)′((X′X)−1 + A−1)−1(β0 − β̂OLS).
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The marginal posterior distribution ofβ is:

fβ|y(β|y) =
∫

fθ|y(β, σ
2|y)dσ2 =

∫
fβ|σ2,y(β|σ2, y) fσ2|y(σ

2|y)dσ2

∝
(
1+

1
ν̂

(β − β̂)′
( λ̂
ν̂

Â
)−1

(β − β̂)

)−(ν̂+k)/2

,

which is ak-dimensionalt distribution with parameterŝβ,
λ̂

ν̂
Â andν̂.

Note that thek-dimensionalt distribution with parametersµ, Σ andν is given by:

f (x) =
Γ( ν+k

2 )

Γ( ν2)(νπ)k/2
|Σ|−1/2

(
1+

1
ν

(x− µ)′Σ−1(x− µ)
)−(ν+k)/2

.
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The marginal likelihood is:

fy(y) =
fy|θ(y|θ) fθ(θ)

fθ|y(θ|y)
=
|Â|1/2|A|1/2(λ0/2)ν0/2Γ(ν̂/2)

πn/2Γ(ν0/2)(λ̂/2)ν̂/2
,

which is utilized for model selection.

In general, how do we evaluatefθ|y(θ|y), E(θ|y), fy(y) and so on?
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5.4 On Prior Distribution

5.4.1 Non-informative Prior

fθ(θ) = const.

In this case, the posterior distribution is:

fθ|y(θ|y) ∝ fy|θ(y|θ),

which is proportional to the likelihood function.
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However, we have the case where the integration of prior diverges, i.e.,∫
fθ(θ)dθ = ∞.

In this case,fθ(θ) is called an improper prior.
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5.4.2 Jeffreys’ Prior

fθ(θ) ∝ |J(θ)|1/2,

where

J(θ) = −
∫

∂2 log fy|θ(y|θ)
∂θ∂θ′

fy|θ(y|θ)dy = −E
(∂2 log fy|θ(y|θ)

∂θ∂θ′

)
,

which is Fisher’s information matrix.
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5.5 Evaluation of Expectation

Posterior distributionfθ|y(θ|y)

E(θ|y) =
∫

θ fθ|y(θ|y)dθ =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

.

In the case where it is not easy to evaluate E(θ|y), how do we do?

Bayesian Method= Evaluation of Integration (Too much to say?)

• Numerical Integration

• Monte Carlo Integration

• Random Number Generation fromfθ|y(θ|y)
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5.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a functionf (x).

Suppose thatx is a scalar.

Let x0, x1, x2, · · ·, xn ben nodes, which are sorted by order of size but not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.

Rectangular Approximation:∫
f (x)dx ≈

n∑
i=1

f (xi)(xi − xi−1) or
n∑

i=1

f (xi−1)(xi − xi−1).
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Trapezoid Approximation:∫
f (x)dx ≈

n∑
i=1

1
2

( f (xi) + f (xi−1))(xi − xi−1).

Bivariate Case: Consider integration of a functionf (x, y).

Suppose that bothx andy are scalars.

Let x0, x1, x2, · · ·, xn ben nodes, which are sorted by order of size not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.
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Let y0, y1, y2, · · ·, ym bem nodes.

Rectangular Approximation:∫ ∫
f (x, y)dxdy ≈

n∑
i=1

m∑
j=1

f (xi , yj)(xi − xi−1)(yj − y j−1).

Trapezoid Approximation:∫ ∫
f (x.y)dxdy

≈
n∑

i=1

m∑
j=1

1
4

( f (xi , y j) + f (xi , y j−1) + f (xi−1, y j) + f (xi−1, yj−1))(xi − xi−1)(y j − yj−1).
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Applying to Bayes Method (Rectangular Approximation):

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)(θi − θi−1)∑n
i=1 fy|θ(y|θi) fθ(θi)(θi − θi−1)

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)∑n
i=1 fy|θ(y|θi) fθ(θi)

=

n∑
i=1

θiωi , for constantθi − θi−1,

where

ωi =
fy|θ(y|θi) fθ(θi)∑n

i=1 fy|θ(y|θi) fθ(θi)
.
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Problem of Numerical Integration:

1. Choice of initial and terminal values=⇒ Truncation errors

2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

=⇒ k dimension, andn nodes for each dimension=⇒ nk
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5.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a functionf (x).

Suppose thatx is a scalar.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

.

=⇒ Importance Sampling (重点的サンプリング)
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Multivariate Case: Consider integration of a functionf (x).

Suppose thatx is a vector.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

,

which is exacly the same as the univariate case.

Computational burden:=⇒ Univariate case:n, Multivariate case:n
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Precision of integration ???

Especially, wheng(x) is not close tof (x), approximation is prror.

Applying to Bayes Method:

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∫
θ

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ∫

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ

=
(1/n)

∑n
i=1 θiω(θi)

(1/n)
∑n

i=1ω(θi)
,

where

ω(θi) =
fy|θ(y|θi) fθ(θi)

g(θi)
.
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Choice of g(θ) — One Solution: Definel(θ) ≡ fy|θ(y|θ) fθ(θ).

log l(θ) ≈ log l(θ̃) +
1

l(θ̃)

∂l(θ̃)
∂θ

(θ − θ̃)

+
1
2

(θ − θ̃)′
(
− 1

l(θ̃)2

∂l(θ̃)
∂θ

∂l(θ̃)
∂θ′
+

1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃)

= −1
2

(θ − θ̃)′
(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃), whenθ̃ is a mode ofl(θ).

Thus,N
(
θ̃,

(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)−1)
might be taken as the importance densityg(θ).
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5.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws ofθ from the posterior distributionfθ|y(θ|y).

Then, (1/n)
∑n

i=1 θi is taken as a consistent estimator of E(θ|y), whereθi indicates

the ith random draw generated fromfθ|y(θ|y).

Note that (1/n)
∑n

i=1 θi −→ E(θ|y) under the condition (1/n)
∑n

i=1 θi < ∞.

Bayesian confidence interval, median, quntiles and so on are obtained by sortingθ1,

θ2, · · ·, θn in order of size.

=⇒ Sampling methods
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5.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and

Johnson (2000a, 2000b, 2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws

between zero and one.

5.6.1 Uniform Distribution: U(0,1)

Properties of Uniform Distribution: The most heuristic and simplest distribu-

tion is uniform.
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Theuniform distribution between zero and one is given by:

f (x) =

1, for 0 < x < 1,

0, otherwise.

Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, φ(θ) =

eθ − 1
θ

.

Use L’Hospital’s theorem to derive E(X) and V(X) usingφ(θ).

In the next section, we introduce an idea of generating uniform random draws,

which in turn yield the other random draws by the transformation of variables, the

inverse transform algorithm and so on.
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Uniform Random Number Generators: It is no exaggeration to say that all the

random draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as ex-

ponential, normal, logistic, Bernoulli and other distributions are obtained by trans-

forming the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.

However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears

at random is taken as a sequence of random numbers.
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First, consider the following relation:

m= k− [k/n]n,

wherek, m andn are integers.

[k/n] denotes the largest integer less than or equal to the argument.

In Fortran 77, it is written asm=k-int(k/n)*n, where 0≤ m< n.

m indicates theremainder (余り) whenk is divided byn.

n is called themodulus (商).

We define the right hand side in the equation above as:

k− [k/n]n ≡ k modn.
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Then, using the modular arithmetic we can rewrite the above equation as follows:

m= k modn,

which is represented by:m=mod(k,n) in Fortran 77 andm=k%n in C language.

A basic idea of the uniform random draw is as follows.

Givenxi−1, xi is generated by:

xi = (axi−1 + c) modn,

where 0≤ xi < n.

a andc are positive integers, called themultiplier and theincrement, respectively.
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The generator above have to be started by an initial value, which is called theseed.

ui = xi/n is regarded as a uniform random number between zero and one.

This generator is called thelinear congruential generator (線形合同法).

Especially, whenc = 0, the generator is called themultiplicative linear congru-

ential generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a andc are properly chosen, the period of the generator isn.

However, when they are not chosen very carefully, there may be a lot of serial

correlation among the generated values.

259



Therefore, the performance of the congruential generators depend heavily on the

choice of (a, c).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980),

Law and Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casella

(1999), Rubinstein and Melamed (1998), Thompson (2000) and so on for the other

congruential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three
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congruential generators for 16-bit computers.

The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

zi = 170zi−1 mod 30323,

and

ui =
( xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e.,x0, y0 andz0, for this random number generator.
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ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95× 1012).

The source code of this generator is given byurnd16(ix,iy,iz,rn), whereix,

iy andiz are seeds andrn represents the uniform random number between zero

and one.

——— urnd16(ix,iy,iz,rn)———

1: subroutine urnd16(ix,iy,iz,rn)
2: c
3: c Input:
4: c ix, iy, iz: Seeds
5: c Output:

262



6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 ix=mod( 171*ix,30269 )
9: iy=mod( 172*iy,30307 )

10: iz=mod( 170*iz,30323 )
11: rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int(rn)
13: if( rn.le.0 ) go to 1
14: return
15: end

We exclude one in Line 12 and zero in Line 13 fromrn.

That is, 0< rn < 1 is generated inurnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier errors in
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programming, when the other random draws are derived based on the transforma-

tion of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respect

to the higher order autocorrelations in sequences, and conclude that the Wichmann-

Hill generator performs well.

For 32-bit computers, L’Ecuyer (1988) proposed a combination ofk congruential

generators that have prime modulinj, such that all values of (nj −1)/2 are relatively

prime, and with multipliers that yield full periods.

Let the sequence fromjth generator bexj,1, xj,2, x j,3, · · ·.
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Consider the case where each individual generatorj is a maximum-period multi-

plicative linear congruential generator with modulusnj and multiplieraj, i.e.,

x j,i ≡ aj x j,i−1 modnj .

Assuming that the first generator is a relatively good one and thatn1 is fairly large,

we form theith integer in the sequence as:

xi =

k∑
j=1

(−1)j−1xj,i mod (n1 − 1),

where the other modulinj, j = 2,3, · · · , k, do not need to be large.
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The normalization takes care of the possibility of zero occurring in this sequence:

ui =


xi

n1
, if xi > 0,

n1 − 1
n1

, if xi = 0.

As for each individual generatorj, note as follows.

Defineq = [n/a] andr ≡ n moda, i.e.,n is decomposed asn = aq+ r, wherer < a.

Therefore, for 0< x < n, we have:

ax modn = (ax− [x/q]n) modn

=
(
ax− [x/q](aq+ r)

)
modn
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=
(
a(x− [x/q]q) − [x/q]r

)
modn

=
(
a(x modq) − [x/q]r

)
modn.

Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential

generators, wherek = 2, (a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and

(a2, n2, q2, r2) = (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown inurnd(ix,iy,rn), whereix andiy are inputs, i.e.,

seeds, andrn is an output, i.e., a uniform random number between zero and one.
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——— urnd(ix,iy,rn)———

1: subroutine urnd(ix,iy,rn)
2: c
3: c Input:
4: c ix, iy: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 kx=ix/53668
9: ix=40014*(ix-kx*53668)-kx*12211

10: if(ix.lt.0) ix=ix+2147483563
11: c
12: ky=iy/52774
13: iy=40692*(iy-ky*52774)-ky*3791
14: if(iy.lt.0) iy=iy+2147483399
15: c
16: rn=ix-iy
17: if( rn.lt.1.) rn=rn+2147483562
18: rn=rn*4.656613e-10

268



19: if( rn.le.0.) go to 1
20: c
21: return
22: end

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018

(more precisely 2.31× 1018), which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where

the above generator performs well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit

computers.

269



Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988)

is combined with the shuffling method suggested by Bays and Durham (1976),

and it is introduced asran2 in Press, Teukolsky, Vetterling and Flannery (1992a,

1992b).

However, from relatively long period and simplicity of the source code, hereafter

the subroutineurnd(ix,iy,rn) is utilized for the uniform random number gen-

eration method, and we will obtain various random draws based on the uniform

random draws.
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5.6.2 TransformingU(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density

functions are derived from the uniform distributionU(0,1) by transformation of

variables.

Normal Distribution: N(0,1): The normal distribution with mean zero and vari-

ance one, i.e, the standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.
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Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, φ(θ) = exp
(1
2
θ2

)
.

The normal random variable is constructed using two independent uniform random

variables.

This transformation is well known as the Box-Muller (1958) transformation and is

shown as follows.

Let U1 andU2 be uniform random variables between zero and one.

Suppose thatU1 is independent ofU2.
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Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).

where we have−∞ < X1 < ∞ and−∞ < X2 < ∞when 0< U1 < 1 and 0< U2 < 1.

Then, the inverse transformation is given by:

u1 = exp

(
−

x2
1 + x2

2

2

)
, u2 =

1
2π

arctan
x2

x1
.

We perform transformation of variables in multivariate cases.
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From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp

(
−1

2
(x2

1 + x2
2)
)
.

Let fx(x1, x2) be the joint density ofX1 andX2 and fu(u1, u2) be the joint density of

U1 andU2.

SinceU1 andU2 are assumed to be independent, we have the following:

fu(u1,u2) = f1(u1) f2(u2) = 1,
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where f1(u1) and f2(u2) are the density functions ofU1 andU2, respectively.

Note that f1(u1) = f2(u2) = 1 becauseU1 andU2 are uniform random variables

between zero and one.

Accordingly, the joint density ofX1 andX2 is:

fx(x1, x2) = |J| fu
(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp

(
−1

2
x2

1

)
× 1
√

2π
exp

(
−1

2
x2

2

)
,

which is a product of two standard normal distributions.
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Thus,X1 andX2 are mutually independently distributed as normal random variables

with mean zero and variance one.

See Hogg and Craig (1995, pp.177 – 178).

The source code of the standard normal random number generator shown above is

given bysnrnd(ix,iy,rn).

——— snrnd(ix,iy,rn)———

1: subroutine snrnd(ix,iy,rn)
2: c
3: c Use "snrnd(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c

276



6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Standard Normal Random Draw N(0,1)

10: c
11: pi= 3.1415926535897932385
12: call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn=sqrt(-2.0*log(rn1))*sin(2.0*pi*rn2)
15: return
16: end

snrnd(ix,iy,rn) should be used together with the uniform random number gen-

eratorurnd(ix,iy,rn) shown in Section 5.6.1 (p.267).

rn in snrnd(ix,iy,rn) corresponds toX2.
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Conventionally, one ofX1 andX2 is taken as the random number which we use.

Here,X1 is excluded from consideration.

snrnd(ix,iy,rn) includes the sine, which takes a lot of time computationally.

Therefore, to avoid computation of the sine, various algorithms have been invented

(Ahrens and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLaren

and Bray (1964) and so on).

Standard Normal Probabilities WhenX ∼ N(0,1), we have the case where we

want to approximatep such thatp = F(x) given x, whereF(x) =
∫ x

−∞ f (t) dt =
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P(X < x).

Adams (1969) reports that

P(X > x) =
∫ ∞

x

1
√

2π
e−

1
2 t2 dt =

1
√

2π
e−

1
2 x2( 1

x+
1
x+

2
x+

3
x+

4
x+
· · ·

)
,

for x > 0, where the form in the parenthesis is called the continued fraction, which

is defined as follows:

a1

x1+

a2

x2+

a3

x3+
· · · = a1

x1 +
a2

x2 +
a3

x3 + · · ·

.

A lot of approximations on the continued fraction shown above have been proposed.
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See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (1994).

Here, we introduce the following approximation (see Takeuchi (1989)):

P(X > x) =
1
√

2π
e−

1
2 x2

(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5), t =
1

1+ a0x
,

a0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782,

b3 = 1.781477937, b4 = −1.821255978, b5 = 1.330274429.

In snprob(x,p) below,P(X < x) is shown.

That is,p up to Line 19 is equal toP(X > x) in snprob(x,p).

In Line 20,P(X < x) is obtained.
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——— snprob(x,p)———

1: subroutine snprob(x,p)
2: c
3: c Input:
4: c x: N(0,1) Percent Point
5: c Output:
6: c p: Probability corresponding to x
7: c
8: pi= 3.1415926535897932385
9: a0= 0.2316419

10: b1= 0.319381530
11: b2=-0.356563782
12: b3= 1.781477937
13: b4=-1.821255978
14: b5= 1.330274429
15: c
16: z=abs(x)
17: t=1.0/(1.0+a0*z)
18: pr=exp(-.5*z*z)/sqrt(2.0*pi)
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19: p=pr*t*(b1+t*(b2+t*(b3+t*(b4+b5*t))))
20: if(x.gt.0.0) p=1.0-p
21: c
22: return
23: end

The maximum error of approximation ofp is 7.5× 10−8, which practically gives us

enough precision.

Standard Normal Percent Points When X ∼ N(0,1), we approximatex such

that p = F(x) given p, whereF(x) indicates the standard normal cumulative distri-

bution function, i.e.,F(x) = P(X < x), andp denotes probability.
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As shown in Odeh and Evans (1974), the approximation of a percent point is of the

form:

x = y+
S4(y)
T4(y)

= y+
p0 + p1y+ p2y2 + p3y3 + p4y4

q0 + q1y+ q2y2 + q3y3 + q4y4
,

wherey =
√
−2 log(p).

S4(y) andT4(y) denote polynomials degree 4.

The source code is shown insnperpt(p,x), wherex is obtained within 10−20 <

p < 1− 10−20.
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——— snperpt(p,x)———

1: subroutine snperpt(p,x)
2: c
3: c Input:
4: c p: Probability
5: c (err<p<1-err, where err=1e-20)
6: c Output:
7: c x: N(0,1) Percent Point corresponding to p
8: c
9: p0=-0.322232431088

10: p1=-1.0
11: p2=-0.342242088547
12: p3=-0.204231210245e-1
13: p4=-0.453642210148e-4
14: q0= 0.993484626060e-1
15: q1= 0.588581570495
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16: q2= 0.531103462366
17: q3= 0.103537752850
18: q4= 0.385607006340e-2
19: ps=p
20: if( ps.gt.0.5 ) ps=1.0-ps
21: if( ps.eq.0.5 ) x=0.0
22: y=sqrt( -2.0*log(ps) )
23: x=y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)
24: & /((((y*q4+q3)*y+q2)*y+q1)*y+q0)
25: if( p.lt.0.5 ) x=-x
26: return
27: end

The maximum error of approximation ofx is 1.5× 10−8 if the function is evaluated

in double precision and 1.8× 10−6 if it is evaluated in single precision.
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The approximation of the formx = y + S2(y)/T3(y) by Hastings (1955) gives a

maximum error of 4.5× 10−4.

To improve accuracy of the approximation, Odeh and Evans (1974) proposed the

algorithm above.

Normal Distribution: N(µ, σ2): The normal distribution denoted byN(µ, σ2) is

represented as follows:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2

,

for −∞ < x < ∞.
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µ is called alocation parameterandσ2 is ascale parameter.

Mean, variance and the moment-generating function of the normal distribution

N(µ, σ2) are given by:

E(X) = µ, V(X) = σ2, φ(θ) = exp
(
µθ +

1
2
σ2θ2

)
.

When µ = 0 andσ2 = 1 are taken, the above density function reduces to the

standard normal distribution in Section 5.6.2.

X = σZ+µ is normally distributed with meanµ and varianceσ2, whenZ ∼ N(0,1).

Therefore, the source code is represented bynrnd(ix,iy,ave,var,rn), where

ave andvar correspond toµ andσ2, respectively.

287



——— nrnd(ix,iy,ave,var,rn)———

1: subroutine nrnd(ix,iy,ave,var,rn)
2: c
3: c Use "nrnd(ix,iy,ave,var,rn)"
4: c together with "urnd(ix,iy,rn)"
5: c and "snrnd(ix,iy,rn)".
6: c
7: c Input:
8: c ix, iy: Seeds
9: c ave: Mean

10: c var: Variance
11: c Output:
12: c rn: Normal Random Draw N(ave,var)
13: c
14: call snrnd(ix,iy,rn1)
15: rn=ave+sqrt(var)*rn1
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16: return
17: end

nrnd(ix,iy,ave,var,rn) should be used together withurnd(ix,iy,rn) and

snrnd(ix,iy,rn). It is possible to replacesnrnd(ix,iy,rn) bysnrnd2(ix,iy,rn)

or snrnd3(ix,iy,rn).
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Exponential Distribution: The exponential distribution with parameterβ is

written as:

f (x) =


1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.

Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, φ(θ) =
1

1− βθ .
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The relation between the exponential random variable the uniform random variable

is shown as follows:

WhenU ∼ U(0,1), consider the following transformation:

X = −β log(U).

