—_—

3 Multiple Regression Model E&[al)&E 7 /L)

Up to now, only one independent variable, i>g, is taken into the regression model.
We extend it to more independent variables, which is calledrthitiple regression
model EEVZETIV).

We consider the following regression model:

B
B2
Vi =BaiXia+BoXio+ -+ BuXik + U = (Xia, Xiz, o, Xik) [ Fu=xg+u,

B

fori =1,2,---,n, wherex; andg denote a X k vector of the independent variables
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and ak x 1 vector of the unknown parameters to be estimated, which are given by
B1
B2
X=X %K), B=] .|

B

X; ; denotes théth observation of thgth independent variable.
The case ok = 2 andx;; = 1 for all i is exactly equivalent to (1).
Therefore, the matrix form above is a generalization of (1).
Writing all the equations for=1,2,---,n, we have:

Y1 =B1X1 + BoXez + - + BrXak + U = Xgf + U,

Yo = B1Xo1 + BoXop + -+ + BiXok + U2 = Xof8 + Uy,

Yn = ﬁlxn,l +ﬁ2Xn,2 +-- +ﬁkxn,k + Up = XnB + Up,
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which is rewritten as:

Y1 X1 X2 -0 Xk ) (B1 Up
Y2 Xo1 Xo2 0 Xok || B2 uy
= +
Yn Xn1 Xn2 -t Xnk/ \Bk Un

X1 Uy

X2 U
= . |8+

Xn Un

Again, the above equation is compactly rewritten as:

y=XB+U,
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wherey, X andu are denoted by:

Y1 X11 X2 ot Xk X1 Uy

Y2 Xo1 Xo2 ottt Xok X2 Uy
y={ .| X=[ . . = u=

yn Xn,l Xn,2 Tt Xn,k Xn Un

Utilizing the matrix form (18), we derive the ordinary least squares estimatgy of
denoted by3.

In (18), replacings by 3, we have the following equation:
y=XB+e

wheree denotes & x 1 vector of the residuals.

Theith element okis given bys,.
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The sum of squared residuals is written as follows:
~ n ~ ~ ~ ~
S(B) = ZQ-Z =€e=(y—-XB)(y—XB) = (Y - BX)(y - Xp)
i=1
=YY -YXB-BXY+BXXB =Yy~ 2yXB+ X XB.
In the last equality, note thatX’'y = y'X3 because both are scalars.

To minimize S(3) with respect tg3, we set the first derivative &(3) equal to zero,

i.e.,

8(89('8) —2X'y + 2X'Xj3 = 0.

Solving the equation above with respectdheordinary least squares estimator
(OLS, x/NBEHEE) of Bis given by:

= (X’X)"IXy. (19)
Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

»S(B)

SV = 2X'X
opop

is a positive definite matrix.

Setc = Xd.

For anyd # 0, we haver’c = d’X’Xd > 0.
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Now, in order to obtain the properties gfsuch as mean, variance, distribution and

so on, (19) is rewritten as follows:

B = (X'X)IXy = (X'X)™IX/(XB + u) = (X'X)IX'XB + (X'X) "X 'u
=B+ (X'X)Xu. (20)

Taking the expectation on both sides of (20), we have the following:
E@) = E@+ (X'X)™IX'u) = B+ (X'X)IXE() = 5,

because of E( = 0 by the assumption of the error teun

Thus, unbiasedness gfis shown.
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The variance of is obtained as:

V(B) = E((B - B)B - B)') = E((X'X)X'u((X'X)™X'u))
= E((X’X)™ X uu X(X’X)™) = (X’X) X E(uu) X (X' X)™
= (X' X)X X(X'X) T = o 2(X' X)L

The first equality is the definition of variance in the case of vector.

In the fifth equality, EQu) = 21, is used, which implies that Bf) = o for all i and
E(uu;) = O0fori # j.

Remember that,, Uy, - - -, U, are assumed to be mutually independently and identi

cally distributed with mean zero and variancé
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Under normality assumption on the error teamt is known that the distribution of

Bis given by:
B~ N@B, o (XX)™).

