3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., x_i , is taken into the regression model. We extend it to more independent variables, which is called the **multiple regression model** (重回帰モデル).

We consider the following regression model:

$$y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_k x_{i,k} + u_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + u_i = x_i \beta + u_i,$$

for $i = 1, 2, \dots, n$, where x_i and β denote a $1 \times k$ vector of the independent variables

and a $k \times 1$ vector of the unknown parameters to be estimated, which are given by:

$$x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}), \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}.$$

 $x_{i,j}$ denotes the *i*th observation of the *j*th independent variable.

The case of k = 2 and $x_{i,1} = 1$ for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).

Writing all the equations for $i = 1, 2, \dots, n$, we have:

$$y_{1} = \beta_{1}x_{1,1} + \beta_{2}x_{1,2} + \dots + \beta_{k}x_{1,k} + u_{1} = x_{1}\beta + u_{1},$$

$$y_{2} = \beta_{1}x_{2,1} + \beta_{2}x_{2,2} + \dots + \beta_{k}x_{2,k} + u_{2} = x_{2}\beta + u_{2},$$

$$\vdots$$

$$y_{n} = \beta_{1}x_{n,1} + \beta_{2}x_{n,2} + \dots + \beta_{k}x_{n,k} + u_{n} = x_{n}\beta + u_{n},$$

which is rewritten as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Again, the above equation is compactly rewritten as:

$$y = X\beta + u, (18)$$

where *y*, *X* and *u* are denoted by:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \qquad X = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β , denoted by $\hat{\beta}$.

In (18), replacing β by $\hat{\beta}$, we have the following equation:

$$y = X\hat{\beta} + e,$$

where e denotes a $n \times 1$ vector of the residuals.

The *i*th element of e is given by e_i .

The sum of squared residuals is written as follows:

$$S(\hat{\beta}) = \sum_{i=1}^{n} e_i^2 = e'e = (y - X\hat{\beta})'(y - X\hat{\beta}) = (y' - \hat{\beta}'X')(y - X\hat{\beta})$$

= $y'y - y'X\hat{\beta} - \hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta} = y'y - 2y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}.$

In the last equality, note that $\hat{\beta}'X'y = y'X\hat{\beta}$ because both are scalars.

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$, we set the first derivative of $S(\hat{\beta})$ equal to zero, i.e.,

$$\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}} = -2X'y + 2X'X\hat{\beta} = 0.$$

Solving the equation above with respect to $\hat{\beta}$, the **ordinary least squares estimator** (**OLS**, 最小自乗推定量) of β is given by:

$$\hat{\beta} = (X'X)^{-1}X'y. \tag{19}$$

Thus, the ordinary least squares estimator is derived in the matrix form.

(*) Remark

The second order condition for minimization:

$$\frac{\partial^2 S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}'} = 2X'X$$

is a positive definite matrix.

Set c = Xd.

For any $d \neq 0$, we have c'c = d'X'Xd > 0.

Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u$$

$$= \beta + (X'X)^{-1}X'u. \tag{20}$$

Taking the expectation on both sides of (20), we have the following:

$$E(\hat{\beta}) = E(\beta + (X'X)^{-1}X'u) = \beta + (X'X)^{-1}X'E(u) = \beta,$$

because of E(u) = 0 by the assumption of the error term u_i .

Thus, unbiasedness of $\hat{\beta}$ is shown.

The variance of $\hat{\beta}$ is obtained as:

$$\begin{split} \mathbf{V}(\hat{\boldsymbol{\beta}}) &= \mathbf{E}((\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})') = \mathbf{E}\Big((X'X)^{-1}X'u((X'X)^{-1}X'u)'\Big) \\ &= \mathbf{E}((X'X)^{-1}X'uu'X(X'X)^{-1}) = (X'X)^{-1}X'\mathbf{E}(uu')X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}. \end{split}$$

The first equality is the definition of variance in the case of vector.