Then,X is an exponential distribution with parameterβ.

Because the transformation is given byu = exp(−x/β), the Jacobian is:

J =
du
dx
= −1

β
exp

(
−1
β

x
)
.

291



By transforming the variables, the density function ofX is represented as:

f (x) = |J| fu
(
exp(−1

β
x)

)
=

1
β

exp
(
−1
β

x
)
,

where f (·) and fu(·) denote the probability density functions ofX andU, respec-

tively.

Note that 0< x < ∞ because ofx = −β log(u) and 0< u < 1.

Thus, the exponential distribution with parameterβ is obtained from the uniform

random draw between zero and one.
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——— exprnd(ix,iy,beta,rn)———

1: subroutine exprnd(ix,iy,beta,rn)
2: c
3: c Use "exprnd(ix,iy,beta,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c beta: Parameter
9: c Output:

10: c rn: Exponential Random Draw
11: c with Parameter beta
12: c
13: call urnd(ix,iy,rn1)
14: rn=-beta*log(rn1)
15: return
16: end
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exprnd(ix,iy,beta,rn) should be used together withurnd(ix,iy,rn).

Whenβ = 2, the exponential distribution reduces to the chi-square distribution with

2 degrees of freedom.

Gamma Distribution: G(α, β): The gamma distribution with parametersα and

β, denoted byG(α, β), is represented as follows:

f (x) =


1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,
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for α > 0 andβ > 0, whereα is called ashape parameterandβ denotes a scale

parameter.

Γ(·) is called thegamma function, which is the following function ofα:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ
(1
2

)
= 2Γ

(3
2

)
=
√
π.

Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, φ(θ) =
1

(1− βθ)α .
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The gamma distribution withα = 1 is equivalent to the exponential distribution

shown in Section 5.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parame-

tersα andβ are derived as follows.

The derivation shown in this section deals with the case whereα is a positive integer,

i.e.,α = 1,2,3, · · ·.

The random variablesZ1, Z2, · · ·, Zα are assumed to be mutually independently

distributed as exponential random variables with parameterβ, which are shown in
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Section 5.6.2.

DefineX =
∑α

i=1 Zi.

Then,X has distributed as a gamma distribution with parametersα andβ, whereα

should be an integer, which is proved as follows:

φx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi ) =
α∏

i=1

E(eθZi ) =
α∏

i=1

φi(θ) =
α∏

i=1

1
1− βθ

=
1

(1− βθ)α ,

whereφx(θ) andφi(θ) represent the moment-generating functions ofX andZi, re-

spectively.
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Thus, sum of theα exponential random variables yields the gamma random variable

with parametersα andβ.

Therefore, the source code which generates gamma random numbers is shown in

gammarnd(ix,iy,alpha,beta,rn).

——— gammarnd(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd(ix,iy,alpha,beta,rn)"
4: c together with "exprnd(ix,iy,beta,rn)"
5: c and "urnd(ix,iy,rn)".
6: c
7: c Input:
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8: c ix, iy: Seeds
9: c alpha: Shape Parameter (which should be an integer)

10: c beta: Scale Parameter
11: c Output:
12: c rn: Gamma Random Draw with alpha and beta
13: c
14: rn=0.0
15: do 1 i=1,nint(alpha)
16: call exprnd(ix,iy,beta,rn1)
17: 1 rn=rn+rn1
18: return
19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together withurnd(ix,iy,rn)

andexprnd(ix,iy,rn).
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As pointed out above,α should be an integer in the source code.

Whenα is large, we have serious problems computationally in the above algorithm,

becauseα exponential random draws have to be generated to obtain one gamma

random draw with parametersα andβ.

Whenα = k/2 andβ = 2, the gamma distribution reduces to the chi-square distri-

bution withk degrees of freedom.
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Chi-Square Distribution: χ2(k): The chi-square distribution withk degrees of

freedom, denoted byχ2(k), is written as follows:

f (x) =


1

2k/2Γ( k
2)

x
k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

wherek is a positive integer.

The chi-square distribution is equivalent to the gamma distribution withβ = 2 and

α = k/2.

The chi-square distribution withk = 2 reduces to the exponential distribution with

β = 2, shown in Section 5.6.2.

301



Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, φ(θ) =
1

(1− 2θ)k/2
.

F Distribution: F(m,n): The F distribution withm andn degrees of freedom,

denoted byF(m, n), is represented as:

f (x) =


Γ(m+n

2 )

Γ(m
2 )Γ(n

2)

(m
n

)m
2 x

m
2 −1

(
1+

m
n

x
)−m+n

2
, for 0 < x < ∞,

0, otherwise,

wherem andn are positive integers.
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Mean and variance are given by:

E(X) =
n

n− 2
, for n > 2,

V(X) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, for n > 4.

The moment-generating function ofF distribution does not exist.

OneF random variable is derived from two chi-square random variables.

Suppose thatU andV are independently distributed as chi-square random variables,

i.e.,U ∼ χ2(m) andV ∼ χ2(n).

Then, it is shown thatX =
U/m
V/n

has aF distribution with (m, n) degrees of freedom.
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t Distribution: t(k): Thet distribution (or Student’st distribution) withk degrees

of freedom, denoted byt(k), is given by:

f (x) =
Γ( k+1

2 )

Γ( k
2)

1
√

kπ

(
1+

x2

k

)− k+1
2
,

for −∞ < x < ∞, wherek does not have to be an integer but conventionally it is a

positive integer.

Whenk is small, thet distribution has fat tails.

Thet distribution withk = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, thet distribution approaches the standard normal distribution,
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i.e., t(∞) = N(0,1), which is easily shown by using the definition ofe, i.e.,(
1+

x2

k

)− k+1
2
=

(
1+

1
h

)− hx2+1
2
=

(
(1+

1
h

)h
)− 1

2 x2(
1+

1
h

)− 1
2 −→ e−

1
2 x2
,

whereh = k/x2 is set andh goes to infinity (equivalently,k goes to infinity).

Thus, a kernel of thet distribution is equivalent to that of the standard normal dis-

tribution.

Therefore, it is shown that ask is large thet distribution approaches the standard

normal distribution.

Mean and variance of thet distribution withk degrees of freedom are obtained as:

E(X) = 0, for k > 1,
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V(X) =
k

k− 2
, for k > 2.

In the case of thet distribution, the moment-generating function does not exist,

because all the moments do not necessarily exist.

For thet random variableX, we have the fact that E(Xp) exists whenp is less than

k.

Therefore, all the moments exist only whenk is infinity.

One t random variable is obtained from chi-square and standard normal random

variables.

Suppose thatZ ∼ N(0,1) is independent ofU ∼ χ2(k).
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Then,X = Z/
√

U/k has at distribution withk degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generatingt random draws, which

is based on a transformed acceptance/rejection method, which will be discussed

later.
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5.6.3 Inverse Transform Method

In Section 5.6.2, we have introduced the probability density functions which can be

derived by transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transform

method are presented and the corresponding random number generators are shown.

The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution functionF(·).

WhenU ∼ U(0,1), F−1(U) is equal toX.
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The proof is obtained from the following fact:

P(X < x) = P(F−1(U) < x) = P(U < F(x)) = F(x).

In other words, letu be a random draw ofU, whereU ∼ U(0,1), andF(·) be a

distribution function ofX.

When we perform the following inverse transformation:

x = F−1(u),

x implies the random draw generated fromF(·).
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The inverse transform method shown above is useful whenF(·) can be computed

easily and the inverse distribution function, i.e.,F−1(·), has a closed form.

For example, recall thatF(·) cannot be obtained explicitly in the case of the normal

distribution because the integration is included in the normal cumulative distribu-

tion (conventionally we approximate the normal cumulative distribution when we

want to evaluate it).

If no closed form ofF−1(·) is available butF(·) is still computed easily, an iterative

method such as the Newton-Raphson method can be applied.

Definek(x) = F(x) − u.
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The first order Taylor series expansion aroundx = x∗ is:

0 = k(x) ≈ k(x∗) + k′(x∗)(x− x∗).

Then, we obtain:

x = x∗ − k(x∗)
k′(x∗)

= x∗ − F(x∗) − u
f (x∗)

.

Replacingx andx∗ by x(i) andx(i−1), we have the following iteration:

x(i) = x(i−1) − F(x(i−1)) − u
f (x(i−1))

,

for i = 1, 2, · · ·.
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The convergence value ofx(i) is taken as a solution of equationu = F(x).

Thus, based onu, a random drawx is derived fromF(·).

However, we should keep in mind that this procedure takes a lot of time computa-

tionally, because we need to repeat the convergence computation shown above as

many times as we want to generate.
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5.6.4 UsingU(0,1): Discrete Type

In Sections 5.6.2 and 5.6.3, the random number generators from continuous distri-

butions are discussed, i.e., the transformation of variables in Section 5.6.2 and the

inverse transform method in Section 5.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we deal

with some discrete distributions and consider generating their random numbers.

As a representative random number generation method, we can consider utilizing

the inverse transform method in the case of discrete random variables.

Suppose that a discrete random variableX can takex1, x2, · · ·, xn, where the proba-

313



bility which X takesxi is given by f (xi), i.e.,P(X = xi) = f (xi).

Generate a uniform random drawu, which is between zero and one.

Consider the case where we haveF(xi−1) ≤ u < F(xi), whereF(xi) = P(X ≤ xi)

andF(x0) = 0.

Then, the random draw ofX is given byxi.
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5.7 Sampling Method II: Random Number Generation

5.7.1 Rejection Sampling (棄却法)

We want to generate random draws fromf (x), called thetarget density (目的密

度), but we consider the case where it is hard to sample fromf (x).

Now, suppose that it is easy to generate a random draw from another densityf∗(x),

called thesampling density (サンプリング密度) or proposal density (提案密度).

In this case, random draws ofX from f (x) are generated by utilizing the random

draws sampled fromf∗(x).

Let x be the the random draw ofX generated fromf (x).

327



Suppose thatq(x) is equal to the ratio of the target density and the sampling density,

i.e.,

q(x) =
f (x)
f∗(x)

. (1)

Then, the target density is rewritten as:

f (x) = q(x) f∗(x).

Based onq(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of

sampling techniques, i.e.,rejection sampling (棄却法) in this section,impor-
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tance resampling (重点的リサンプリング法) in Section 5.7.2 and theMetropolis-

Hastings algorithm (メトロポリス－ハスティング・アルゴリズム) in Section

5.7.4.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random draws ofx from f (x), the functional form ofq(x) should

be known and random draws have to be easily generated fromf∗(x).

In order for rejection sampling to work well, the following condition has to be

satisfied:

q(x) =
f (x)
f∗(x)

< c,
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wherec is a fixed value.

That is,q(x) has an upper limit.

As discussed below, 1/c is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a

lot of time.

Under the conditionq(x) < c for all x, we may minimizec.

That is, since we haveq(x) < supx q(x) ≤ c, we may take the supremum ofq(x) for

c.

Thus, in order for rejection sampling to work efficiently,c should be the supremum
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of q(x) with respect tox, i.e.,c = supx q(x).

Let x∗ be the random draw generated fromf∗(x), which is a candidate of the random

draw generated fromf (x).

Defineω(x) as:

ω(x) =
q(x)

supz q(z)
=

q(x)
c
,

which is called theacceptance probability (採択確率).

Note that we have 0≤ ω(x) ≤ 1 when supz q(z) = c < ∞.

The supremum supz q(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection
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sampling.

A random draw ofX is generated fromf (x) in the following way:

(i) Generatex∗ from f∗(x) and computeω(x∗).

(ii) Setx = x∗ with probabilityω(x∗) and go back to (i) otherwise.

In other words, generatingu from a uniform distribution between zero and

one, takex = x∗ if u ≤ ω(x∗) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.

Let U be the uniform random variable between zero and one,X be the random

variable generated from the target densityf (x),
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X∗ be the random variable generated from the sampling densityf∗(x), andx∗ be the

realization (i.e., the random draw) generated from the sampling densityf∗(x).

Consider the probabilityP(X ≤ x|U ≤ ω(x∗)), which should be the cumulative

distribution ofX, F(x), from Step (ii).

The probabilityP(X ≤ x|U ≤ ω(x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(x∗)) =
P(X ≤ x,U ≤ ω(x∗))

P(U ≤ ω(x∗))
,

where the numerator is represented as:

P(X ≤ x,U ≤ ω(x∗)) =
∫ x

−∞

∫ ω(t)

0
fu,∗(u, t) du dt =

∫ x

−∞

∫ ω(t)

0
fu(u) f∗(t) du dt
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=

∫ x

−∞

(∫ ω(t)

0
fu(u) du

)
f∗(t) dt =

∫ x

−∞

(∫ ω(t)

0
du

)
f∗(t) dt

=

∫ x

−∞

[
u
]ω(t)

0
f∗(t) dt =

∫ x

−∞
ω(t) f∗(t) dt =

∫ x

−∞

q(t)
c

f∗(t) dt =
F(x)

c
,

and the denominator is given by:

P(U ≤ ω(x∗)) = P(X ≤ ∞,U ≤ ω(x∗)) =
F(∞)

c
=

1
c
.

In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU andX∗ are independently generated in Steps (i)

and (ii) we havefu,∗(u, x) = fu(u) f∗(x), where fu(u) and f∗(x) denote the marginal

density ofU and that ofX∗.
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The density function ofU is given by fu(u) = 1, because the distribution ofU is

assumed to be uniform between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

ω(x) =
q(x)

c
=

f (x)
c f∗(x)

,

ω(x) f∗(x) = f (x)/c is obtained.

Finally, substituting the numerator and denominator shown above, we have the fol-

lowing equality:

P(X ≤ x|U ≤ ω(x∗)) = F(x).
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Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the most efficient sampling method in the sense of

precision of the random draws, because using rejection sampling we can generate

mutually independently distributed random draws.

However, for rejection sampling we need to obtain thec which is greater than or

equal to the supremum ofq(x).

If the supremum is infinite, i.e., ifc is infinite, ω(x) is zero and accordingly the

candidatex∗ is never accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.
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Let NR be the average number of the rejected random draws.

We need (1+ NR) random draws in average to generate one random number from

f (x).

In other words, the acceptance rate is given by 1/(1+NR) in average, which is equal

to 1/c in average because ofP(U ≤ ω(x∗)) = 1/c.

Therefore, to obtain one random draw fromf (x), we have to generate (1+ NR)

random draws fromf∗(x) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and

Geweke (1996) for rejection sampling.
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To examine the condition thatω(x) is greater than zero, i.e., the condition that the

supremum ofq(x) exists, consider the case wheref (x) and f∗(x) are distributed as

N(µ, σ2) andN(µ∗, σ2
∗), respectively.

q(x) is given by:

q(x) =
f (x)
f∗(x)

=

(2πσ2)−1/2 exp
(
− 1

2σ2
(x− µ)2

)
(2πσ2

∗)−1/2 exp
(
− 1

2σ2
∗
(x− µ∗)2

)
=
σ∗
σ

exp
(
− 1

2σ2
(x− µ)2 +

1
2σ2
∗
(x− µ∗)2

)
=
σ∗
σ

exp

(
− 1

2
σ2
∗ − σ2

σ2σ2
∗

(
x− µσ

2
∗ − µ∗σ2

σ2
∗ − σ2

)2
+

1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.
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If σ2
∗ < σ

2, q(x) goes to infinity asx is large.

In the case ofσ2
∗ > σ2, the supremum ofq(x) exists, which condition implies that

f∗(x) should be more broadly distributed thanf (x).

In this case, the supremum is obtained as:

c = sup
x

q(x) =
σ∗
σ

exp
(1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.

Whenσ2 = σ2
∗ andµ = µ∗, we haveq(x) = 1, which impliesω(x) = 1.

That is, a random draw from the sampling densityf∗(x) is always accepted as a

random draw from the target densityf (x), where f (x) is equivalent tof∗(x) for all

x.
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If σ2 = σ2
∗ andµ , µ∗, the supremum ofq(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

Figure 1: Rejection Sampling

X

f (x)

��	
c f∗(x)

x∗

 f (x∗)

c f∗(x∗)
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From the definition ofω(x), we have the inequalityf (x) ≤ c f∗(x).

c f∗(x) and f (x) are displayed in Figure 1.

The ratio of f (x∗) andc f∗(x∗) corresponds to the acceptance probability atx∗, i.e.,

ω(x∗).

Thus, for rejection sampling,c f∗(x) has to be greater than or equal tof (x) for all x,

which implies that the sampling densityf∗(x) needs to be more widely distributed

than the target densityf (x).

Finally, note that the above discussion holds without any modification even though

f (x) is a kernel of the target density, i.e., even thoughf (x) is proportional to the
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target density, because the constant term is canceled out between the numerator and

denominator (remember thatω(x) = q(x)/ supz q(z)).

Normal Distribution: N(0, 1): First, denote the half-normal distribution by:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

The half-normal distribution above corresponds to the positive part of the standard

normal probability density function.
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Using rejection sampling, we consider generating standard normal random draws

based on the half-normal distribution.

We take the sampling density as the exponential distribution:

f∗(x) =


λe−λx, for 0 ≤ x < ∞,

0, otherwise,

whereλ > 0. Sinceq(x) is defined asq(x) = f (x)/ f∗(x), the supremum ofq(x) is

given by:

c = sup
x

q(x) =
2

λ
√

2π
e

1
2λ

2
.

which depends on parameterλ.
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Remember thatP(U ≤ ω(x∗)) = 1/c corresponds to the acceptance probability.

Since we need to increase the acceptance probability to reduce computational time,

we want to obtain theλ which minimizes supx q(x) with respect toλ.

Solving the minimization problem,λ = 1 is obtained.

Substitutingλ = 1, the acceptance probabilityω(x) is derived as:

ω(x) = e−
1
2 (x−1)2,

for 0 < x < ∞.

Remember that− logU has an exponential distribution withλ = 1 whenU ∼

U(0,1).
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Therefore, the algorithm is represented as follows.

(i) Generate two independent uniform random drawsu1 andu2 between zero and

one.

(ii) Computex∗ = − logu2, which indicates the exponential random draw gener-

ated from the target densityf∗(x).

(iii) Setx = x∗ if u1 ≤ exp(−1
2(x∗ − 1)2), i.e.,−2 log(u1) ≥ (x∗ − 1)2, and return to

(i) otherwise.

x in Step (iii) yields a random draw from the half-normal distribution.
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To generate a standard normal random draw utilizing the half-normal random draw

above, we may put the positive or negative sign randomly withx.

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random drawu3 between zero and one, and setz = x if

u3 ≤ 1/2 andz= −x otherwise.

z gives us a standard normal random draw.

Note that the number of iteration in Step (iii) is given byc =
√

2e/π ≈ 1.3155 in

average, or equivalently, the acceptance probability in Step (iii) is 1/c ≈ 0.7602.

The source code for this standard normal random number generator is shown in
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snrnd6(ix,iy,rn).

——— snrnd6(ix,iy,rn)———

1: subroutine snrnd6(ix,iy,rn)
2: c
3: c Use "snrnd6(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: 1 call urnd(ix,iy,rn1)
12: call urnd(ix,iy,rn2)
13: y=-log(rn2)
14: if( -2.*log(rn1).lt.(y-1.)**2 ) go to 1

347



15: call urnd(ix,iy,rn3)
16: if(rn3.le.0.5) then
17: rn= y
18: else
19: rn=-y
20: endif
21: return
22: end

Note thatsnrnd6(ix,iy,rn) should be used together withurnd(ix,iy,rn).

Thus, utilizing rejection sampling, we have the standard normal random number

generator, which is based on the half-normal distribution.
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Gamma Distribution: G(α, 1) for 0 < α ≤ 1 and 1 < α: In this section,

utilizing rejection sampling we show an example of generating random draws from

the gamma distribution with parametersα andβ = 1, i.e.,G(α, 1).

WhenX ∼ G(α,1), the density function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

Ahrens and Dieter (1974) consider the case of 0< α ≤ 1, which is discussed in this

section.

The case ofα > 1 will be discussed later.
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Using the rejection sampling, the composition method and the inverse transform

method, we consider generating random draws fromG(α,1) for 0< α ≤ 1.

The sampling density is taken as:

f∗(x) =
e

α + e
αxα−1I1(x) +

α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined as:

I1(x) =

1, if 0 < x ≤ 1,

0, otherwise,
I2(x) =

1, if 1 < x,

0, otherwise.

Random number generation from the sampling density above utilizes the composi-

tion method and the inverse transform method.
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The cumulative distribution related tof∗(x) is given by:

F∗(x) =


e

α + e
xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.