Proof:

First, whenX ~ N(u, X), the moment-generating function, i.@(), is given by:
/ / 1 /
$(6) = E(exp@'X)) = exp(0'u + 56 )
6onx1, uwunxl, Ggkxl, PBkx1
The moment-generating function ofi.e., ¢,(6,), is:
0_2
u(6u) = E(exp@,u)) = ex;(?e[ﬂu),
which isN(0, o1,).
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The moment-generating function,&fi.e.,%(eﬁ), is:

#5(05) = E(exp@B)) = E(exp@B + g5(X'X) X))
= exp@B)E(exp@(X'X)™X'1)) = exp@B)du(G(X X)*X)
= exp@;h) eXF(%Z%(X’X)_léﬁ) = exp(¢8 + %Zeg(x'xrleﬁ),

which is equivalent to the normal distribution with meaand variancer2(X’X) 1.
Note that 6, = X(X'X) 6. QED
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Taking thejth element of3, its distribution is given by:

- . Bi - Bi
Bi ~ N(Bi, o%a;;), e, ——— ~N(0,1),
] ] 1] a\/a_j,-

wherea;; denotes thdth diagonal element of{'X) ™.

Replacings? by its estimatois?, we have the following distribution:

ﬁ] B

-k
Sva, ~1(n-kK),

wheret(n — k) denotes the distribution withn — k degrees of freedom.
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[Review] Trace (b L —2R):

1. Anxn, tr(A) = Y., &, wherea;; denotes an element in tfitl row and the

jth column of a matridA.
2. a:scalar (Ix 1), tr(@@ =a
3. AAnxk, B:kxn, tr(AB)=tr(BA)
4, tr(X(X'X)"1X’) = tr((X’X)"IX’X) = tr(ly) = k
5. WhenX is a square matrix of random variablegtrEAX)) = tr(AE(X))

End of Review
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& is taken as follows:
N 1 <, -
52—— elz_— = = X6y (y - %),
which leads to an unbiased estimatoodf

Proof:
Substitutey = X8 + uandp = 8 + (X’X)"1X’uintoe = y — X3.

e=y—XB=XB8+U—-X(@B+ (X'X)"*X'u)
=u—XX'X)Xu = (I, = X(X'X)"X)u
- X(X’X)"1X" is idempotent and symmetric, because we have:
(In = XX X)2X) (I = XX X)X = 1, = XX X)X
(In = X(X'X)™IX) = 1, = X(X' X)X
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& is rewritten as follows:

&= —ke(e— ((| — XX X)X (1 = X(X' X)X )u
= n%ku (In = XX X) XY (1n = X(X' X)X )u
1
= ﬂu'(ln — X(X' X)X
Take the expectation af (I, — X(X’X)~1X’)u and note that tg) = a for a scalam.

iE(tr((ln = X(X'X)™X")uu))

E(S) = ikE(tr(u'(ln = X(X'X) X))

= nitr((l = X(X'X)™X)E(uu)) = ikaztr(u = X(X'X)™X)1n)

= ﬁo-ztr(ln - X(X' X)X = iaz(tr(ln) — tr(X(X'X)"1X"))
= niaz(tr(ln) —tr(X’X)"IX'X)) = i(r?(tr(ln) —tr(l)

- ikaz(n K) =
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— &?is an unbiased estimator of.

Note that we do not need normality assumption for unbiasedness of

[Review]
o X'X ~ y2(n) for X ~ N(O, I,,).

o (X—u)yT XX = p) ~ ¥3(n) for X ~ N(u, ).

X' X
« = ~ x?(n) for X ~ N(O, o2l,,).
X'AX 5 ) . .
* —5 X (G), whereX ~ N(O,c“l,) andA is a symmetric idempotemt x n

matrix of rankG < n.

Remember thab = Rank@) = tr(A) whenA is symmetric and idempotent.

[End of Review]
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Under normality assumption far, the distribution ofs? is:

(n-K  u(l, - X(X'X)X)u
- 2

2 - ~ X (tr(ln = X(X'X) X))

Note that  tfl,, — X(X'X)"1X") = n -k, because

tr(l,) =n
tr(X(X’ X)™1X’) = tr((X’X)"1X’X) = tr(l,) = k
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Asymptotic Normality (without normality assumption on u): Using the central
limit theorem, without normality assumption we can show that as> oo, under the

" 1 :
condition ofﬁX’X — M we have the following result:

ﬁj Bj
SVa;

whereM denotes & x k constant matrix.

— N(O, 1),

Thus, we can construct the confidence interval and the testing procedure, using
t distribution under the normality assumption or the normal distribution without th

normality assumption.
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