In the fifth equality, $E(uu') = \sigma^2 I_n$ is used, which implies that $E(u_i^2) = \sigma^2$ for all i and $E(u_i u_j) = 0$ for $i \neq j$.

Remember that u_1, u_2, \dots, u_n are assumed to be mutually independently and identically distributed with mean zero and variance σ^2 .

Under normality assumption on the error term u, it is known that the distribution of $\hat{\beta}$ is given by:

$$\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1}).$$

Proof:

First, when $X \sim N(\mu, \Sigma)$, the moment-generating function, i.e., $\phi(\theta)$, is given by:

$$\phi(\theta) \equiv E(\exp(\theta'X)) = \exp(\theta'\mu + \frac{1}{2}\theta'\Sigma\theta)$$

$$\theta_u$$
: $n \times 1$, u : $n \times 1$, θ_β : $k \times 1$, $\hat{\beta}$: $k \times 1$

The moment-generating function of u, i.e., $\phi_u(\theta_u)$, is:

$$\phi_u(\theta_u) \equiv \mathrm{E}(\exp(\theta'_u u)) = \exp(\frac{\sigma^2}{2}\theta'_u \theta_u),$$

which is $N(0, \sigma^2 I_n)$.

The moment-generating function of $\hat{\beta}$, i.e., $\phi_{\beta}(\theta_{\beta})$, is:

$$\begin{split} \phi_{\beta}(\theta_{\beta}) &\equiv \mathrm{E} \Big(\exp(\theta_{\beta}' \hat{\beta}) \Big) = \mathrm{E} \Big(\exp(\theta_{\beta}' \beta + \theta_{\beta}' (X'X)^{-1} X' u) \Big) \\ &= \exp(\theta_{\beta}' \beta) \mathrm{E} \Big(\exp(\theta_{\beta}' (X'X)^{-1} X' u) \Big) = \exp(\theta_{\beta}' \beta) \phi_{u} \Big(\theta_{\beta}' (X'X)^{-1} X' \Big) \\ &= \exp(\theta_{\beta}' \beta) \exp\Big(\frac{\sigma^{2}}{2} \theta_{\beta}' (X'X)^{-1} \theta_{\beta} \Big) = \exp\Big(\theta_{\beta}' \beta + \frac{\sigma^{2}}{2} \theta_{\beta}' (X'X)^{-1} \theta_{\beta} \Big), \end{split}$$

which is equivalent to the normal distribution with mean β and variance $\sigma^2(X'X)^{-1}$.

Note that
$$\theta_u = X(X'X)^{-1}\theta_{\beta}$$
. QED

Taking the *j*th element of $\hat{\beta}$, its distribution is given by:

$$\hat{\beta}_j \sim N(\beta_j, \sigma^2 a_{jj}),$$
 i.e., $\frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{a_{ij}}} \sim N(0, 1),$

where a_{jj} denotes the *j*th diagonal element of $(X'X)^{-1}$.

Replacing σ^2 by its estimator s^2 , we have the following t distribution:

$$\frac{\hat{\beta}_j - \beta_j}{s \sqrt{a_{jj}}} \sim t(n-k),$$

where t(n - k) denotes the t distribution with n - k degrees of freedom.

[Review] Trace ($\vdash \lor \vdash \lor \vdash \lor$):

- 1. $A: n \times n$, $tr(A) = \sum_{i=1}^{n} a_{ii}$, where a_{ij} denotes an element in the *i*th row and the *j*th column of a matrix A.
- 2. a: scalar (1×1) , tr(a) = a
- 3. A: $n \times k$, B: $k \times n$, tr(AB) = tr(BA)
- 4. $\operatorname{tr}(X(X'X)^{-1}X') = \operatorname{tr}((X'X)^{-1}X'X) = \operatorname{tr}(I_k) = k$
- 5. When X is a square matrix of random variables, E(tr(AX)) = tr(AE(X))

End of Review

 s^2 is taken as follows:

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-k} e' e = \frac{1}{n-k} (y - X\hat{\beta})' (y - X\hat{\beta}),$$

which leads to an unbiased estimator of σ^2 .