Note that 0< α ≤ 1 is required because the sampling density for 0< x ≤ 1 has to

satisfy the property that the integration is equal to one.

The acceptance probabilityω(x) = q(x)/ supz q(z) for q(x) = f (x)/ f∗(x) is given by:

ω(x) = e−xI1(x) + xα−1I2(x).

Moreover, the mean number of trials until success, i.e.,c = supz q(z) is represented
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as:

c =
α + e
αeΓ(α)

,

which depends onα and is not greater than 1.39.

Note thatq(x) takes a maximum value atx = 1.

The random number generation procedure is given by:

(i) Generate a uniform random drawu1 fromU(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).

(ii) Obtainω(x∗) = e−x∗ if u1 ≤ e/(α + e) andω(x∗) = x∗α−1 if u1 > e/(α + e).
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(iii) Generate a uniform random drawu2 from U(0,1), and setx = x∗ if u2 ≤ ω(x∗)

and return to (i) otherwise.

In Step (i) a random drawx∗ from f∗(x) can be generated by the inverse transform

method discussed in Section 5.6.3.

——— gammarnd2(ix,iy,alpha,rn)———

1: subroutine gammarnd2(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd2(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
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7: c ix, iy: Seeds
8: c alpha: Shape Parameter (0<alpha \le 1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: 1 call urnd(ix,iy,rn0)
15: call urnd(ix,iy,rn1)
16: if( rn0.le.e/(alpha+e) ) then
17: rn=( (alpha+e)*rn0/e )**(1./alpha)
18: if( rn1.gt.e**(-rn) ) go to 1
19: else
20: rn=-log((alpha+e)*(1.-rn0)/(alpha*e))
21: if( rn1.gt.rn**(alpha-1.) ) go to 1
22: endif
23: return
24: end
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Note thatgammarnd2(ix,iy,alpha,rn) should be used withurnd(ix,iy,rn).

In gammarnd2(ix,iy,alpha,rn), the case of 0< α ≤ 1 has been shown.

Now, using rejection sampling, the case ofα > 1 is discussed in Cheng (1977,

1998).

The sampling density is chosen as the following cumulative distribution:

F∗(x) =


xλ

δ + xλ
, for x > 0,

0, otherwise,

which is sometimes called thelog-logistic distribution .
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Then, the probability density function,f∗(x), is given by:

f∗(x) =


λδxλ−1

(α + xλ)2
, for x > 0,

0, otherwise.

By the inverse transform method, the random draw fromf∗(x), denoted byx, is

generated as follows:

x =
( δu
1− u

)1/λ
,

whereu denotes the uniform random draw generated fromU(0,1).

For the two parameters,λ =
√

2α − 1 andδ = αλ are chosen, taking into account
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minimizingc = supx q(x) = supx f (x)/ f∗(x) with respect toδ andλ (note thatλ and

δ are approximately taken, since it is not possible to obtain the explicit solution of

δ andλ).

Then, the number of rejections in average is given by:

c =
4ααe−α

Γ(α)
√

2α − 1
,

which is computed as:

1.47 whenα = 1, 1.25 whenα = 2, 1.17 whenα = 5,

1.15 whenα = 10, 1.13 whenα = ∞.

Thus, the average number of rejections is quite small for allα.

357



The random number generation procedure is given by:

(i) Seta = 1/
√

2α − 1, b = α − log 4 andc = α +
√

2α − 1.

(ii) Generate two uniform random drawsu1 andu2 from U(0, 1).

(iii) Sety = a log
u1

1− u1
, x∗ = αey, z= u2

1u2 andr = b+ cy− x.

(iv) Takex = x∗ if r ≥ logz and return to (ii) otherwise.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (iii)

and (iv), which is as follows:

(iii)’ Takex = x∗ if r ≥ 4.5z− d and go to (iv) otherwise.
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d is defined asd = 1+ log 4.5, which has to be computed in Step (i).

Note that we have the relation:θz− (1+ logθ) ≥ logz for all z > 0 and any given

θ > 0, because logz is a concave function ofz. According to Cheng (1977), the

choice ofθ is not critical and the suggested value isθ = 4.5, irrespective ofα.

The source code for Steps (i) – (iv) and (iii)’ is given bygammarnd3(ix,iy,alpha,rn).

——— gammarnd3(ix,iy,alpha,rn)———

1: subroutine gammarnd3(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd3(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
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6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (1<alpha)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: a=1./sqrt(2.*alpha-1.)
15: b=alpha-log(4.)
16: c=alpha+sqrt(2.*alpha-1.)
17: d=1.+log(4.5)
18: 1 call urnd(ix,iy,u1)
19: call urnd(ix,iy,u2)
20: y=a*log(u1/(1.-u1))
21: rn=alpha*(e**y)
22: z=u1*u1*u2
23: r=b+c*y-rn
24: if( r.ge.4.5*z-d ) go to 2
25: if( r.lt.log(z) ) go to 1

360



26: 2 return
27: end

Note thatgammarnd3(ix,iy,alpha,rn) requiresurnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Lines

17 and 24 fromgammarnd3, because evaluating theif(...) sentences in Lines 24

and 25 sometimes takes more time than computing the logarithm in Line 25.

Thus, using bothgammarnd2 andgammarnd3, we have the gamma random number

generator with parametersα > 0 andβ = 1.

361



5.7.2 Importance Resampling (重点的リサンプリング)

Theimportance resamplingmethod also utilizes the sampling densityf∗(x), where

we should choose the sampling density from which it is easy to generate random

draws.

Let x∗i be theith random draw ofx generated fromf∗(x).

The acceptance probability is defined as:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

,

whereq(·) is represented as equation (1).
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To obtain a random draws fromf (x), we perform the following procedure:

(i) Generatex∗j from the sampling densityf∗(x) for j = 1,2, · · · ,n.

(ii) Computeω(x∗j ) for all j = 1,2, · · · ,n.

(iii) Generate a uniform random drawu between zero and one and takex = x∗j

whenΩ j−1 ≤ u < Ω j, whereΩ j =
∑ j

i=1ω(x∗i ) andΩ0 ≡ 0.

Thex obtained in Step (iii) represents a random draw from the target densityf (x).

In Step (ii), all the probability weightsω(x∗j ), j = 1,2, · · · ,n, have to be computed

for importance resampling.
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Thus, we need to generaten random draws from the sampling densityf∗(x) in ad-

vance.

When we want to generate more random draws (say,N random draws), we may

repeat Step (iii)N times.

In the importance resampling method, there aren realizations, i.e.,x∗1, x∗2, · · ·, x∗n,

which are mutually independently generated from the sampling densityf∗(x).

The cumulative distribution off (x) is approximated by the following empirical

distribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x

−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt
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≈
(1/n)

∑n
i=1 q(x∗i )I (x, x

∗
i )

(1/n)
∑n

j=1 q(x∗j )
=

n∑
i=1

ω(x∗i )I (x, x
∗
i ),

whereI (x, x∗i ) denotes the indicator function which satisfiesI (x, x∗i ) = 1 whenx ≥

x∗i andI (x, x∗i ) = 0 otherwise.

P(X = x∗i ) is approximated asω(x∗i ).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance

resampling procedure.

As mentioned in Section 5.7.1, for rejection sampling,f (x) may be a kernel of the

target density, or equivalently,f (x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.
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That is, f (x) may be proportional to the target density for importance resampling,

too.

To obtain a random draws fromf (x), importance resampling requiresn random

draws from the sampling densityf∗(x), but rejection sampling needs (1+NR) random

draws from the sampling densityf∗(x).

For importance resampling, when we haven different random draws from the sam-

pling density, we pick up one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because

we have to compute all the probability weightsΩ j, j = 1,2, · · · ,n, in advance even
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when we want only one random draw.

When we want to generateN random draws, importance resampling requiresn

random draws from the sampling densityf∗(x), but rejection sampling needsn(1+

NR) random draws from the sampling densityf∗(x).

Thus, asN increases, importance resampling is relatively less computational than

rejection sampling.

Note thatN < n is recommended for the importance resampling method.

In addition, when we haveN random draws from the target densityf (x), some of

the random draws take the exactly same values for importance resampling, while
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all the random draws take the different values for rejection sampling.

Therefore, we can see that importance resampling is inferior to rejection sampling

in the sense of precision of the random draws.

Normal Distribution: N(0,1): Again, we consider an example of generating

standard normal random draws based on the half-normal distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

368



We take the sampling density as the following exponential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,

which is exactly the same sampling density as in Section 5.7.1.

Given the random drawsx∗i , i = 1, · · · , n, generated from the above exponential

density f∗(x), the acceptance probabilityω(x∗i ) is given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j )/ f∗(x∗j )
=

exp(−1
2x∗2i + x∗i )∑n

j=1 exp(−1
2x∗2j + x∗j )

.

Therefore, a random draw from the half-normal distribution is generated as follows.
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(i) Generate uniform random drawsu1, u2, · · ·, un from U(0,1).

(ii) Obtainx∗i = − log(ui) for i = 1,2, · · · ,n.

(iii) Computeω(x∗i ) for i = 1, 2, · · · ,n.

(iv) Generate a uniform random drawv1 from U(0,1).

(v) Setx = x∗j whenΩ j−1 ≤ v1 < Ω j for Ω j =
∑ j

i=1ω(x∗i ) andΩ0 = 0.

x is taken as a random draw generated from the half-normal distributionf (x).

In order to have a standard normal random draw, we additionally put the following

step.
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(vi) Generate a uniform random drawv2 from U(0,1), and setz = x if v2 ≤ 1/2

andz= −x otherwise.

z represents a standard normal random draw.

Note that Step (vi) above corresponds to Step (iv) in Section 5.7.1.

Steps (i) – (vi) shown above represent the generator which yields one standard

normal random draw.

When we wantN standard normal random draws, Steps (iv) – (vi) should be re-

peatedN times.

In Steps (iv) and (v), a random draw fromf (x) is generated based onΩ j for j =
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1,2, · · · ,n.

Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

The sampling density is taken as:

f∗(x) =
e

α + e
αxα−1I1(x) +

α

α + e
e−x+1I2(x),
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which is the same function as ingammarnd2 of Section 5.7.1, where bothI1(x) and

I2(x) denote the indicator functions defined in Section 5.7.1.

The probability weights are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j )/ f∗(x∗j )

=
x∗α−1

i e−x∗i /(x∗α−1
i I1(x∗i ) + e−x∗i I2(x∗i ))∑n

j=1 x∗α−1
j e−x∗j /(x∗α−1

j I1(x∗j ) + e−x∗j I2(x∗j ))
,

for i = 1, 2, · · · ,n.
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The cumulative distribution function off∗(x) is represented as:

F∗(x) =


e

α + e
xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.

Therefore,x∗i can be generated by utilizing both the composition method and the

inverse transform method.

Givenx∗i , computeω(x∗i ) for i = 1,2, · · · ,n, and takex = x∗i with probabilityω(x∗i ).

Summarizing above, the random number generation procedure for the gamma dis-

tribution is given by:
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(i) Generate uniform random drawsui, i = 1,2, · · · ,n, from U(0,1), and set

x∗i = ((α/e + 1)ui)
1/α andω(x∗i ) = e−x∗i if ui ≤ e/(α + e) and takex∗i =

− log((1/e+1/α)(1−ui)) andω(x∗i ) = x∗α−1
i if ui > e/(α+e) for i = 1,2, · · · ,n.

(ii) ComputeΩi =
∑i

j=1ω(x∗j ) for i = 1,2, · · · ,n, whereΩ0 = 0.

(iii) Generate a uniform random drawv from U(0,1), and takex = x∗i whenΩi−1 ≤

v < Ωi.

As mentioned above, this algorithm yields one random draw.

If we wantN random draws, Step (iii) should be repeatedN times.
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Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j )/ f∗(x∗j )
=

x∗α−1
i (1− x∗i )

β−1∑n
j=1 x∗α−1

j (1− x∗j )
β−1

.

Therefore, to generate a random draw fromf (x), first generatex∗i , i = 1,2, · · · ,n,

from U(0,1), second computeω(x∗i ) for i = 1,2, · · ·,n, and finally takex = x∗i with

probabilityω(x∗i ).

We have shown three examples of the importance resampling procedure in this

section.

One of the advantages of importance resampling is that it is really easy to construct

a Fortran source code.
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However, the disadvantages are that (i) importance resampling takes quite a long

time because we have to obtain all the probability weights in advance and (ii) impor-

tance resampling requires a great amount of storages forx∗i andΩi for i = 1,2, · · · ,n.

5.7.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アル

ゴリズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distri-

butions are compared with respect to precision of the random draws from the target

density f (x).
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TheMetropolis-Hastings algorithm is also one of the sampling methods to gen-

erate random draws from any target densityf (x), utilizing sampling densityf∗(x),

even in the case where it is not easy to generate random draws from the target

density.

Let us define the acceptance probability by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

,1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
,

whereq(·) is defined as equation (1).

By the Metropolis-Hastings algorithm, a random draw fromf (x) is generated in the

following way:

379



(i) Take the initial value ofx asx−M.

(ii) Generatex∗ from f∗(x) and computeω(xi−1, x∗) givenxi−1.

(iii) Setxi = x∗ with probabilityω(xi−1, x∗) andxi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

In the above algorithm,x1 is taken as a random draw fromf (x).

When we want more random draws (say,N), we replace Step (iv) by Step (iv)’,

which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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When we implement Step (iv)’, we can obtain a series of random drawsx−M, x−M+1,

· · ·, x0, x1, x2, · · ·, xN, wherex−M, x−M+1, · · ·, x0 are discarded from further consid-

eration.

The lastN random draws are taken as the random draws generated from the target

density f (x).

Thus,N denotes the number of random draws.

M is sometimes called theburn-in period .

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 5.7.1.
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We show thatxi is the random draw generated from the target densityf (x) under

the assumptionxi−1 is generated fromf (x).

Let U be the uniform random variable between zero and one,X be the random vari-

able which has the density functionf (x) andx∗ be the realization (i.e., the random

draw) generated from the sampling densityf∗(x).

Consider the probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)), which should be the cumulative

distribution ofX, i.e.,F(x).

The probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) =

P(X ≤ x,U ≤ ω(xi−1, x∗))
P(U ≤ ω(xi−1, x∗))

,
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where the numerator is represented as:

P(X ≤ x,U ≤ ω(xi−1, x
∗)) =

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du

)
f∗(t) dt =

∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P(U ≤ ω(xi−1, x
∗)) = P(X ≤ ∞,U ≤ ω(xi−1, x

∗)) =
f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.
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The density function ofU is given by fu(u) = 1 for 0< u < 1.

Let X∗ be the random variable which has the density functionf∗(x).

In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU and X∗ are independently generated, we have

fu,∗(u, x) = fu(u) f∗(x) = f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following

equality:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) = F(x).

384



Thus, thex∗ which satisfiesu ≤ ω(xi−1, x∗) indicates a random draw fromf (x).

We setxi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied.xi−1 is already assumed to be a

random draw fromf (x).

Therefore, it is shown thatxi is a random draw fromf (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note thatf (x) may

be a kernel of the target density, or equivalently,f (x) may be proportional to the

target density.

The same algorithm as Steps (i) – (iv) can be applied to the case wheref (x) is
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proportional to the target density, becausef (x∗) is divided by f (xi−1) in ω(xi−1, x∗).

As a general formulation of the sampling density, instead off∗(x), we may take the

sampling density as the following form:f∗(x|xi−1), where a candidate random draw

x∗ depends on the (i − 1)th random draw, i.e.,xi−1.

For choice of the sampling densityf∗(x|xi−1), Chib and Greenberg (1995) pointed

out as follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support off (x), which

implies that f∗(x|i−1) should not have too large variance and too small variance,

compared withf (x).
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See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan

(1994), Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casella

(1999) and so on for the Metropolis-Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is for-

mulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv,

where f ∗(u|v) denotes the transition distribution, which is characterized by Step

(iii).

xi−1 is generated fromfi−1(·) andxi is from f ∗(·|xi−1).
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xi depends only onxi−1, which is called theMarkov property .

The sequence{· · ·, xi−1, xi, xi+1, · · ·} is called theMarkov chain .

The Monte Carlo statistical methods with the sequence{· · ·, xi−1, xi, xi+1, · · ·} is

called theMarkov chain Monte Carlo (MCMC) .

From Step (iii), f ∗(u|v) is given by:

f ∗(u|v) = ω(v,u) f∗(u|v) +
(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u), (2)

wherep(x) denotes the following probability function:

p(u) =

1, if u = v,

0, otherwise.
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Thus,x is generated fromf∗(u|v) with probabilityω(v,u) and fromp(u) with prob-

ability 1−
∫
ω(v,u) f∗(u|v) du.

Now, we want to showfi(u) = fi−1(u) = f (u) as i goes to infinity, which implies

that bothxi andxi−1 are generated from the invariant distribution functionf (u) for

sufficiently largei.

To do so, we need to consider the condition satisfying the following equation:

f (u) =
∫

f ∗(u|v) f (v) dv. (3)

Equation (3) holds if we have the following equation:

f ∗(v|u) f (u) = f ∗(u|v) f (v), (4)
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which is called thereversibility condition .

By taking the integration with respect tov on both sides of equation (4), equation

(3) is obtained.

Therefore, we have to check whether thef ∗(u|v) shown in equation (2) satisfies

equation (4).

It is straightforward to verify that

ω(v,u) f∗(u|v) f (v) = ω(u, v) f∗(v|u) f (u),(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u) f (v) =

(
1−

∫
ω(u, v) f∗(v|u) dv

)
p(v) f (u).

Thus, asi goes to infinity,xi is a random draw from the target densityf (·).
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If xi is generated fromf (·), thenxi+1 is also generated fromf (·).

Therefore, all thexi, xi+1, xi+2, · · · are taken as random draws from the target density

f (·).

The requirement for uniform convergence of the Markov chain is that the chain

should beirreducible andaperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(x0) be the set of possible values ofxi from starting pointx0.

If there exist two possible starting values, sayx∗ andx∗∗, such thatCi(x∗)∩Ci(x∗∗) =

∅ (i.e., empty set) for alli, then the same limiting distribution cannot be reached
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from both starting points.

Thus, in the case ofCi(x∗) ∩Ci(x∗∗) = ∅, the convergence may fail.

A Markov chain is said to beirreducible if there exists ani such thatP(xi ∈ C|x0) >

0 for any starting pointx0 and any setC such that
∫

C
f (x) dx > 0.

The irreducible condition ensures that the chain can reach all possiblex values from

any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoint

setC1 andC2 such thatxi−1 ∈ C1 implies xi ∈ C2 andxi−1 ∈ C2 implies xi ∈ C1,

then the chain oscillates betweenC1 andC2 and we again haveCi(x∗)∩Ci(x∗∗) = ∅
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for all i whenx∗ ∈ C1 andx∗∗ ∈ C2.

Accordingly, we cannot have the same limiting distribution in this case, either.

It is calledaperiodic if the chain does not oscillate between two setsC1 andC2 or

cycle around a partitionC1, C2, · · ·, Cr of r disjoint sets forr > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithm,x1 is taken as a random draw ofx from f (x)

for sufficiently largeM.

To obtainN random draws, we need to generateM + N random draws.

Moreover, clearly we have Cov(xi−1, xi) > 0, becausexi is generated based onxi−1
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in Step (iii).

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm

gives us the worst random number of the three sampling methods. i.e., rejec-

tion sampling in Section 5.7.1, importance resampling in Section 5.7.2 and the

Metropolis-Hastings algorithm in this section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the

Metropolis-Hastings algorithm is as follows:

1
N

N∑
i=1

g(xi) −→ E(g(x)) =
∫

g(x) f (x) dx, as N −→ ∞,

whereg(·) is a function, which is representatively taken asg(x) = x for mean and
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g(x) = (x− x)2 for variance.

x denotesx = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E(g(x)), even

thoughx1, x2, · · ·, xN are mutually correlated.

As an alternative random number generation method to avoid the positive correla-

tion, we can perform the case ofN = 1 as in the above procedures (i) – (iv)N times

in parallel, taking different initial values forx−M.

In this case, we need to generateM+1 random numbers to obtain one random draw

from f (x).
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That is, N random draws fromf (x) are based onN(1 + M) random draws from

f∗(x|xi−1).

Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorithm

should be similar to rejection sampling.

However, this alternative method is too computer-intensive, compared with the

above procedures (i) – (iii) and (iv)’, which takes more time than rejection sam-

pling in the case ofM > NR.

Furthermore, the sampling density has to satisfy the following conditions:
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(i) we can quickly and easily generate random draws from the sampling density

and

(ii) the sampling density should be distributed with the same range as the target

density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux

(1999) for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily de-

pend on choice of the sampling density, we can see that the Metropolis-Hastings

algorithm has the problem of specifying the sampling density, which is the crucial
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criticism.

Several generic choices of the sampling density are discussed by Tierney (1994)

and Chib and Greenberg (1995).

We can consider several candidates for the sampling densityf∗(x|xi−1), i.e., Sam-

pling Densities I – III.

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density,

we have started withf∗(x) in this section.

Thus, one possibility of the sampling density is given by:f∗(x|xi−1) = f∗(x), where
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f∗(·) does not depend onxi−1.

This sampling density is called theindependence chain.

For example, it is possible to takef∗(x) = N(µ∗, σ2
∗), whereµ∗ andσ2

∗ are the hyper-

parameters.

Or, whenx lies on a certain interval, say (a,b), we can choose the uniform distribu-

tion f∗(x) = 1/(b− a) for the sampling density.

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sam-

pling density called therandom walk chain, i.e., f∗(x|xi−1) = f∗(x− xi−1).
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Representatively, we can take the sampling density asf∗(x|xi−1) = N(xi−1, σ2
∗),

whereσ2
∗ denotes the hyper-parameter.

Based on the random walk chain, we have a series of the random draws which

follow the random walk process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling dis-

tribution is based on approximation of the log-kernel (see Geweke and Tanizaki

(1999, 2001, 2003)), which is a substantial extension of theTaylored chain dis-

cussed in Chib, Greenberg and Winkelmann (1998).
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Let p(x) = log( f (x)), where f (x) may denote the kernel which corresponds to the

target density.

Approximating the log-kernelp(x) aroundxi−1 by the second order Taylor series

expansion,p(x) is represented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x− xi−1) +
1
2

p′′(xi−1)(x− xi−1)
2, (5)

wherep′(·) andp′′(·) denote the first- and second-derivatives.

Depending on the values ofp′(x) andp′′(x), we have the four cases, i.e., Cases 1 –

4, which are classified by (i)p′′(x) < −ε in Case 1 orp′′(x) ≥ −ε in Cases 2 – 4 and

(ii) p′(x) < 0 in Case 2,p′(x) > 0 in Case 3 orp′(x) = 0 in Case 4.
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Geweke and Tanizaki (2003) suggested introducingε into the Taylored chain dis-

cussed in Geweke and Tanizaki (1999, 2001).

Note thatε = 0 is chosen in Geweke and Tanizaki (1999, 2001).

To improve precision of random draws,ε should be a positive value, which will be

discussed later in detail (see Remark 1 forε).

Case 1: p′′(xi−1) < −ε: Equation (5) is rewritten by:

p(x) ≈ p(xi−1) −
1
2

( 1
−1/p′′(xi−1)

)(
x− (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

wherer(xi−1) is an appropriate function ofxi−1.
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Sincep′′(xi−1) is negative, the second term in the right-hand side is equivalent

to the exponential part of the normal density.

Therefore,f∗(x|xi−1) is taken asN(µ∗, σ2
∗), whereµ∗ = xi−1− p′(xi−1)/p′′(xi−1)

andσ2
∗ = −1/p′′(xi−1).

Case 2: p′′(xi−1) ≥ −ε and p′(xi−1) < 0: Perform linear approximation ofp(x).

Let x+ be the nearest mode withx+ < xi−1.

Then,p(x) is approximated by a line passing betweenx+ andxi−1, which is
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written as:

p(x) ≈ p(x+) +
p(x+) − p(xi−1)

x+ − xi−1
(x− x+).

From the second term in the right-hand side, the sampling density is rep-

resented as the exponential distribution withx > x+ − d, i.e., f∗(x|xi−1) =

λexp
(
−λ(x− (x+ − d))

)
if x+ − d < x and f∗(x|xi−1) = 0 otherwise, whereλ is

defined as:

λ =

∣∣∣∣∣ p(x+) − p(xi−1)
x+ − xi−1

∣∣∣∣∣ .
d is a positive value, which will be discussed later (see Remark 2 ford).

Thus, a random drawx∗ from the sampling density is generated byx∗ = w+
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(x+ − d), wherew represents the exponential random variable with parameter

λ.

Case 3: p′′(xi−1) ≥ −ε and p′(xi−1) > 0: Similarly, perform linear approximation

of p(x) in this case.

Let x+ be the nearest mode withxi−1 < x+.

Approximation ofp(x) is exactly equivalent to that of Case 2.

Taking into accountx < x++d, the sampling density is written as:f∗(x|xi−1) =

λexp
(
−λ((x+ + d) − x)

)
if x < x+ + d and f∗(x|xi−1) = 0 otherwise.
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Thus, a random drawx∗ from the sampling density is generated byx∗ =

(x+ + d) − w, wherew is distributed as the exponential random variable with

parameterλ.

Case 4: p′′(xi−1) ≥ −ε and p′(xi−1) = 0: In this case,p(x) is approximated as a

uniform distribution at the neighborhood ofxi−1.

As for the range of the uniform distribution, we utilize the two appropriate

valuesx+ andx++, which satisfiesx+ < x < x++.

When we have two modes,x+ andx++ may be taken as the modes.
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Thus, the sampling densityf∗(x|xi−1) is obtained by the uniform distribution

on the interval betweenx+ andx++, i.e., f∗(x|xi−1) = 1/(x++ − x+) if x+ < x <

x++ and f∗(x|xi−1) = 0 otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases 1 –

4, depending on the values ofp′(·) andp′′(·).

Moreover, in the case wherex is a vector, applying the procedure above to each

element ofx, Sampling III is easily extended to multivariate cases.

Finally, we discuss aboutε andd in the following remarks.
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Remark 1: ε in Cases 1 – 4 should be taken as an appropriate positive number.

It may seem more natural to takeε = 0, rather thanε > 0.

The reason whyε > 0 is taken is as follows.

Consider the case ofε = 0.

Whenp′′(xi−1) is negative and it is very close to zero, varianceσ2
∗ in Case 1 becomes

extremely large because ofσ2
∗ = −1/p′′(xi−1).

In this case, the obtained random draws are too broadly distributed and accordingly

they become unrealistic, which implies that we have a lot of outliers.

To avoid this situation,ε should be positive.
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It might be appropriate thatε should depend on variance of the target density, be-

causeε should be small if variance of the target density is large.

Thus, in order to reduce a number of outliers,ε > 0 is recommended.

Remark 2: Ford in Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.

Let x+ be the mode.

We have Case 2 in the right-hand side ofx+ and Case 3 in the left-hand side ofx+.

In the case ofd = 0, we have the random draws generated from either Case 2 or 3.

409



In this situation, the generated random draw does not move from one case to an-

other.

In the case ofd > 0, however, the distribution in Case 2 can generate a random

draw in Case 3.

That is, for positived, the generated random draw may move from one case to an-

other, which implies that the irreducibility condition of the MH algorithm is guar-

anteed.
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Normal Distribution: N(0,1): As in Sections 5.7.1 and 5.7.2, we consider an

example of generating standard normal random draws based on the half-normal

distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

As in Sections 5.7.1 and 5.7.2, we take the sampling density as the following expo-

nential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,
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which is the independence chain, i.e.,f∗(x|xi−1) = f∗(x).

Then, the acceptance probabilityω(xi−1, x∗) is given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
(
exp(−1

2
x∗2 + x∗ +

1
2

x2
i−1 − xi−1),1

)
.

Utilizing the Metropolis-Hastings algorithm, the standard normal random number

generator is shown as follows:

(i) Take an appropriate initial value ofx asx−M (for example,x−M = 0).

(ii) Setyi−1 = |xi−1|.
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(iii) Generate a uniform random drawu1 from U(0,1) and computeω(yi−1, y∗)

wherey∗ = − log(u1).

(iv) Generate a uniform random drawu2 from U(0,1), and setyi = y∗ if u2 ≤

ω(yi−1, y∗) andyi = yi−1 otherwise.

(v) Generate a uniform random drawu3 from U(0, 1), and setxi = yi if u3 ≤ 0.5

andxi = −yi otherwise.

(vi) Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,1.

y1 is taken as a random draw fromf (x). M denotes the burn-in period.

If a lot of random draws (say,N random draws) are required, we replace Step (vi)
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by Step (vi)’ represented as follows:

(vi)’ Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,N.

In Steps (ii) – (iv), a half-normal random draw is generated.

Note that the absolute value ofxi−1 is taken in Step (ii) because the half-normal

random draw is positive.

In Step (v), the positive or negative sign is randomly assigned toyi.
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Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

As in gammarnd2 of Sections 5.7.1 andgammarnd4 of 5.7.2, the sampling density

is taken as:

f∗(x) =
e

α + e
αxα−1I1(x) +

α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined in Section 5.7.1.
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Then, the acceptance probability is given by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

, 1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
( x∗α−1e−x∗/(x∗α−1I1(x∗) + e−x∗ I2(x∗))

xα−1
i−1 e−xi−1/(xα−1

i−1 I1(xi−1) + e−xi−1I2(xi−1))
,1

)
.

As shown in Section 5.7.1, the cumulative distribution function off∗(x) is repre-

sented as:

F∗(x) =


e

α + e
xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.
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Therefore, a candidate of the random draw, i.e.,x∗, can be generated fromf∗(x), by

utilizing both the composition method and the inverse transform method.

Then, using the Metropolis-Hastings algorithm, the gamma random number gener-

ation method is shown as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawu1 fromU(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).

(iii) Computeω(xi−1, x∗).

(iv) Generate a uniform random drawu2 from U(0,1), and setxi = x∗ if u2 ≤
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ω(xi−1, x∗) andxi = xi−1 otherwise.

(v) Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x). u1 andu2 should

be independently distributed.

M denotes the burn-in period. If we need a lot of random draws (say,N random

draws), replace Step (v) by Step (v)’, which is given by:

(v)’ Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,N.
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Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
= min

(( x∗

xi−1

)α−1( 1− x∗

1− xi−1

)β−1
,1

)
.

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generated

as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawx∗ from U(0,1), and computeω(xi−1, x∗).

(iii) Generate a uniform random drawu from U(0, 1), which is independent ofx∗,

and setxi = x∗ if u ≤ ω(xi−1, x∗) andxi = xi−1 if u > ω(xi−1, x∗).
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(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x).

M denotes the burn-in period.

If we want a lot of random draws (say,N random draws), replace Step (iv) by Step

(iv)’, which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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5.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduce

theratio-of-uniforms method.

This generation method does not require the sampling density utilized in rejection

sampling (Section 5.7.1), importance resampling (Section 5.7.2) and the Metropolis-

Hastings algorithm (Section 5.7.3).

Suppose that a bivariate random variable (U1,U2) is uniformly distributed, which

satisfies the following inequality:

0 ≤ U1 ≤
√

h(U2/U1),
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for any nonnegative functionh(x). Then,X = U2/U1 has a density functionf (x) =

h(x)/
∫

h(x) dx.

Note that the domain of (U1, U2) will be discussed below.

The above random number generation method is justified in the following way.

The joint density ofU1 andU2, denoted byf12(u1, u2), is given by:

f12(u1,u2) =


k, if 0 ≤ u1 ≤

√
h(u2/u1),

0, otherwise,

wherek is a constant value, because the bivariate random variable (U1,U2) is uni-

formly distributed.
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Consider the following transformation from (u1,u2) to (x, y):

x =
u2

u1
, y = u1,

i.e.,

u1 = y, u2 = xy.

The Jacobian for the transformation is:

J =

∣∣∣∣∣∣∣
∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ 0 1

y x

∣∣∣∣∣∣ = −y.
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Therefore, the joint density ofX andY, denoted byfxy(x, y), is written as:

fxy(x, y) = |J| f12(y, xy) = ky,

for 0 ≤ y ≤
√

h(x).

The marginal density ofX, denoted byfx(x), is obtained as follows:

fx(x) =
∫ √

h(x)

0
fxy(x, y) dy =

∫ √
h(x)

0
kydy = k

[y2

2

]√h(x)

0
=

k
2

h(x) = f (x),

wherek is taken as:k = 2/
∫

h(x) dx.

Thus, it is shown thatfx(·) is equivalent tof (·).

This result is due to Kinderman and Monahan (1977).
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Also see Ripley (1987), O’Hagan (1994), Fishman (1996) and Gentle (1998).

Now, we take an example of choosing the domain of (U1,U2).

In practice, for the domain of (U1,U2), we may choose the rectangle which encloses

the area 0≤ U1 ≤
√

h(U2/U1), generate a uniform point in the rectangle, and reject

the point which does not satisfy 0≤ u1 ≤
√

h(u2/u1).

That is, generate two independent uniform random drawsu1 andu2 from U(0,b)

andU(c,d), respectively.

The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,
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whereb, c andd are given by:

b = sup
x

√
h(x), c = − sup

x
x
√

h(x), d = sup
x

x
√

h(x),

because the rectangle has to enclose 0≤ u1 ≤
√

h(u2/u1), which is verified as

follows:

0 ≤ u1 ≤
√

h(u2/u1) ≤ sup
x

√
h(x),

− sup
x

x
√

h(x) ≤ −x
√

h(x) ≤ u2 ≤ x
√

h(x) ≤ sup
x

x
√

h(x).

The second line also comes from 0≤ u1 ≤
√

h(u2/u1) andx = u2/u1.
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We can replacec = − supx x
√

h(x) by c = inf x x
√

h(x), taking into account the case

of − supx x
√

h(x) ≤ inf x x
√

h(x).

The discussion above is shown in Ripley (1987).

Thus, in order to apply the ratio-of-uniforms method with the domain{0 ≤ u1 ≤

b, c ≤ u2 ≤ d}, we need to have the condition thath(x) andx2h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:

(i) Generateu1 andu2 independently fromU(0,b) andU(c,d).

(ii) Setx = u2/u1 if u2
1 ≤ h(u2/u1) and return to (i) otherwise.

As shown above, thex accepted in Step (ii) is taken as a random draw fromf (x) =
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h(x)/
∫

h(x) dx.

The acceptance probability in Step (ii) is
∫

h(x) dx/(2b(d − c)).

We have shown the rectangular domain of (U1,U2).

It may be possible that the domain of (U1,U2) is a parallelogram.

In Sections 5.7.4 and 5.7.4, we show two examples as applications of the ratio-of-

uniforms method.

Especially, in Section 5.7.4, the parallelogram domain of (U1,U2) is taken as an

example.
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Normal Distribution: N(0,1): The kernel of the standard normal distribution is

given by:h(x) = exp(−1
2x2).

In this case,b, c andd are obtained as follows:

b = sup
x

√
h(x) = 1,

c = inf
x

x
√

h(x) = −
√

2e−1,

d = sup
x

x
√

h(x) =
√

2e−1.

Accordingly, the standard normal random number based on the ratio-of-uniforms

method is represented as follows.
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(i) Generate two independent uniform random drawsu1 andv2 from U(0,1) and

defineu2 = (2v2 − 1)
√

2e−1.

(ii) Setx = u2/u1 if u2
1 ≤ exp(−1

2u2
2/u

2
1), i.e.,−4u2

1 log(u1) ≥ u2
2, and return to (i)

otherwise.

The acceptance probability is given by:∫
h(x) dx

2b(d − c)
=

√
πe
4
≈ 0.7306,

which is slightly smaller than the acceptance probability in the case of rejection

sampling, i.e., 1/
√

2e/π ≈ 0.7602.
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The Fortran source code for the standard normal random number generator based

on the ratio-of-uniforms method is shown insnrnd9(ix,iy,rn).

——— snrnd9(ix,iy,rn)———

1: subroutine snrnd9(ix,iy,rn)
2: c
3: c Use "snrnd9(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: e1=1./2.71828182845905
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12: 1 call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn2=(2.*rn2-1.)*sqrt(2.*e1)
15: if(-4.*rn1*rn1*log(rn1).lt.rn2*rn2 ) go to 1
16: rn=rn2/rn1
17: return
18: end

Gamma Distribution: G(α, β): When random variableX has a gamma distribu-

tion with parametersα andβ, i.e.,X ∼ G(α, β), the density function ofX is written

as follows:

f (x) =
1

βαΓ(α)
xα−1e−

x
β ,
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for 0 < x < ∞.

WhenX ∼ G(α,1), we haveY = βX ∼ G(α, β).

Therefore, first we consider generating a random draw ofX ∼ G(α,1).

Since we have discussed the case of 0< α ≤ 1 in Sections 5.7.1 – 5.7.3, now we

consider the case ofα > 1.

Using the ratio-of-uniforms method, the gamma random number generator is intro-

duced.

h(x), b, c andd are set to be:

h(x) = xα−1e−x,
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b = sup
x

√
h(x) =

(
α − 1

e

)(α−1)/2

,

c = inf
x

x
√

h(x) = 0,

d = sup
x

x
√

h(x) =

(
α + 1

e

)(α+1)/2

.

Note thatα > 1 guarantees the existence of the supremum ofh(x), which implies

b > 0.

See Fishman (1996, pp.194 – 195) and Ripley (1987, pp.88 – 89).

By the ratio-of-uniforms method, the gamma random number with parameterα > 1

andβ = 1 is represented as follows:
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(i) Generate two independent uniform random drawsu1 andu2 from U(0,b) and

U(c,d), respectively.

(ii) Setx = u2/u1 if u1 ≤
√

(u2/u1)α−1e−u2/u1 and go back to (i) otherwise.

Thus, thex obtained in Steps (i) and (ii) is taken as a random draw fromG(α,1) for

α > 1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 pro-

gram for the gamma random number generator with parametersα > 1 andβ = 1 is

shown ingammarnd6(ix,iy,alpha,rn).
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——— gammarnd6(ix,iy,alpha,rn)———

1: subroutine gammarnd6(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd6(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: b=( (alpha-1.)/e )**(0.5*alpha-0.5)
15: d=( (alpha+1.)/e )**(0.5*alpha+0.5)
16: 1 call urnd(ix,iy,rn0)
17: call urnd(ix,iy,rn1)
18: u=rn0*b
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19: v=rn1*d
20: rn=v/u
21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return
23: end

gammarnd6(ix,iy,alpha,rn) should be used together withurnd(ix,iy,rn).

b andd are obtained in Lines 14 and 15.

Lines 16 –19 gives us two uniform random drawsu andv, which correspond tou1

andu2.

rn in Line 20 indicates a candidate of the gamma random draw.
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Line 21 represents Step (ii).

To see efficiency or inefficiency of the generator above, we compute the acceptance

probability in Step (ii) as follows:∫
h(x) dx

2b(d − c)
=

eαΓ(α)
2(α − 1)(α−1)/2(α + 1)(α+1)/2

. (6)

It is known that the acceptance probability decreases by the order ofO(α−1/2), i.e.,

in other words, computational time for random number generation increases by the

order ofO(α1/2).

Therefore, asα is larger, the generator is less efficient.

See Fishman (1996) and Gentle (1998).
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To improve inefficiency for largeα, various methods have been proposed, for exam-

ple, Cheng and Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) and

so on.

As mentioned above, the algorithmgammarnd6 takes a long time computationally

by the order ofO(α1/2) as shape parameterα is large.

Chen and Feast (1979) suggested the algorithm which does not depend too much

on shape parameterα.

As α increases the acceptance region shrinks towardu1 = u2.

Therefore, Chen and Feast (1979) suggested generating two uniform random draws
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within the parallelogram aroundu1 = u2, rather than the rectangle.

The source code is shown ingammarnd7(ix,iy,alpha,rn).

——— gammarnd7(ix,iy,alpha,rn)———

1: subroutine gammarnd7(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd7(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
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12: c
13: e =2.71828182845905
14: c0=1.857764
15: c1=alpha-1.
16: c2=( alpha-1./(6.*alpha) )/c1
17: c3=2./c1
18: c4=c3+2.
19: c5=1./sqrt(alpha)
20: 1 call urnd(ix,iy,u1)
21: call urnd(ix,iy,u2)
22: if(alpha.gt.2.5) u1=u2+c5*(1.-c0*u1)
23: if(0.ge.u1.or.u1.ge.1.) go to 1
24: w=c2*u2/u1
25: if(c3*u1+w+1./w.le.c4) go to 2
26: if(c3*log(u1)-log(w)+w.ge.1.) go to 1
27: 2 rn=c1*w
28: return
29: end
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See Fishman (1996, p.200) and Ripley (1987, p.90).

In Line 22, we use the rectangle for 1< α ≤ 2.5 and the parallelogram forα > 2.5

to give a fairly constant speed asα is varied.

Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computational efficiency,gammarnd7(ix,iy,alpha,rn) is better.