Proof:

Substitute $y = X\beta + u$ and $\hat{\beta} = \beta + (X'X)^{-1}X'u$ into $e = y - X\hat{\beta}$.

$$e = y - X\hat{\beta} = X\beta + u - X(\beta + (X'X)^{-1}X'u)$$
$$= u - X(X'X)^{-1}X'u = (I_n - X(X'X)^{-1}X')u$$

 $I_n - X(X'X)^{-1}X'$ is idempotent and symmetric, because we have:

$$(I_n - X(X'X)^{-1}X')(I_n - X(X'X)^{-1}X') = I_n - X(X'X)^{-1}X,'$$
$$(I_n - X(X'X)^{-1}X')' = I_n - X(X'X)^{-1}X'.$$

 s^2 is rewritten as follows:

$$s^{2} = \frac{1}{n-k}e'e = \frac{1}{n-k}((I_{n} - X(X'X)^{-1}X')u)'(I_{n} - X(X'X)^{-1}X')u$$

$$= \frac{1}{n-k}u'(I_{n} - X(X'X)^{-1}X')'(I_{n} - X(X'X)^{-1}X')u$$

$$= \frac{1}{n-k}u'(I_{n} - X(X'X)^{-1}X')u$$

Take the expectation of $u'(I_n - X(X'X)^{-1}X')u$ and note that tr(a) = a for a scalar a.

$$E(s^{2}) = \frac{1}{n-k} E\left(tr\left(u'(I_{n} - X(X'X)^{-1}X')u\right)\right) = \frac{1}{n-k} E\left(tr\left((I_{n} - X(X'X)^{-1}X')uu'\right)\right)$$

$$= \frac{1}{n-k} tr\left((I_{n} - X(X'X)^{-1}X')E(uu')\right) = \frac{1}{n-k} \sigma^{2} tr\left((I_{n} - X(X'X)^{-1}X')I_{n}\right)$$

$$= \frac{1}{n-k} \sigma^{2} tr(I_{n} - X(X'X)^{-1}X') = \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr(X(X'X)^{-1}X'))$$

$$= \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr((X'X)^{-1}X'X)) = \frac{1}{n-k} \sigma^{2} (tr(I_{n}) - tr(I_{k}))$$

$$= \frac{1}{n-k} \sigma^{2} (n-k) = \sigma^{2}$$

 \longrightarrow s^2 is an unbiased estimator of σ^2 .

Note that we do not need normality assumption for unbiasedness of s^2 .

[Review]

- $X'X \sim \chi^2(n)$ for $X \sim N(0, I_n)$.
- $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi^2(n)$ for $X \sim N(\mu, \Sigma)$.
- $\frac{X'X}{\sigma^2} \sim \chi^2(n)$ for $X \sim N(0, \sigma^2 I_n)$.
- $\frac{X'AX}{\sigma^2} \sim \chi^2(G)$, where $X \sim N(0, \sigma^2 I_n)$ and A is a symmetric idempotent $n \times n$ matrix of rank $G \le n$.

Remember that G = Rank(A) = tr(A) when A is symmetric and idempotent.

[End of Review]

Under normality assumption for u, the distribution of s^2 is:

$$\frac{(n-k)s^2}{\sigma^2} = \frac{u'(I_n - X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2(\operatorname{tr}(I_n - X(X'X)^{-1}X'))$$

Note that $\operatorname{tr}(I_n - X(X'X)^{-1}X') = n - k$, because

$$tr(I_n) = n$$

 $tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$

Asymptotic Normality (without normality assumption on u): Using the central limit theorem, without normality assumption we can show that as $n \longrightarrow \infty$, under the condition of $\frac{1}{n}X'X \longrightarrow M$ we have the following result:

$$\frac{\hat{\beta}_j - \beta_j}{s \sqrt{a_{jj}}} \longrightarrow N(0, 1),$$

where M denotes a $k \times k$ constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the t distribution under the normality assumption or the normal distribution without the normality assumption.