Gamma Distribution: G(α, β) for α > 0 and β > 0: Combininggammarnd2 on

p.353 andgammarnd7 on p.441, we introduce the gamma random number generator

in the case ofα > 0.
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In addition, utilizingY = βX ∼ G(α, β) whenX ∼ G(α,1), the random number gen-

erator forG(α, β) is introduced as in the source codegammarnd8(ix,iy,alpha,beta,rn).

——— gammarnd8(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd8(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd8(ix,iy,alpha,beta,rn)"
4: c together with "gammarnd2(ix,iy,alpha,rn)",
5: c "gammarnd7(ix,iy,alpha,rn)"
6: c and "urnd(ix,iy,rn)".
7: c
8: c Input:
9: c ix, iy: Seeds

10: c alpha: Shape Parameter
11: c beta: Scale Parameter
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12: c Output:
13: c rn: Gamma Random Draw
14: c with Parameters alpha and beta
15: c
16: if( alpha.le.1. ) then
17: call gammarnd2(ix,iy,alpha,rn1)
18: else
19: call gammarnd7(ix,iy,alpha,rn1)
20: endif
21: rn=beta*rn1
22: return
23: end

Lines 16 – 20 show that we usegammarnd2 for α ≤ 1 andgammarnd7 for α > 1.

In Line 21,X ∼ G(α,1) is transformed intoY ∼ G(α, β) by Y = βX, whereX andY
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indicatesrn1 andrn, respectively.

Chi-Square Distribution: χ2(k): The gamma distribution withα = k/2 andβ =

2 reduces to the chi-square distribution withk degrees of freedom.

5.7.5 Gibbs Sampling

The sampling methods introduced in Sections 5.7.1 – 5.7.3 can be applied to the

cases of both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the
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multivariate cases.

The Gibbs sampler shows how to generate random draws from the unconditional

densities under the situation that we can generate random draws from two condi-

tional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon

and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and

Karim (1991), Casella and George (1992), Gamerman (1997) and so on developed

the Gibbs sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke
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and Tanizaki (1999, 2001) applied the Gibbs sampler to the nonlinear and/or non-

Gaussian state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random

variablesX andY in order to make things easier.

Two conditional density functions,fx|y(x|y) and fy|x(y|x), are assumed to be known,

which denote the conditional distribution function ofX givenY and that ofY given

X, respectively.
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Suppose that we can easily generate random draws ofX from fx|y(x|y) and those of

Y from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the

joint density ofX andY, denoted byfxy(x, y).

In order to have the random draws of (X,Y) from the joint densityfxy(x, y), we take

the following procedure:

(i) Take the initial value ofX asx−M.

(ii) Givenxi−1, generate a random draw ofY, i.e.,yi, from f (y|xi−1).

(iii) Givenyi, generate a random draw ofX, i.e.,xi, from f (x|yi).
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(iv) Repeat the procedure fori = −M + 1,−M + 2, · · · ,1.

From the convergence theory of the Gibbs sampler, asM goes to infinity, we can

regardx1 andy1 as random draws fromfxy(x, y), which is a joint density function of

X andY.

M denotes theburn-in period , and the firstM random draws, (xi , yi) for i = −M +

1,−M + 2, · · · ,0, are excluded from further consideration.

When we wantN random draws fromfxy(x, y), Step (iv) should be replaced by Step

(iv)’, which is as follows.

(iv)’ Repeat the procedure fori = −M + 1,−M + 2, · · · ,N.
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As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii)

and (iv)’ is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution

f (u) which satisfiesfi(u) = fi−1(u) = f (u). If we have the reversibility condition

shown in equation (4), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant
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distribution, which implies that there exists the invariant distributionf (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribu-

tion, i.e., f ∗(u|v).

Here, we consider that bothu andv are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions.xi andyi are generated

from fi(u) through f ∗(u|v), given fi−1(v).

Note thatu = (u1,u2) = (xi , yi) is taken whilev = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)
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Thus, we can choosef ∗(u|v) as shown above.

Then, asi goes to infinity, (xi , yi) tends in distribution to a random vector whose

joint density isfxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the

basic result of the Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi , yi) −→ E(g(x, y)) =
∫∫

g(x, y) fxy(x, y) dx dy, as N −→ ∞,

whereg(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.
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Based on the conditional densities, we can generate random draws from the joint

density.

Remark 1: We have considered the bivariate case, but it is easily extended to the

multivariate cases.

That is, it is possible to take multi-dimensional vectors forx andy.

Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the

ith random draws fromfx|yz(x|yi−1, zi−1), fy|xz(y|xi , zi−1) and fz|xy(z|xi , yi), sequentially,

we can obtain the random draws fromfxyz(x, y, z).
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Remark 2: Let X, Y andZ be the random variables.

Take an example of the case whereX is highly correlated withY.

If we generate random draws fromfx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known

that convergence of the Gibbs sampler is slow.

In this case, without separatingX andY, random number generation fromf (x, y|z)

and f (z|x, y) yields better random draws from the joint densityf (x, y, z).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-

gorithm: We compare rejection sampling, importance resampling and the Metropolis-
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Hastings algorithm from precision of the estimated moments and CPU time.

All the three sampling methods utilize the sampling density and they are useful

when it is not easy to generate random draws directly from the target density.

When the sampling density is too far from the target density, it is known that rejec-

tion sampling takes a lot of time computationally while importance resampling and

the Metropolis-Hastings algorithm yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on the

three sampling methods.

For simplicity of discussion, consider the case where both the target and sampling
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densities are normal.

That is, the target densityf (x) is given byN(0,1) and the sampling densityf∗(x) is

N(µ∗, σ2
∗).

µ∗ = 0, 1, 2, 3 andσ∗ = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three moments E(X j), j = 1,2,3, are estimated,

generating 107 random draws.

For importance resampling,n = 104 is taken, which is the number of candidate

random draws.

The Metropolis-Hastings algorithm takesM = 1000 as the burn-in period and the
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initial value isx−M = µ∗.

As for the Metropolis-Hastings algorithm, note that is the independence chain is

taken for f∗(x) because off∗(x|z) = f∗(x).
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 0.000
0 IR 0.060 0.005 0.000 0.005 0.014 0.014

MH −0.004 0.000 0.000 0.000 0.000 0.000
(59.25) (100.00) (74.89) (59.04) (40.99) (31.21)

E(X) RS — — 0.000 0.000 0.000 0.000
= 0 1 IR 0.327 0.032 0.025 0.016 0.011 0.011

MH 0.137 0.000 0.001 0.000 0.000 0.000
(36.28) (47.98) (55.75) (51.19) (38.68) (30.23)

RS — — 0.000 0.000 0.000 0.000
2 IR 0.851 0.080 0.031 0.030 0.003 0.005

MH 0.317 0.005 0.001 0.001 0.000 0.001
(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)

RS — — 0.000 0.000 0.000 −0.001
3 IR 1.590 0.337 0.009 0.029 0.021−0.007

MH 0.936 0.073 −0.002 0.000 0.001 −0.001
(1.68) (3.53) (9.60) (17.47) (24.31) (23.40)
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 1.000 1.000 1.000 0.999
0 IR 0.822 0.972 0.969 0.978 0.994 1.003

MH 0.958 1.000 1.000 1.000 1.001 1.001

E(X2) RS — — 1.000 1.000 1.000 1.000
= 1 1 IR 0.719 0.980 0.983 0.993 1.010 1.004

MH 0.803 1.002 0.999 0.999 1.001 1.002

RS — — 1.000 1.000 1.001 1.001
2 IR 1.076 0.892 1.014 0.984 1.000 1.012

MH 0.677 0.992 1.001 0.999 1.001 1.002

RS — — 1.000 1.000 1.000 1.000
3 IR 2.716 0.696 1.013 1.025 0.969 1.002

MH 1.165 0.892 1.005 1.001 0.999 0.999
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 −0.001
0 IR 0.217 0.034 −0.003 −0.018 0.018 0.036

MH −0.027 0.001 0.001 −0.001 −0.002 −0.004

E(X3) RS — — 0.002 −0.001 0.000 0.001
= 0 1 IR 0.916 0.092 0.059 0.058 0.027 0.032

MH 0.577 −0.003 0.003 0.000 0.002−0.001

RS — — −0.001 0.002 0.001 0.001
2 IR 1.732 0.434 0.052 0.075 0.040 0.001

MH 0.920 0.035 0.003 0.004 0.004 0.004

RS — — 0.000 0.001 0.001 −0.001
3 IR 5.030 0.956 0.094 0.043 0.068 0.020

MH 1.835 0.348 −0.002 0.003 0.001 −0.001
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Comparison of Three Sampling Methods: CPU Time (Seconds)

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 15.96 20.50 30.69 39.62
0 IR 431.89 431.40 431.53 432.58 435.37 437.16

MH 9.70 9.24 9.75 9.74 9.82 9.77

RS — — 23.51 24.09 32.77 41.03
1 IR 433.22 427.96 426.41 426.36 427.80 430.39

MH 9.73 9.54 9.81 9.75 9.83 9.76

RS — — 74.08 38.75 39.18 45.18
2 IR 435.90 432.23 425.06 423.78 421.46 422.35

MH 9.71 9.52 9.83 9.77 9.82 9.77

RS — — 535.55 87.00 52.91 53.09
3 IR 437.32 439.31 429.97 424.45 422.91 418.38

MH 9.72 9.48 9.79 9.75 9.81 9.76
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RS, IR and MH denotes rejection sampling, importance resampling and the Metropolis-

Hastings algorithm, respectively.

In each table, “—” in RS implies the case where rejection sampling cannot be ap-

plied because the supremum ofq(x), supx q(x), does not exist.

As for MH in the case of E(X) = 0, the values in the parentheses represent the

acceptance rate (percent) in the Metropolis-Hastings algorithm.

The results obtained from each table are as follows.

E(X) should be close to zero because we have E(X) = 0 from X ∼ N(0,1).

Whenµ∗ = 0.0, all of RS, IR and MH are very close to zero and show a good
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performance.

Whenµ∗ = 1, 2, 3, forσ∗ = 1.5, 2.0, 3.0, 4.0, all of RS, IR and MH perform well,

but IR and MH in the case ofσ∗ = 0.5, 1.0 have the case where the estimated mean

is too different from zero.

For IR and MH, we can see that givenσ∗ the estimated mean is far from the true

mean asµ∗ is far from mean of the target density.

Also, it might be concluded that givenµ∗ the estimated mean approaches the true

value asσ∗ is large.

E(X2) should be close to one because we have E(X2) = V(X) = 1 from X ∼ N(0,1).
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The cases ofσ∗ = 1.5, 2.0, 3.0, 4.0 and the cases ofµ∗ = 0,1 andσ∗ = 1.0 are very

close to one, but the other cases are different from one.

These are the same results as the case of E(X).

E(X3) should be close to zero because E(X3) represents skewness.

For skewness, we obtain the similar results, i.e., the cases ofσ∗ = 1.5, 2.0, 3.0, 4.0

and the cases ofµ∗ = 0,1 andσ∗ = 0.5, 1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performance of

the three, and IR and MH is quite good whenσ∗ is relatively large.

We can conclude that IR is slightly worse than RS and MH.
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As for the acceptance rates of MH in E(X) = 0, from the table a higher acceptance

rate generally shows a better performance.

The high acceptance rate implies high randomness of the generated random draws.

For variance of the sampling density, both too small variance and too large vari-

ance give us the relatively low acceptance rate, which result is consistent with the

discussion in Chib and Greenberg (1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be computed

in advance (see Section 5.7.2 for IR).
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That is, 104 candidate random draws are generated from the sampling densityf∗(x)

and therefore 104 acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depend onµ∗ andσ∗.

However, for RS, givenσ∗ computational time increases asµ∗ is large.

In other words, as the sampling density is far from the target density the number of

rejections increases.

Whenσ∗ increases givenµ∗, the acceptance rate does not necessarily increase.

However, from the table a largeσ∗ is better than a smallσ∗ in general.

Accordingly, as for RS, under the condition that mean off (x) is unknown, we can
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conclude that relatively large variance off∗(x) should be taken.

Finally, the results are summarized as follows.

(1) For IR and MH, depending on choice of the sampling densityf∗(x), we have

the cases where the estimates of mean, variance and skewness are biased.

For RS, we can always obtain the unbiased estimates without depending on

choice of the sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose the

sampling density with relatively large variance.

Furthermore, for RS we should take the sampling density with relatively large
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variance to reduce computational burden.

But, note that too large variance leads to an increase in computational disad-

vantages.

(3) MH is the least computational sampling method of the three.

For IR, all the acceptance probabilities have to be computed in advance and

therefore

IR takes a lot of time to generate random draws.

In the case of RS, the amount of computation increases asf∗(x) is far from
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f (x).

(4) For the sampling density in MH, it is known that both too large variance and

too small variance yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have to

be generated from the sampling density for evaluation of the expectations

such as E(X) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS some-

times has the case where the supremum ofq(x) does not exist and in this case it is
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impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferred

to IR and RS in a sense of less risk.

However, we should keep in mind that MH also has the problem which choice of

the sampling density is very important.
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6 Bayesian Estimation — Examples

6.1 Heteroscedasticity Model

In Section 6.1, Tanizaki and Zhang (2001) is re-computed using the random number

generators.

Here, we show how to use Bayesian approach in the multiplicative heteroscedastic-

ity model discussed by Harvey (1976).

The Gibbs sampler and the Metropolis-Hastings (MH) algorithm are applied to the

multiplicative heteroscedasticity model, where some sampling densities are consid-
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ered in the MH algorithm.

We carry out Monte Carlo study to examine the properties of the estimates via

Bayesian approach and the traditional counterparts such as the modified two-step

estimator (M2SE) and the maximum likelihood estimator (MLE).

The results of Monte Carlo study show that the sampling density chosen here is suit-

able, and Bayesian approach shows better performance than the traditional counter-

parts in the criterion of the root mean square error (RMSE) and the interquartile

range (IR).
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6.1.1 Introduction

For the heteroscedasticity model, we have to estimate both the regression coeffi-

cients and the heteroscedasticity parameters.

In the literature of heteroscedasticity, traditional estimation techniques include the

two-step estimator (2SE) and the maximum likelihood estimator (MLE).

Harvey (1976) showed that the 2SE has an inconsistent element in the heteroscedas-

ticity parameters and furthermore derived the consistent estimator based on the 2SE,

which is called the modified two-step estimator (M2SE).

These traditional estimators are also examined in Amemiya (1985), Judge, Hill,
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Griffiths and Lee (1980) and Greene (1997).

Ohtani (1982) derived the Bayesian estimator (BE) for a heteroscedasticity linear

model.

Using a Monte Carlo experiment, Ohtani (1982) found that among the Bayesian

estimator (BE) and some traditional estimators, the Bayesian estimator (BE) shows

the best properties in the mean square error (MSE) criterion.

Because Ohtani (1982) obtained the Bayesian estimator by numerical integration,

it is not easy to extend to the multi-dimensional cases of both the regression coeffi-

cient and the heteroscedasticity parameter.
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Recently, Boscardin and Gelman (1996) developed a Bayesian approach in which

a Gibbs sampler and the Metropolis-Hastings (MH) algorithm are used to estimate

the parameters of heteroscedasticity in the linear model.

They argued that through this kind of Bayesian approach, we can average over

our uncertainty in the model parameters instead of using a point estimate via the

traditional estimation techniques.

Their modeling for the heteroscedasticity, however, is very simple and limited.

Their choice of the heteroscedasticity is V(yi) = σ2w−θi , wherewi are known “weights”

for the problem andθ is an unknown parameter.
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In addition, they took only one candidate for the sampling density used in the MH

algorithm and compared it with 2SE.

In Section 6.1, we also consider Harvey’s (1976) model of multiplicative heteroscedas-

ticity.

This modeling is very flexible, general, and includes most of the useful formulations

for heteroscedasticity as special cases.

The Bayesian approach discussed by Ohtani (1982) and Boscardin and Gelman

(1996) can be extended to the multi-dimensional and more complicated cases, using

the model introduced here.
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The Bayesian approach discussed here includes the MH within Gibbs algorithm,

where through Monte Carlo studies we examine two kinds of candidates for the

sampling density in the MH algorithm and compare the Bayesian approach with

the two traditional estimators, i.e., M2SE and MLE, in the criterion of the root

mean square error (RMSE) and the interquartile range (IR).

We obtain the results that the Bayesian estimator significantly has smaller RMSE

and IR than M2SE and MLE at least for the heteroscedasticity parameters.

Thus, the results of the Monte Carlo study show that the Bayesian approach per-

forms better than the traditional estimators.
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6.1.2 Multiplicative Heteroscedasticity Regression Model

The multiplicative heteroscedasticity model discussed by Harvey (1976) can be

shown as follows:

yt = Xtβ + ut, ut ∼ N(0, σ2
t ), (7)

σ2
t = σ

2 exp(qtα), (8)

for t = 1,2, · · · ,n, whereyt is the tth observation,Xt andqt are thetth 1× k and

1× (J − 1) vectors of explanatory variables, respectively.

β andα are vectors of unknown parameters.
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The model given by equations (7) and (8) includes several special cases such as the

model in Boscardin and Gelman (1996), in whichqt = logwt andθ = −α.

As shown in Greene (1997), there is a useful simplification of the formulation.

Let zt = (1,qt) andγ = (logσ2, α′)′, wherezt andγ denote 1× J andJ × 1 vectors.

Then, we can simply rewrite equation (8) as:

σ2
t = exp(ztγ). (9)

Note that exp(γ1) providesσ2, whereγ1 denotes the first element ofγ.

As for the variance ofut, hereafter we use (9), rather than (8).
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The generalized least squares (GLS) estimator ofβ, denoted bŷβGLS, is given by:

β̂GLS =
( n∑

t=1

exp(−ztγ)X′t Xt

)−1
n∑

t=1

exp(−ztγ)X′t yt, (10)

whereβ̂GLS depends onγ, which is the unknown parameter vector.

To obtain the feasible GLS estimator, we need to replaceγ by its consistent esti-

mate.

We have two traditional consistent estimators ofγ, i.e., M2SE and MLE, which are

briefly described as follows.
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Modified Two-Step Estimator (M2SE): First, define the ordinary least squares

(OLS) residual byet = yt − Xtβ̂OLS, whereβ̂OLS represents the OLS estimator, i.e.,

β̂OLS = (
∑n

t=1 X′t Xt)−1 ∑n
t=1 X′t yt.

For 2SE ofγ, we may form the following regression:

loge2
t = ztγ + vt.

The OLS estimator ofγ applied to the above equation leads to the 2SE ofγ, because

et is obtained by OLS in the first step.
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Thus, the OLS estimator ofγ gives us 2SE, denoted by ˆγ2S E, which is given by:

γ̂2S E = (
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t loge2
t .

A problem with this estimator is thatvt, t = 1,2, · · · ,n, have non-zero means and

are heteroscedastic.

If et converges in distribution tout, thevt will be asymptotically independent with

mean E(vt) = −1.2704 and variance V(vt) = 4.9348, which are shown in Harvey

(1976).
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Then, we have the following mean and variance of ˆγ2S E:

E(γ̂2S E) = γ − 1.2704(
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t , (11)

V(γ̂2S E) = 4.9348(
n∑

t=1

z′tzt)
−1.

For the second term in equation (11), the first element is equal to−1.2704 and the

remaining elements are zero, which can be obtained by simple calculation.

Therefore, the first element of ˆγ2S E is biased but the remaining elements are still

unbiased.

To obtain a consistent estimator ofγ1, we consider M2SE ofγ, denoted by ˆγM2S E,
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which is given by:

γ̂M2S E = γ̂2S E + 1.2704(
n∑

t=1

z′tzt)
−1

n∑
t=1

z′t .

Let ΣM2S E be the variance of ˆγM2S E.

Then,ΣM2S E is represented by:

ΣM2S E ≡ V(γ̂M2S E) = V(γ̂2S E) = 4.9348(
n∑

t=1

z′tzt)
−1.

The first element of ˆγ2S E andγ̂M2S E corresponds to the estimate ofσ2, which value

does not influencêβGLS.
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Since the remaining elements of ˆγ2S E are equal to those of ˆγM2S E, β̂2S E is equivalent

to β̂M2S E, whereβ̂2S E andβ̂M2S E denote 2SE and M2SE ofβ, respectively.

Note thatβ̂2S E andβ̂M2S E can be obtained by substituting ˆγ2S E andγ̂M2S E into γ in (10).

Maximum Likelihood Estimator (MLE): The density ofYn = (y1, y2, · · ·, yn)

based on (7) and (9) is:

f (Yn|β, γ) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (12)

which is maximized with respect toβ andγ, using the method of scoring.
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That is, given values forβ( j) andγ( j), the method of scoring is implemented by the

following iterative procedure:

β( j) =
( n∑

t=1

exp(−ztγ
( j−1))X′t Xt

)−1
n∑

t=1

exp(−ztγ
( j−1))X′t yt,

γ( j) = γ( j−1) + 2(
n∑

t=1

z′tzt)
−11

2

n∑
t=1

z′t
(
exp(−ztγ

( j−1))e2
t − 1

)
,

for j = 1,2, · · · , whereet = yt − Xtβ
( j−1).

The starting value for the above iteration may be taken as (β(0), γ(0)) = (β̂OLS, γ̂2S E),

(β̂2S E, γ̂2S E) or (β̂M2S E, γ̂M2S E).

Let θ = (β, γ).
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The limit of θ( j) = (β( j), γ( j)) gives us the MLE ofθ, which is denoted bŷθMLE =

(β̂MLE, γ̂MLE).

Based on the information matrix, the asymptotic covariance matrix ofθ̂MLE is repre-

sented by:

V(θ̂MLE) =

(
− E

(
∂2 log f (Yn|θ)

∂θ∂θ′

))−1

=

( (∑n
t=1 exp(−ztγ)X′t Xt

)−1
0

0 2(
∑n

t=1 z′tzt)−1

)
. (13)

Thus, from (13), asymptotically there is no correlation betweenβ̂MLE andγ̂MLE, and

furthermore the asymptotic variance of ˆγMLE is represented by:ΣMLE ≡ V(γ̂MLE) =
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2(
∑n

t=1 z′tzt)−1, which implies that ˆγM2S E is asymptotically inefficient becauseΣM2S E−

ΣMLE is positive definite.

Remember that the variance of ˆγM2S E is given by: V(γ̂M2S E) = 4.9348(
∑n

t=1 z′tzt)−1.

6.1.3 Bayesian Estimation

We assume that the prior distributions of the parametersβ andγ are noninformative,

which are represented by:

fβ(β) = constant, fγ(γ) = constant. (14)
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Combining the prior distributions (14) and the likelihood function (12), the poste-

rior distribution f
βγ

(β, γ|y) is obtained as follows:

f
βγ

(β, γ|Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) .
The posterior means ofβ andγ are not operationally obtained.

Therefore, by generating random draws ofβ andγ from the posterior densityf
βγ

(β, γ|Yn),

we consider evaluating the mathematical expectations as the arithmetic averages

based on the random draws.

Now we utilize the Gibbs sampler, which has been introduced in Section 5.7.5, to

sample random draws ofβ andγ from the posterior distribution.
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Then, from the posterior densityf
βγ

(β, γ|Yn), we can derive the following two con-

ditional densities:

f
γ|β(γ|β,Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (15)

f
β|γ(β|γ,Yn) = N(B1,H1), (16)

where

H−1
1 =

n∑
t=1

exp(−ztγ)X′t Xt, B1 = H1

n∑
t=1

exp(−ztγ)X′t yt.

Sampling from (16) is simple since it is ak-variate normal distribution with mean

B1 and varianceH1.
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However, since theJ-variate distribution (15) does not take the form of any standard

density, it is not easy to sample from (15).

In this case, the MH algorithm discussed in Section 5.7.3 can be used within the

Gibbs sampler.

See Tierney (1994) and Chib and Greeberg (1995) for a general discussion.

Let γi−1 be the (i − 1)th random draw ofγ andγ∗ be a candidate of theith random

draw ofγ.

The MH algorithm utilizes another appropriate distribution functionf∗(γ|γi), which

is called the sampling density or the proposal density.
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Let us define the acceptance rateω(γi−1, γ
∗) as:

ω(γi−1, γ
∗) = min

(
f
γ|β(γ

∗|βi−1,Yn)/ f∗(γ∗|γi−1)

f
γ|β(γi−1|βi−1,Yn)/ f∗(γi−1|γ∗)

, 1

)
.

The sampling procedure based on the MH algorithm within Gibbs sampling is as

follows:

(i) Set the initial valueβ−M, which may be taken aŝβM2S E or β̂MLE.

(ii) Givenβi−1, generate a random draw ofγ, denoted byγi, from the conditional

densityf
γ|β(γ|βi−1,Yn), where the MH algorithm is utilized for random number

generation because it is not easy to generate random draws ofγ from (15).
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The Metropolis-Hastings algorithm is implemented as follows:

(a) Givenγi−1, generate a random drawγ∗ from f∗(·|γi−1) and compute the

acceptance rateω(γi−1, γ
∗).

We will discuss later about the sampling densityf∗(γ|γi−1).

(b) Setγi = γ
∗ with probabilityω(γi−1, γ

∗) andγi = γi−1 otherwise,

(iii) Givenγi, generate a random draw ofβ, denoted byβi, from the conditional

density f
β|γ(β|γi ,Yn), which isβ|γi ,Yn ∼ N(B1,H1) as shown in (16).

(iv) Repeat (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.
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Note that the iteration of Steps (ii) and (iii) corresponds to the Gibbs sampler, which

iteration yields random draws ofβ andγ from the joint densityf
βγ

(β, γ|Yn) wheni

is large enough.

It is well known that convergence of the Gibbs sampler is slow whenβ is highly

correlated withγ.

That is, a large number of random draws have to be generated in this case.

Therefore, depending on the underlying joint density, we have the case where the

Gibbs sampler does not work at all.

For example, see Chib and Greenberg (1995) for convergence of the Gibbs sampler.
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In the model represented by (7) and (8), however, there is asymptotically no corre-

lation between̂βMLE andγ̂MLE, as shown in (13).

It might be expected that correlation betweenβ̂MLE andγ̂MLE is not too high even in

the small sample.

Therefore, it might be appropriate to consider that the Gibbs sampler works well in

this model.

In Step (ii), the sampling densityf∗(γ|γi−1) is utilized.

We consider the multivariate normal density function for the sampling distribution,

which is discussed as follows.

509



Choice of the Sampling Density in Step (ii): Several generic choices of the sam-

pling density are discussed by Tierney (1994) and Chib and Greenberg (1995).

Here, we takef∗(γ|γi−1) = f∗(γ) as the sampling density, which is called the inde-

pendence chain because the sampling density is not a function ofγi−1.

We consider taking the multivariate normal sampling density in the independence

MH algorithm, because of its simplicity.

Therefore,f∗(γ) is taken as follows:

f∗(γ) = N(γ+, c2Σ+), (17)

which represents theJ-variate normal distribution with meanγ+ and variancec2Σ+.
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The tuning parameterc is introduced into the sampling density (17).

We have mentioned that for the independence chain (Sampling Density I) the sam-

pling density with the variance which gives us the maximum acceptance probability

is not necessarily the best choice.

From some Monte Carlo experiments, we have obtained the result that the sampling

density with the 1.5 – 2.5 times larger standard error is better than that with the

standard error which maximizes the acceptance probability.

Therefore,c = 2 is taken in the next section, and it is the larger value than thec

which gives us the maximum acceptance probability.
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This detail discussion is given in Section 6.1.4.

Thus, the sampling density ofγ is normally distributed with meanγ+ and variance

c2Σ+.

As for (γ+,Σ+), in the next section we choose one of (ˆγM2S E, ΣM2S E) and (γ̂MLE, ΣMLE)

from the criterion of the acceptance rate.

As shown in Section 2, both of the two estimators ˆγM2S E and γ̂MLE are consistent

estimates ofγ.

Therefore, it might be very plausible to consider that the sampling density is dis-

tributed around the consistent estimates.
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Bayesian Estimator: From the convergence theory of the Gibbs sampler and the

MH algorithm, asi goes to infinity we can regardγi andβi as random draws from

the target densityf
βγ

(β, γ|Yn).

Let M be a sufficiently large number.γi andβi for i = 1,2, · · · ,N are taken as the

random draws from the posterior densityf
βγ

(β, γ|Yn).

Therefore, the Bayesian estimators ˆγBZZ andβ̂BZZ are given by:

γ̂BZZ =
1
N

N∑
i=1

γi , β̂BZZ =
1
N

N∑
i=1

βi ,

where we read the subscript BZZ as the Bayesian estimator which uses the multi-

variate normal sampling density with mean ˆγZZ and varianceΣZZ. ZZ takes M2SE
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or MLE.

We consider two kinds of candidates of the sampling density for the Bayesian esti-

mator, which are denoted by BM2SE and BMLE.

Thus, in Section 6.1.4, we compare the two Bayesian estimators (i.e, BM2SE and

BMLE) with the two traditional estimators (i.e., M2SE and MLE).

6.1.4 Monte Carlo Study

Setup of the Model: In the Monte Carlo study, we consider using the artificially

simulated data, in which the true data generating process (DGP) is presented in
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Judge, Hill, Griffiths and Lee (1980, p.156).

The DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, (18)

whereut, t = 1,2, · · · , n, are normally and independently distributed with E(ut) = 0,

E(u2
t ) = σ

2
t and,

σ2
t = exp(γ1 + γ2x2,t), for t = 1,2, · · · ,n. (19)

As it is discussed in Judge, Hill, Griffiths and Lee (1980), the parameter values are

set to be (β1, β2, β3, γ1, γ2) = (10,1,1,−2,0.25).
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From (18) and (19), Judge, Hill, Griffiths and Lee (1980, pp.160 – 165) generated

one hundred samples ofy with n = 20.

In the Monte Carlo study, we utilizex2,t andx3,t given in Judge, Hill, Griffiths and

Lee (1980, pp.156), which is shown in Table 1, and generateG samples ofyt given

theXt for t = 1,2, · · · ,n.

That is, we performG simulation runs for each estimator, whereG = 104 is taken.

The simulation procedure is as follows:

(i) Given γ and x2,t for t = 1,2, · · · , n, generate random numbers ofut for

t = 1, 2, · · · ,n, based on the assumptions:ut ∼ N(0, σ2
t ), where (γ1, γ2) =
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Table 1: The Exogenous Variablesx1,t andx2,t

t 1 2 3 4 5 6 7 8 9 10

x2,t 14.53 15.30 15.92 17.41 18.37 18.83 18.84 19.71 20.01 20.26

x3,t 16.74 16.81 19.50 22.12 22.34 17.47 20.24 20.37 12.71 22.98

t 11 12 13 14 15 16 17 18 19 20

x2,t 20.77 21.17 21.34 22.91 22.96 23.69 24.82 25.54 25.63 28.73

x3,t 19.33 17.04 16.74 19.81 31.92 26.31 25.93 21.96 24.05 25.66
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(−2,0.25) andσ2
t = exp(γ1 + γ2x2,t) are taken.

(ii) Given β, (x2,t, x3,t) andut for t = 1,2, · · · ,n, we obtain a set of datayt, t =

1,2, · · · ,n, from equation (18), where (β1, β2, β3) = (10,1,1) is assumed.

(iii) Given (yt,Xt) for t = 1,2, · · · ,n, perform M2SE, MLE, BM2SE and BMLE

discussed in Sections 6.1.2 and 6.1.3 in order to obtain the estimates ofθ =

(β, γ), denoted bŷθ.

Note thatθ̂ takesθ̂M2S E, θ̂MLE, θ̂BM2S E andθ̂BMLE.

(iv) Repeat (i) – (iii)G times, whereG = 104 is taken as mentioned above.

(v) FromG estimates ofθ, compute the arithmetic average (AVE), the root mean
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square error (RMSE), the first quartile (25%), the median (50%), the third

quartile (75%) and the interquartile range (IR) for each estimator.

AVE and RMSE are obtained as follows:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE=

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)

2
)1/2

,

for j = 1,2, · · · ,5, whereθ j denotes thejth element ofθ and θ̂(g)
j represents

the j-element of̂θ in thegth simulation run.

As mentioned above,̂θ denotes the estimate ofθ, whereθ̂ takesθ̂M2S E, θ̂MLE,

θ̂BM2S E andθ̂BMLE.

519



Figure 2: Acceptance Rates in Average:M = 5000 andN = 104
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Choice of (γ+, Σ+) and c: For the Bayesian approach, depending on (γ+, Σ+) we

have BM2SE and BMLE, which denote the Bayesian estimators using the multi-

variate normal sampling density whose mean and covariance matrix are calibrated

on the basis of M2SE or MLE.

We consider the following sampling density:f∗(γ) = N(γ+, c2Σ+), wherec denotes

the tuning parameter and (γ+,Σ+) takes (γM2S E,ΣM2S E) or (γMLE ,ΣMLE).

Generally, for choice of the sampling density, the sampling density should not have

too large variance and too small variance.

Chib and Greenberg (1995) pointed out that if standard deviation of the sampling
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density is too low, the Metropolis steps are too short and move too slowly within

the target distribution; if it is too high, the algorithm almost always rejects and stays

in the same place.

The sampling density should be chosen so that the chain travels over the support of

the target density.

First, we consider choosing (γ+,Σ+) andc which maximizes the arithmetic average

of the acceptance rates obtained fromG simulation runs.

The results are in Figure 2, wheren = 20, M = 5000, N = 104, G = 104 and

c = 0.1,0.2, · · · ,4.0 are taken (choice ofN and M is discussed in Appendix of
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Section 6.1.6).

In the case of (γ+,Σ+) = (γMLE ,ΣMLE) andc = 1.2, the acceptance rate in average is

0.5078, which gives us the largest one.

It is important to reduce positive correlation betweenγi andγi−1 and keep random-

ness.

Therefore, (γ+,Σ+) = (γMLE, ΣMLE) is adopted, rather than (γ+,Σ+) = (γM2S E, ΣM2S E),

because BMLE has a larger acceptance probability than BM2SE for allc (see Figure

2).

However, the sampling density with the largest acceptance probability is not neces-
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sarily the best choice.

We have the result that the optimal standard error should be 1.5 – 2.5 times larger

than the standard error which gives us the largest acceptance probability.

Here, (γ+,Σ+) = (γMLE ,ΣMLE) andc = 2 are taken.

Whenc is larger than 2, both the estimates and their standard errors become stable

although here we do not show these facts.

Therefore, in this Monte Carlo study,f∗(γ) = N(γMLE ,2
2ΣMLE) is chosen for the

sampling density.

Hereafter, we compare BMLE with M2SE and MLE (i.e., we do not consider
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BM2SE anymore).

As for computational CPU time, the case ofn = 20, M = 5000, N = 104 and

G = 104 takes about 76 minutes for each ofc = 0.1,0.2, · · · ,4.0 and each of

BM2SE and BMLE, where Dual Pentium III 1GHz CPU, Microsoft Windows 2000

Professional Operating System and Open Watcom FORTRAN 77/32 Optimizing

Compiler (Version 1.0) are utilized.

Note that WATCOM Fortran 77 Compiler is downloaded from

http://www.openwatcom.org/.
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Results and Discussion: Through Monte Carlo simulation studies, the Bayesian

estimator (i.e., BMLE) is compared with the traditional estimators (i.e., M2SE and

MLE).

The arithmetic mean (AVE) and the root mean square error (RMSE) have been

usually used in Monte Carlo study.

Moreover, for comparison with the standard normal distribution, Skewness and

Kurtosis are also computed.

Moments of the parameters are needed in the calculation of AVE, RMSE, Skewness

and Kurtosis.
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However, we cannot assure that these moments actually exist.

Therefore, in addition to AVE and RMSE, we also present values for quartiles, i.e.,

the first quartile (25%), median (50%), the third quartile (75%) and the interquartile

range (IR).

Thus, for each estimator, AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and

IR are computed fromG simulation runs.

The results are given in Table 3, where BMLE is compared with M2SE and MLE.

The case ofn = 20, M = 5000 andN = 104 is examined in Table 3.

A discussion on choice ofM andN is given in Appendix 6.1.6, where we examine
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whetherM = 5000 andN = 104 are sufficient.
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Table 3: The AVE, RMSE and Quartiles:n = 20

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.064 0.995 1.002 −0.988 0.199

RMSE 7.537 0.418 0.333 3.059 0.146

Skewness 0.062 −0.013 −0.010 −0.101 −0.086

M2SE Kurtosis 4.005 3.941 2.988 3.519 3.572

25% 5.208 0.728 0.778 −2.807 0.113

50% 10.044 0.995 1.003 −0.934 0.200

75% 14.958 1.261 1.227 0.889 0.287

IR 9.751 0.534 0.449 3.697 0.175
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Table 3: The AVE, RMSE and Quartiles:n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.029 0.997 1.002 −2.753 0.272

RMSE 7.044 0.386 0.332 2.999 0.139

Skewness 0.081 −0.023 −0.014 0.006 −0.160

MLE Kurtosis 4.062 3.621 2.965 4.620 4.801

25% 5.323 0.741 0.775 −4.514 0.189

50% 10.066 0.998 1.002 −2.710 0.273

75% 14.641 1.249 1.229 −0.958 0.355

IR 9.318 0.509 0.454 3.556 0.165
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Table 3: The AVE, RMSE and Quartiles:n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.034 0.996 1.002 −2.011 0.250

RMSE 6.799 0.380 0.328 2.492 0.117

Skewness 0.055 −0.016 −0.013 −0.016 −0.155

BMLE Kurtosis 3.451 3.340 2.962 3.805 3.897

25% 5.413 0.745 0.778 −3.584 0.176

50% 10.041 0.996 1.002 −1.993 0.252

75% 14.538 1.246 1.226 −0.407 0.325

IR 9.125 0.501 0.448 3.177 0.150

c = 2.0, M = 5000 andN = 104 are chosen for BMLE
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First, we compare the two traditional estimators, i.e., M2SE and MLE.

Judge, Hill, Griffiths and Lee (1980, pp.141–142) indicated that 2SE ofγ1 is in-

consistent although 2SE of the other parameters is consistent but asymptotically

inefficient.

For M2SE, the estimate ofγ1 is modified to be consistent.

But M2SE is still asymptotically inefficient while MLE is consistent and asymptot-

ically efficient.

Therefore, forγ, MLE should have better performance than M2SE in the sense of

efficiency.
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In Table 3, for all the parameters except for IR ofβ3, RMSE and IR of MLE are

smaller than those of M2SE.

For both M2SE and MLE, AVEs ofβ are close to the true parameter values.

Therefore, it might be concluded that M2SE and MLE are unbiased forβ even in

the case of small sample.

However, the estimates ofγ are different from the true values for both M2SE and

MLE.

That is, AVE and 50% ofγ1 are−0.988 and−0.934 for M2SE, and−2.753 and

−2.710 for MLE, which are far from the true value−2.0.
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Similarly, AVE and 50% ofγ2 are 0.199 and 0.200 for M2SE, which are different

from the true value 0.25.

But 0.272 and 0.273 for MLE are slightly larger than 0.25 and they are close to

0.25.

Thus, the traditional estimators work well for the regression coefficientsβ but not

for the heteroscedasticity parametersγ.

Next, the Bayesian estimator (i.e., BMLE) is compared with the traditional ones

(i.e., M2SE and MLE).

For all the parameters ofβ, we can find from Table 3 that BMLE shows better
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performance in RMSE and IR than the traditional estimators, because RMSE and

IR of BMLE are smaller than those of M2SE and MLE.

Furthermore, from AVEs of BMLE, we can see that the heteroscedasticity parame-

ters as well as the regression coefficients are unbiased in the small sample.

Thus, Table 3 also shows the evidence that for bothβ andγ, AVE and 50% of

BMLE are very close to the true parameter values.

The values of RMSE and IR also indicate that the estimates are concentrated around

the AVE and 50%, which are vary close to the true parameter values.

For the regression coefficientβ, all of the three estimators are very close to the true
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parameter values. However, for the heteroscedasticity parameterγ, BMLE shows a

good performance but M2SE and MLE are poor.

The larger values of RMSE for the traditional counterparts may be due to “outliers”

encountered with the Monte Carlo experiments.

This problem is also indicated in Zellner (1971, pp.281).

Compared with the traditional counterparts, the Bayesian approach is not charac-

terized by extreme values for posterior modal values.

Now we compare empirical distributions for M2SE, MLE and BMLE in Figures 3

– 7.
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Figure 3: Empirical Distributions ofβ1
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Figure 4: Empirical Distributions ofβ2
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Figure 5: Empirical Distributions ofβ3
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Figure 6: Empirical Distributions ofγ1
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Figure 7: Empirical Distributions ofγ2
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For the posterior densities ofβ1 (Figure 3),β2 (Figure 4),β3 (Figure 5) andγ1

(Figure 6), all of M2SE, MLE and BMLE are almost symmetric (also, see Skewness

in Table 3).

For the posterior density ofγ2 (Figure 7), both MLE and BMLE are slightly skewed

to the left because Skewness ofγ2 in Table 3 is negative, while M2SE is almost

symmetric.

As for Kurtosis, all the empirical distributions except forβ3 have a sharp kurtosis

and fat tails, compared with the normal distribution.

Especially, for the heteroscedasticity parametersγ1 andγ2, MLE has the largest
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kurtosis of the three.

For all figures, location of the empirical distributions indicates whether the estima-

tors are unbiased or not.

For β1 in Figure 3,β2 in Figure 4 andβ3 in Figure 5, M2SE is biased while MLE

and BMLE are distributed around the true value.

For γ1 in Figure 6 andγ2 in Figure 7, the empirical distributions of M2SE, MLE

and BMLE are quite different.

For γ1 in Figure 6, M2SE is located in the right-hand side of the true parameter

value, MLE is in the left-hand side, and BMLE is also slightly in the left-hand side.
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Moreover, forγ2 in Figure 7, M2SE is downward-biased, MLE is overestimated,

and BMLE is distributed around the true parameter value.

On the Sample Sizen: Finally, we examine how the sample sizen influences

precision of the parameter estimates.

Since we utilize the exogenous variableX shown in Judge, Hill, Griffiths and Lee

(1980), we cannot examine the case wheren is greater than 20.

In order to see the effect of the sample sizen, here the case ofn = 15 is compared

with that ofn = 20.
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The casen = 15 of BMLE is shown in Table 4, which should be compared with

BMLE in Table 3.

As a result, all the AVEs are very close to the corresponding true parameter values.

Therefore, we can conclude from Tables 3 and 4 that the Bayesian estimator is

unbiased even in the small sample such asn = 15,20.

However, RMSE and IR become large asn decreases.

That is, for example, RMSEs ofβ1, β2, β3, γ1 andγ2 are given by 6.799, 0.380,

0.328, 2.492 and 0.117 in Table 3, and 8.715, 0.455, 0.350, 4.449 and 0.228 in

Table 4.

545



Thus, we can see that RMSE and IR decrease asn is large.
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Table 4: BMLE:n = 15,c = 2.0, M = 5000 andN = 104

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.060 0.995 1.002 −2.086 0.252

RMSE 8.715 0.455 0.350 4.449 0.228

Skewness 0.014 0.033 −0.064 −0.460 0.308

Kurtosis 3.960 3.667 3.140 4.714 4.604

25% 4.420 0.702 0.772 −4.725 0.107

50% 10.053 0.995 1.004 −1.832 0.245

75% 15.505 1.284 1.237 0.821 0.391

IR 11.085 0.581 0.465 5.547 0.284
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6.1.5 Summary

In Section 6.1, we have examined the multiplicative heteroscedasticity model dis-

cussed by Harvey (1976), where the two traditional estimators are compared with

the Bayesian estimator.

For the Bayesian approach, we have evaluated the posterior mean by generating

random draws from the posterior density, where the Markov chain Monte Carlo

methods (i.e., the MH within Gibbs algorithm) are utilized.

In the MH algorithm, the sampling density has to be specified.

We examine the multivariate normal sampling density, which is the independence
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chain in the MH algorithm.

For mean and variance in the sampling density, we consider using the mean and

variance estimated by the two traditional estimators (i.e., M2SE and MLE).

The Bayesian estimators with M2SE and MLE are called BM2SE and BMLE in

Section 6.1.

Through the Monte Carlo studies, the results are summarized as follows:

(i) We compare BM2SE and BMLE with respect to the acceptance rates in the

MH algorithm.

In this case, BMLE shows higher acceptance rates than BM2SE for allc,
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which is shown in Figure 2.

For the sampling density, we utilize the independence chain through Section

6.1.

The high acceptance rate implies that the chain travels over the support of the

target density.

For the Bayesian estimator, therefore, BMLE is preferred to BM2SE.

However, note as follows.

The sampling density which yields the highest acceptance rate is not neces-
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sarily the best choice and the tuning parameterc should be larger than the

value which gives us the maximum acceptance rate.

Therefore, we have focused on BMLE withc = 2 (remember that BMLE

with c = 1.2 yields the maximum acceptance rate).

(ii) For the traditional estimators (i.e., M2SE and MLE), we have obtained the

result that MLE has smaller RMSE than M2SE for all the parameters, because

for one reason the M2SE is asymptotically less efficient than the MLE.

Furthermore, for M2SE, the estimates ofβ are unbiased but those ofγ are

different from the true parameter values (see Table 3).
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(iii) From Table 3, BMLE performs better than the two traditional estimators in

the sense of RMSE and IR, because RMSE and IR of BMLE are smaller than

those of the traditional ones for all the cases.

(iv) Each empirical distribution is displayed in Figures 3 – 7.

The posterior densities of almost all the estimates are distributed to be sym-

metric (γ2 is slightly skewed to the left), but the posterior densities of both the

regression coefficients (except forβ3) and the heteroscedasticity parameters

have fat tails.

Also, see Table 3 for skewness and kurtosis.
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(v) As for BMLE, the case ofn = 15 is compared withn = 20.

The casen = 20 has smaller RMSE and IR thann = 15, while AVE and 50%

are close to the true parameter values forβ andγ.

Therefore, it might be expected that the estimates of BMLE go to the true

parameter values asn is large.
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6.1.6 Appendix: Are M = 5000and N = 104 Sufficient?

Table 5: BMLE:n = 20 andc = 2.0

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.028 0.997 1.002 −2.008 0.250

RMSE 6.807 0.380 0.328 2.495 0.117

Skewness 0.041 −0.007 −0.012 0.017 −0.186

M = 1000 Kurtosis 3.542 3.358 2.963 3.950 4.042

N = 104 25% 5.413 0.745 0.778 −3.592 0.176

50% 10.027 0.996 1.002 −1.998 0.252

75% 14.539 1.245 1.226 −0.405 0.326

IR 9.127 0.500 0.448 3.187 0.150554



Table 5: BMLE:n = 20 andc = 2.0 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.033 0.996 1.002 −2.010 0.250

RMSE 6.799 0.380 0.328 2.491 0.117

Skewness 0.059 −0.016 −0.011 −0.024 −0.146

M = 5000 Kurtosis 3.498 3.347 2.961 3.764 3.840

N = 5000 25% 5.431 0.747 0.778 −3.586 0.176

50% 10.044 0.995 1.002 −1.997 0.252

75% 14.532 1.246 1.225 −0.406 0.326

IR 9.101 0.499 0.447 3.180 0.149
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In Section 6.1.4, only the case of (M,N) = (5000,104) is examined.

In this appendix, we check whetherM = 5000 andN = 104 are sufficient.

For the burn-in periodM, there are some diagnostic tests, which are discussed in

Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999).

However, since their tests are applicable in the case of one sample path, we cannot

utilize them.

BecauseG simulation runs are implemented in Section 6.1.4 (see p.516 for the

simulation procedure), we haveG test statistics if we apply the tests.

It is difficult to evaluateG testing results at the same time.
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Therefore, we consider using the alternative approach to see ifM = 5000 and

N = 104 are sufficient.

For choice ofM andN, we consider the following two issues.

(i) Given fixedM = 5000, compareN = 5000 andN = 104.

(ii) Given fixedN = 104, compareM = 1000 andM = 5000.

(i) examines whetherN = 5000 is sufficiently large, while (ii) checks whether

M = 1000 is large enough. If the case of (M,N) = (5000,5000) is close to that of

(M,N) = (5000,104), we can conclude thatN = 5000 is sufficiently large.
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Similarly, if the case of (M,N) = (1000,104) is not too different from that of

(M,N) = (5000,104), it might be concluded thatM = 1000 is also sufficient.

The results are in Table 5, where AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75%

and IR are shown for each of the regression coefficients and the heteroscedasticity

parameters.

BMLE in Table 3 should be compared with Table 5.

From Tables 3 and 5, the three cases, i.e., (M,N) = (5000,104), (1000,104), (5000,5000),

are very close to each other.

Therefore, we can conclude that bothM = 1000 andN = 5000 are large enough in
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the simulation study shown in Section 6.1.4.

We take the case ofM = 5000 andN = 104 for safety in Section 6.1.4, although we

obtain the results that bothM = 1000 andN = 5000 are large enough.

6.2 Autocorrelation Model

In the previous section, we have considered estimating the regression model with

the heteroscedastic error term, where the traditional estimators such as MLE and

M2SE are compared with the Bayesian estimators.

In this section, using both the maximum likelihood estimator and the Bayes estima-
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tor, we consider the regression model with the first order autocorrelated error term,

where the initial distribution of the autocorrelated error is taken into account.

As for the autocorrelated error term, the stationary case is assumed, i.e., the auto-

correlation coefficient is assumed to be less than one in absolute value.

The traditional estimator (i.e., MLE) is compared with the Bayesian estimator. Uti-

lizing the Gibbs sampler, Chib (1993) discussed the regression model with the au-

tocorrelated error term in a Bayesian framework, where the initial condition of the

autoregressive process is not taken into account.

In this section, taking into account the initial density, we compare the maximum
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likelihood estimator and the Bayesian estimator.

For the Bayes estimator, the Gibbs sampler and the Metropolis-Hastings algorithm

are utilized to obtain random draws of the parameters.

As a result, the Bayes estimator is less biased and more efficient than the maxi-

mum likelihood estimator. Especially, for the autocorrelation coefficient, the Bayes

estimate is much less biased than the maximum likelihood estimate.

Accordingly, for the standard error of the estimated regression coefficient, the Bayes

estimate is more plausible than the maximum likelihood estimate.
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6.2.1 Introduction

In Section 6.2, we consider the regression model with the first order autocorrelated

error term, where the error term is assumed to be stationary, i.e., the autocorrelation

coefficient is assumed to be less than one in absolute value.

The traditional estimator, i.e., the maximum likelihood estimator (MLE), is com-

pared with the Bayes estimator (BE).

Utilizing the Gibbs sampler, Chib (1993) and Chib and Greenberg (1994) discussed

the regression model with the autocorrelated error term in a Bayesian framework,

where the initial condition of the autoregressive process is ignored.
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Here, taking into account the initial density, we compare MLE and BE, where the

Gibbs sampler and the Metropolis-Hastings (MH) algorithm are utilized in BE.

As for MLE, it is well known that the autocorrelation coefficient is underestimated

in small sample and therefore that variance of the estimated regression coefficient

is also biased.

See, for example, Andrews (1993) and Tanizaki (2000, 2001).

Under this situation, inference on the regression coefficient is not appropriate, be-

cause variance of the estimated regression coefficient depends on the estimated au-

tocorrelation coefficient.
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We show in Section 6.2 that BE is superior to MLE because BEs of both the auto-

correlation coefficient and the variance of the error term are closer to the true values,

compared with MLEs.

6.2.2 Setup of the Model

Let Xt be a 1× k vector of exogenous variables andβ be ak× 1 parameter vector.

Consider the following regression model:

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ N(0, σ2
ε ),

for t = 1,2, · · · , n, whereε1, ε2, · · ·, εn are assumed to be mutually independently
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distributed.

In this model, the parameter to be estimated is given byθ = (β, ρ, σ2
ε ).

The unconditional density ofyt is:

f (yt|β, ρ, σ2
ε ) =

1√
2πσ2

ε/(1− ρ2)
exp

(
− 1

2σ2
ε/(1− ρ2)

(yt − Xtβ)2
)
.

Let Yt be the information set up to timet, i.e.,Yt = {yt, yt−1, · · · , y1}.

The conditional density ofyt givenYt−1 is:

f (yt|Yt−1, β, ρ, σ
2
ε ) = f (yt|yt−1, β, ρ, σ

2
ε )

=
1√

2πσ2
ε

exp
(
− 1

2σ2
ε

((yt − ρyt−1) − (Xt − ρXt−1)β)2
)
.
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Therefore, the joint density ofYn, i.e., the likelihood function, is given by :

f (Yn|β, ρ, σ2
ε ) = f (y1|β, ρ, σ2

ε )
n∏

t=2

f (yt|Yt−1, β, ρ, σ
2
ε )

= (2πσ2
ε )
−n/2(1− ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)2
)
, (20)

wherey∗t andX∗t represent the following transformed variables:

y∗t = y∗t (ρ) =


√

1− ρ2yt, for t = 1,

yt − ρyt−1, for t = 2,3, · · · ,n,
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X∗t = X∗t (ρ) =


√

1− ρ2Xt, for t = 1,

Xt − ρXt−1, for t = 2,3, · · · ,n,

which depend on the autocorrelation coefficientρ.

Maximum Likelihood Estimator: We have shown above that the likelihood func-

tion is given by equation (20).

Maximizing equation (20) with respect toβ andσ2
ε , we obtain the following expres-

sions:

β̂ ≡ β̂(ρ) = (
n∑

t=1

X∗t
′X∗t )−1

n∑
t=1

X∗t
′y∗t ,
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σ̂2
ε ≡ σ̂2

ε (ρ) =
1
n

n∑
t=1

(y∗t − X∗t β̂)2. (21)

By substitutingβ̂ andσ̂2
ε into β andσ2

ε in equation (20), we have the concentrated

likelihood function:

f (Yn|β̂, ρ, σ̂2
ε ) =

(
2πσ̂2

ε (ρ)
)−n/2

(1− ρ2)1/2 exp(−n
2

), (22)

which is a function ofρ.

Equation (22) has to be maximized with respect toρ.

In the next section, we obtain the maximum likelihood estimate ofρ by a simple

grid search, in which the concentrated likelihood function (22) is maximized by
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changing the parameter value ofρ by 0.0001 in the interval between−0.9999 and

0.9999.

Once the solution ofρ, denoted by ˆρ, is obtained,̂β(ρ̂) andσ̂2
ε (ρ̂) lead to the maxi-

mum likelihood estimates ofβ andσ2
ε .

Hereafter,β̂, σ̂2
ε andρ̂ are taken as the maximum likelihood estimates ofβ, σ2

ε and

ρ, i.e., β̂(ρ̂) andσ̂2
ε (ρ̂) are simply written aŝβ andσ̂2

ε .

Variance of the estimate ofθ = (β′, σ2, ρ)′ is asymptotically given by: V(̂θ) = I−1(θ),

whereI (θ) denotes the information matrix, which is represented as:

I (θ) = −E

(
∂2 log f (Yn|θ)

∂θ∂θ′

)
.
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Therefore, variance of̂β is given by V(̂β) = σ2(
∑n

t=1 X∗t
′X∗t )−1 in large sample, where

ρ in X∗t is replaced by ˆρ, i.e.,X∗t = X∗t (ρ̂).

For example, suppose thatX∗t has a tendency to rise over timet and that we have

ρ > 0.

If ρ is underestimated, then V(β̂) is also underestimated, which yields incorrect

inference on the regression coefficientβ.

Thus, unlessρ is properly estimated, the estimate of V(β̂) is also biased.

In large sample, ˆρ is a consistent estimator ofρ and therefore V(̂β) is not biased.

However, in small sample, since it is known that ˆρ is underestimated (see, for exam-
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ple, Andrews (1993), Tanizaki (2000, 2001)), clearly V(β̂) is also underestimated.

In addition toρ̂, the estimate ofσ2 also influences inference ofβ, because we have

V(β̂) = σ2(
∑n

t=1 X∗t
′X∗t )−1 as mentioned above.

If σ2 is underestimated, the estimated variance ofβ is also underestimated.

σ̂2 is a consistent estimator ofσ2 in large sample, but it is appropriate to consider

thatσ̂2 is biased in small sample, because ˆσ2 is a function of ˆρ as in (21).

Therefore, the biased estimate ofρ gives us the serious problem on inference ofβ.
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Bayesian Estimator: We assume that the prior density functions ofβ, ρ andσ2
ε

are the following noninformative priors:

fβ(β) ∝ constant, for −∞ < β < ∞, (23)

fρ(ρ) ∝ constant, for −1 < ρ < 1, (24)

fσε (σ
2
ε ) ∝

1
σ2
ε

, for 0 < σ2
ε < ∞. (25)

In equation (24), theoretically we should have−1 < ρ < 1.

As for the prior density ofσ2
ε , since we consider that logσ2

ε has the flat prior for

−∞ < logσ2
ε < ∞, we obtainfσε (σ

2
ε ) ∝ 1/σ2

ε .
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Note that in Section 6.1 the first element of the heteroscedasticity parameterγ is

also assumed to be diffuse, where it is formulated as the logarithm of variance of

the error term, i.e., logσ2
ε .

Combining the four densities (20) and (23) – (25), the posterior density function of

β, ρ andσ2
ε , denoted byfβρσε (β, ρ, σ

2
ε |Yn), is represented as follows:

fβρσε (β, ρ, σ
2
ε |Yn)

∝ f (Yn|β, ρ, σ2
ε ) fβ(β) fρ(ρ) fσε (σ

2
ε )

∝ (σ2
ε )
−(n/2+1)(1− ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)2
)
. (26)

573



We want to have random draws ofβ, ρ andσ2
ε givenYn.

However, it is not easy to generate random draws ofβ, ρ andσ2
ε from fβρσε (β, ρ, σ

2
ε |Yn).

Therefore, we perform the Gibbs sampler in this problem.

According to the Gibbs sampler, we can sample from the posterior density function

(26), using the three conditional distributionsfβ|ρσε (β|ρ, σ2
ε ,Yn), fρ|βσε (ρ|β, σ2

ε ,Yn)

and fσε |βρ(σ
2
ε |β, ρ,Yn), which are proportional tofβρσ(β, ρ, σ2|Yn) and are obtained

as follows:

• fβ|ρσε (β|ρ, σ2
ε ,Yn) is given by:

fβ|ρσε (β|ρ, σ2
ε ,Yn)
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∝ fβρσε (β, ρ, σ
2
ε |Yn) ∝ exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)2
)

= exp
(
− 1

2σ2
ε

n∑
t=1

(
(y∗t − X∗t β̂) − Xt(β − β̂)

)2)
= exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β̂)2 − 1
2σ2

ε

(β − β̂)′(
n∑

t=1

X∗t
′X∗t )(β − β̂)

)
∝ exp

(
−1

2
(β − β̂)′(

1
σ2
ε

n∑
t=1

X∗t
′X∗t )(β − β̂)

)
, (27)

which indicates thatβ ∼ N(β̂, σ2
ε (
∑n

t=1 X∗t
′X∗t )−1), whereβ̂ represents the OLS esti-

mate, i.e.,̂β = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ).
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Thus, (27) implies thatβ can be sampled from the multivariate normal distribution

with meanβ̂ and varianceσ2
ε (
∑n

t=1 X∗t
′X∗t )−1.

• fρ|βσε (ρ|β, σ2
ε ,Yn) is obtained as:

fρ|βσε (ρ|β, σ2
ε ,Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ (1− ρ2)1/2 exp
(
− 1

2σ2
ε

n∑
t=1

(
y∗t − X∗t β

)2)
, (28)

for −1 < ρ < 1, which cannot be represented in a known distribution.

Note thaty∗t = y∗t (ρ) andX∗t = X∗t (ρ).

Sampling from (28) is implemented by the MH algorithm.
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A detail discussion on sampling will be given later.

• fσε |βρ(σ
2
ε |β, ρ,Yn) is represented as:

fσε |βρ(σ
2
ε |β, ρ,Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ 1
(σ2

ε )n/2+1
exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)2
)
, (29)

which is written as follows:σ2
ε ∼ IG(n/2, 2/

∑n
t=1 ε

2
t ), or equivalently, 1/σ2

ε ∼

G(n/2, 2/
∑n

t=1 ε
2
t ), whereεt = y∗t − X∗t β.

Thus, in order to generate random draws ofβ, ρ andσ2
ε from the posterior density

fβρσε (β, ρ, σ
2
ε |Yn), the following procedures have to be taken:
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(i) Let βi, ρi andσ2
ε,i be theith random draws ofβ, ρ andσ2

ε .

Take the initial values of (β, ρ, σ2
ε ) as (β−M, ρ−M, σ2

ε,−M).

(ii) From equation (27), generateβi given ρi−1, σ2
ε,i−1 and Yn, usingβ ∼ N(β̂,

σ2
ε,i−1(

∑n
t=1 X∗t

′X∗t )−1), where β̂ = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ), y∗t = y∗t (ρi−1)

andX∗t = X∗t (ρi−1).

(iii) From equation (28), generateρi givenβi, σ2
ε,i−1 andYn.

Since it is not easy to generate random draws from (27), the Metropolis-

Hastings algorithm is utilized, which is implemented as follows:
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(a) Generateρ∗ from the uniform distribution between−1 and 1, which

implies that the sampling density ofρ is given by f∗(ρ|ρi−1) = 1/2 for

−1 < ρ < 1.

Compute the acceptance probabilityω(ρi−1, ρ
∗), which is defined as:

ω(ρi−1, ρ
∗) = min

 fρ|βσε (ρ
∗|βi , σ

2
ε,i−1,Yn)/ f∗(ρ∗|ρi−1)

fρ|βσε (ρi−1|βi , σ
2
ε,i−1,Yn)/ f∗(ρi−1|ρ∗)

, 1


= min

 fρ|βσε (ρ
∗|βi , σ

2
ε,i−1,Yn)

fρ|βσε (ρi−1|βi , σ
2
ε,i−1,Yn)

, 1

 .
(b) Setρi = ρ

∗ with probabilityω(ρi−1, ρ
∗) andρi = ρi−1 otherwise.
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(iv) From equation (29), generateσ2
ε,i given βi, ρi andYn, using 1/σ2

ε ∼ G(n/2,

2/
∑n

t=1 u2
t ), whereut = y∗t − X∗t β, y∗t = y∗t (ρi) andX∗t = X∗t (ρi).

(v) Repeat Steps (ii) – (iv) fori = −M +1,−M +2, · · · ,N, whereM indicates the

burn-in period.

Repetition of Steps (ii) – (iv) corresponds to the Gibbs sampler.

For sufficiently largeM, we have the following results:

1
N

N∑
i=1

g(βi) −→ E(g(β)),
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1
N

N∑
i=1

g(ρi) −→ E(g(ρ)),

1
N

N∑
i=1

g(σ2
ε,i) −→ E(g(σ2

ε )),

whereg(·) is a function, typicallyg(x) = x or g(x) = x2.

We define the Bayesian estimates ofβ, ρ andσ2
ε as̃β ≡ (1/N)

∑N
i=1 βi, ρ̃ ≡ (1/N)

∑N
i=1 ρi

andσ̃2
ε ≡ (1/N)

∑N
i=1σ

2
ε,i, respectively.

Thus, using both the Gibbs sampler and the MH algorithm, we have shown that we

can sample fromfβρσε (β, ρ, σ2
ε |Yn).

See, for example, Bernardo and Smith (1994), Carlin and Louis (1996), Chen, Shao
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and Ibrahim (2000), Gamerman (1997), Robert and Casella (1999) and Smith and

Roberts (1993) for the Gibbs sampler and the MH algorithm.

6.2.3 Monte Carlo Experiments

For the exogenous variables, again we take the data used in Section 6.1, in which

the true data generating process (DGP) is presented in Judge, Hill, Griffiths and Lee

(1980, p.156).

As in equation (18), the DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, ut = ρut−1 + εt, (30)
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whereεt, t = 1,2, · · · ,n, are normally and independently distributed with E(εt) = 0

and E(ε2
t ) = σ2

ε .

As in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to be (β1,

β2, β3) = (10,1,1).

We utilizex2,t andx3,t given in Judge, Hill, Griffiths and Lee (1980, pp.156), which

is shown in Table 1, and generateG samples ofyt given theXt for t = 1,2, · · · ,n.

That is, we performG simulation runs for each estimator, whereG = 104 is taken.

The simulation procedure is as follows:

(i) Given ρ, generate random numbers ofut for t = 1,2, · · · ,n, based on the
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Figure 8: The Arithmetic Average from the 104 MLE’s of AR(1) Coeff.
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Figure 9: The Arithmetic Average from the 104 BE’s of AR(1) Coeff.

——— M = 5000 andN = 104 ———
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Table 2: MLE:n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.012 0.999 1.000 0.559 0.752

SER 3.025 0.171 0.053 0.240 0.276

RMSE 3.025 0.171 0.053 0.417 0.372

Skewness 0.034 −0.045 −0.008 −1.002 0.736

Kurtosis 2.979 3.093 3.046 4.013 3.812

5% 5.096 0.718 0.914 0.095 0.363

10% 6.120 0.785 0.933 0.227 0.426

25% 7.935 0.883 0.965 0.426 0.550

50% 10.004 0.999 1.001 0.604 0.723

75% 12.051 1.115 1.036 0.740 0.913

90% 13.913 1.217 1.068 0.825 1.120

95% 15.036 1.274 1.087 0.863 1.255
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Table 3: BE withM = 5000 andN = 104: n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.782 0.160 0.051 0.188 0.380

RMSE 2.782 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.022 −1.389 0.725

Kurtosis 3.018 3.049 2.942 5.391 3.783

5% 5.498 0.736 0.915 0.285 0.515

10% 6.411 0.798 0.934 0.405 0.601

25% 8.108 0.891 0.966 0.572 0.776

50% 10.018 1.000 1.001 0.707 1.011

75% 11.888 1.107 1.036 0.799 1.275

90% 13.578 1.205 1.067 0.852 1.555

95% 14.588 1.258 1.085 0.875 1.750
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Table 4: BE withM = 5000 andN = 5000:n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.011 0.999 1.000 0.661 1.051

SER 2.785 0.160 0.051 0.189 0.380

RMSE 2.785 0.160 0.052 0.305 0.384

Skewness 0.004 −0.027 −0.022 −1.390 0.723

Kurtosis 3.028 3.056 2.938 5.403 3.776

5% 5.500 0.736 0.915 0.285 0.514

10% 6.402 0.797 0.934 0.405 0.603

25% 8.117 0.891 0.966 0.572 0.775

50% 10.015 1.000 1.001 0.707 1.011

75% 11.898 1.107 1.036 0.799 1.277

90% 13.612 1.205 1.066 0.852 1.559

95% 14.600 1.257 1.085 0.876 1.747
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Table 5: BE withM = 1000 andN = 104: n = 20 andρ = 0.9

Parameter β1 β2 β3 ρ σ2
ε

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.783 0.160 0.051 0.188 0.380

RMSE 2.783 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.021 −1.391 0.723

Kurtosis 3.031 3.055 2.938 5.404 3.774

5% 5.495 0.736 0.915 0.284 0.514

10% 6.412 0.797 0.935 0.404 0.602

25% 8.116 0.891 0.966 0.573 0.774

50% 10.014 1.000 1.001 0.706 1.011

75% 11.897 1.107 1.036 0.799 1.275

90% 13.587 1.204 1.067 0.852 1.558

95% 14.588 1.257 1.085 0.876 1.746
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assumptions:ut = ρut−1 + εt andεt ∼ N(0,1).

(ii) Given β, (x2,t, x3,t) andut for t = 1,2, · · · ,n, we obtain a set of datayt, t =

1,2, · · · ,n, from equation (30), where (β1, β2, β3) = (10,1,1) is assumed.

(iii) Given (yt,Xt) for t = 1,2, · · · ,n, obtain the estimates ofθ = (β, ρ, σ2
ε ) by the

maximum likelihood estimation (MLE) and the Bayesian estimation (BE)

discussed in Sections 6.2.2, which are denoted byθ̂ andθ̃, respectively.

(iv) Repeat (i) – (iii)G times, whereG = 104 is taken.

(v) FromG estimates ofθ, compute the arithmetic average (AVE), the standard

error (SER), the root mean square error (RMSE), the skewness (Skewness),
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the kurtosis (Kurtosis), and the 5, 10, 25, 50, 75, 90 and 95 percent points

(5%, 10%, 25%, 50%, 75%, 90% and 95%) for each estimator.

For the maximum likelihood estimator (MLE), we compute:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE=

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)

2
)1/2

,

for j = 1,2, · · · ,5, whereθ j denotes thejth element ofθ and θ̂(g)
j represents

the jth element of̂θ in thegth simulation run.

For the Bayesian estimator (BE),θ̂ in the above equations is replaced byθ̃,

and AVE and RMSE are obtained.
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(vi) Repeat (i) – (v) forρ = −0.99,−0.98, · · ·, 0.99.

Thus, in Section 6.2.3, we compare the Bayesian estimator (BE) with the maximum

likelihood estimator (MLE) through Monte Carlo studies.

In Figures 8 and 9, we focus on the estimates of the autocorrelation coefficientρ.

In Figure 8 we draw the relationship betweenρ and ρ̂, whereρ̂ denotes the arith-

metic average of the 104 MLEs, while in Figure 9 we display the relationship be-

tweenρ andρ̃, wherẽρ indicates the arithmetic average of the 104 BEs.

In the two figures the cases ofn = 10, 15,20 are shown, and (M,N) = (5000,104)

is taken in Figure 9 (we will discuss later aboutM andN).
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If the relationship betweenρ andρ̂ (or ρ̃) lies on the 45◦ degree line, we can con-

clude that MLE (or BE) ofρ is unbiased.

However, from the two figures, both estimators are biased.

Take an example ofρ = 0.9 in Figures 8 and 9.

When the true value isρ = 0.9, the arithmetic averages of 104 MLEs are given by

0.142 forn = 10, 0.422 forn = 15 and 0.559 forn = 20 (see Figure 8), while those

of 104 BEs are 0.369 forn = 10, 0.568 forn = 15 and 0.661 forn = 20 (see Figure

9).

As n increases the estimators are less biased, because it is shown that MLE gives us
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the consistent estimators.

Comparing BE and MLE, BE is less biased than MLE in the small sample, because

BE is closer to the 45◦ degree line than MLE.

Especially, asρ goes to one, the difference between BE and MLE becomes quite

large.

Tables 2 – 5 represent the basic statistics such as arithmetic average, standard error,

root mean square error, skewness, kurtosis and percent points, which are computed

from G = 104 simulation runs, where the case ofn = 20 andρ = 0.9 is examined.

Table 2 is based on the MLEs while Tables 3 – 5 are obtained from the BEs.
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Figure 10: Empirical Distributions ofβ1
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Figure 11: Empirical Distributions ofβ2
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Figure 12: Empirical Distributions ofβ3
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Figure 13: Empirical Distributions ofρ
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Figure 14: Empirical Distributions ofσ2
ε
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To check whetherM andN are enough large, Tables 3 – 5 are shown for BE.

Comparison between Tables 3 and 4 shows whetherN = 5000 is large enough and

we can see from Tables 3 and 5 whether the burn-in periodM = 1000 is large

enough.

We can conclude thatN = 5000 is enough if Table 3 is very close to Table 4 and

thatM = 1000 is enough if Table 3 is close to Table 5.

The difference between Tables 3 and 4 is at most 0.034 (see 90% inβ1) and that

between Tables 3 and 5 is less than or equal to 0.013 (see Kurtosis inβ1).

Thus, all the three tables are very close to each other.
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Therefore, we can conclude that (M,N) = (1000,5000) is enough.

For safety, hereafter we focus on the case of (M,N) = (5000,104).

We compare Tables 2 and 3.

Both MLE and BE give us the unbiased estimators of regression coefficientsβ1, β2

andβ3, because the arithmetic averages from the 104 estimates ofβ1, β2 andβ3,

(i.e., AVE in the tables) are very close to the true parameter values, which are set to

be (β1, β2, β3) = (10,1,1).

However, in the SER and RMSE criteria, BE is better than MLE, because SER and

RMSE of BE are smaller than those of MLE. From Skewness and Kurtosis in the
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two tables, we can see that the empirical distributions of MLE and BE of (β1, β2, β3)

are very close to the normal distribution. Remember that the skewness and kurtosis

of the normal distribution are given by zero and three, respectively.

As forσ2
ε , AVE of BE is closer to the true value than that of MLE, because AVE of

MLE is 0.752 (see Table 2) and that of BE is 1.051 (see Table 3).

However, in the SER and RMSE criteria, MLE is superior to BE, since SER and

RMSE of MLE are given by 0.276 and 0.372 (see Table 2) while those of BE are

0.380 and 0.384 (see Table 3).

The empirical distribution obtained from 104 estimates ofσ2
ε is skewed to the right
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(Skewness is positive for both MLE and BE) and has a larger kurtosis than the

normal distribution because Kurtosis is greater than three for both tables.

Forρ, AVE of MLE is 0.559 (Table 2) and that of BE is given by 0.661 (Table 3).

As it is also seen in Figures 8 and 9, BE is less biased than MLE from the AVE

criterion.

Moreover, SER and RMSE of MLE are 0.240 and 0.417, while those of BE are

0.188 and 0.304.

Therefore, BE is more efficient than MLE.

Thus, in the AVE, SER and RMSE criteria, BE is superior to MLE with respect to
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ρ.

The empirical distributions of MLE and BE ofρ are skewed to the left because

Skewness is negative, which value is given by−1.002 in Table 2 and−1.389 in

Table 3.

We can see that MLE is less skewed than BE.

For Kurtosis, both MLE and BE ofρ are greater than three and therefore the em-

pirical distributions of the estimates ofρ have fat tails, compared with the normal

distribution.

Since Kurtosis in Table 3 is 5.391 and that in Table 2 is 4.013, the empirical distri-
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bution of BE has more kurtosis than that of MLE.

Figures 10 – 14 correspond to the empirical distributions for each parameter, which

are constructed from theG estimates used in Tables 2 and 3.

As we can see from Skewness and Kurtosis in Tables 2 and 3,β̂i andβ̃i, i = 1,2,3,

are very similar to normal distributions in Figures 10 – 12.

Forβi, i = 1, 2,3, the empirical distributions of MLE have the almost same centers

as those of BE, but the empirical distributions of MLE are more widely distributed

than those of BE.

We can also observe these facts from AVEs and SERs in Tables 2 and 3.
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In Figure 13, the empirical distribution of ˆρ is quite different from that of̃ρ.

ρ̃ is more skewed to the left than ˆρ andρ̃ has a larger kurtosis than ˆρ.

Since the true value ofρ is 0.9, BE is distributed at the nearer place to the true value

than MLE.

Figure 14 displays the empirical distributions ofσ2
ε . MLE σ̂2

ε is biased and under-

estimated, but it has a smaller variance than BEσ̃2
ε .

In addition, we can see that BẼσ2
ε is distributed around the true value.
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6.2.4 Summary

In Section 6.2, we have compared MLE with BE, using the regression model with

the autocorrelated error term.

Chib (1993) applied the Gibbs sampler to the autocorrelation model, where the

initial density of the error term is ignored.

Under this setup, the posterior distribution ofρ reduces to the normal distribution.

Therefore, random draws ofρ givenβ, σ2
ε and (yt,Xt) can be easily generated.

However, when the initial density of the error term is taken into account, the pos-

terior distribution ofρ is not normal and it cannot be represented in an explicit
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functional form.

Accordingly, in Section 6.2, the Metropolis-Hastings algorithm have been applied

to generate random draws ofρ from its posterior density.

The obtained results are summarized as follows.

Givenβ′ = (10,1,1) andσ2 = 1, in Figure 8 we have the relationship betweenρ

andρ̂, andρ̃ corresponding toρ is drawn in Figure 9.

In the two figures, we can observe:

(i) both MLE and BE approach the true parameter value asn is large, and

(ii) BE is closer to the 45◦ degree line than MLE and accordingly BE is superior to
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MLE.

Moreover, we have compared MLE with BE in Tables 2 and 3, whereβ′ = (10,1,1),

ρ = 0.9 andσ2 = 1 are taken as the true values.

As for the regression coefficientβ, both MLE and BE gives us the unbiased estima-

tors.

However, we have obtained the result that BE ofβ is more efficient than MLE. For

estimation ofσ2,

BE is less biased than MLE.

In addition, BE of the autocorrelation coefficientρ is also less biased than MLE.
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Therefore, as for inference onβ, BE is superior to MLE, because it is plausible to

consider that the estimated variance ofβ̂ is biased much more than that ofβ̃.

Remember that variance ofβ̂ depends on bothρ andσ2.

Thus, from the simulation studies, we can conclude that BE performs much better

than MLE.
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6.3 Marginal Likelihood, Convergence Diagnostic and so on

6.3.1 Marginal Likelihood (周辺尤度)

Model Selection=⇒ Marginal Likelihood

fy(y) =
∫

fy|θ(y|θ) fθ(θ)dθ

Evaluation of Marginal Likelihood =⇒ Proper Prior
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(i) Importance Sampling: Use of Prior Distribution

fy(y) = Eθ( fy|θ(y|θ)) ≈
1
N

N∑
i=1

fy|θ(y|θi),

whereθi is theith random draw generated from the prior distributionfθ(θ).
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(ii) Importance Sampling: Use of the Appropriate Importance Distribution

fy(y) =
∫

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ = E

( fy|θ(y|θ) fθ(θ)

g(θ)

)
≈ 1

N

N∑
i=1

fy|θ(y|θi) fθ(θi)

g(θi)
,

whereθi is theith random draw generated from the appropriately chosen importance

distributiong(θ).
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(iii) Harmonic Mean =⇒Gelfand and Dey (1994) and Newton and Raftery (1994)

1
fy(y)

=

∫
g(θ)
fy(y)

dθ =
∫

g(θ)
fy(y) fθ|y(θ|y)

fθ|y(θ|y)dθ

=

∫
g(θ)

fy|θ(y|θ) fθ(θ)
fθ|y(θ|y)dθ ≈ 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

,

whereθi is theith random draw generated from the posterir distributionfθ|y(θ|y).

Thus, the marginal distribution is evaluated by:

fy(y) ≈
 1
N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

−1

, =⇒ Gelfand and Dey (1994).
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Wheng(θ) = fθ(θ) is taken, the marginal distribution is given by:

fy(y) ≈
 1
N

N∑
i=1

1
fy|θ(y|θi)

−1

, =⇒ Newton and Raftery (1994).

(iv) Chib (1995) and Chib and Jeliazkov (2001)

fy(y) =
fy|θ(y|θ) fθ(θ)

fθ|y(θ|y)

log fy(y) = log fy|θ(y|θ̂) + log fθ(θ̂) − log fθ|y(θ̂|y),

whereθ̂ denotes the Bayes estimates.

We need to evaluate logfθ|y(θ̂|y), using the Gibbs sampler or the MH algorithm.
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6.3.2 Convergence Diagnostic (収束判定)

We need to check whether theburn-in period is enough and whether MCMC con-

verges to theinvariant distribution ( 不変分布).

Geweke (1992)

Divide the sample path into three periods, excluding the burn-in period..

Test whether the first period is different from the third period.

Suppose that we have the MCMC sequence, i.e.,θ−M+1, · · ·, θ0, θ1, · · ·, θN.

The burn-in period is denoted byθ−M+1, · · ·, θ0.

θ1, · · ·, θN are divided by three periods.
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The first period is given byθ1, · · ·, θN1.

The second period is given byθN1+1, · · ·, θN2.

The third period is given byθN2+1, · · ·, θN.

Consider a functiong(·).

Define g1 =
1
N1

N1∑
i=1

g(θi) and g3 =
1
N3

N∑
i=N1+N2+1

g(θi) for N3 = N−N2−N1.

Estimate
1
N1

V(
N1∑
i=1

g(θi)) and
1
N3

V(
N∑

i=N1+N2+1

g(θi)),

which are denoted bys2
1 ands2

3, respectively.
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By the central limit theorem,

g1 − E(g1)

s1/
√

N1

−→ N(0,1) and
g3 − E(g3)

s3/
√

N3

−→ N(0,1).

Therefore, under the null hypothesisH0 : E(g1) = E(g3),

g1 − g3√
s2

1/N1 + s2
3/N3

−→ N(0,1).

The case ofg(θi) = θi =⇒ Testing whether the two means (i.e., first-moments) are

equal.

The case ofg(θi) = θ2
i =⇒ Testing whether the two second-moments are equal.
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Computation ofs2
1 and s2

3 has to be careful, becauseg(θ1), · · ·, g(θN) are serially

correlated.

=⇒ Long-run variance.

Take an example ofs2
1, which is an estimate of

1
N1

V(
N1∑
i=1

g(θi)).
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1
N1

V(
N1∑
i=1

g(θi)) =
1
N1

N1∑
i=1

N1∑
j=1

Cov(g(θi),g(θ j))

=
1
N1

(N1γ(0)+ 2(N1 − 1)γ(1)+ 2(N1 − 2)γ(2)+ · · · + 2γ(N1 − 1))

= γ(0)+ 2
N1−1∑
τ=1

k(
τ

N1
)γ(τ), =⇒ Bartlett Kernel (Newy-West Est.)

whereγ(τ) = Cov(g(θi),g(θi+τ)).

We may choose the other kernels (for example, Parzen kernel or second-order spec-

trum kernel; see p.166-167) fork(x).
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Thus,s2
1 is estimated by:

s2
1 = γ̂(0)+ 2

q∑
τ=1

k(
τ

q+ 1
)γ̂(τ),

for q ≤ N1 − 1. =⇒ Choice ofq andk(·).

628


