4 Properties of OLSE

1．Properties of $\hat{\beta}$ ：BLUE（best linear unbiased estimator，最良線形不偏推定量），i．e．，minimum variance within the class of linear unbiased estimators （Gauss－Markov theorem，ガウス・マルコフの定理）

Proof：

Consider another linear unbiased estimator，which is denoted by $\tilde{\beta}=C y$ ．

$$
\tilde{\beta}=C y=C(X \beta+u)=C X \beta+C u,
$$

where C is a $k \times n$ matrix．
Taking the expectation of $\tilde{\beta}$ ，we obtain：

$$
\mathrm{E}(\tilde{\beta})=C X \beta+C \mathrm{E}(u)=C X \beta
$$

Because we have assumed that $\tilde{\beta}=C y$ is unbiased， $\mathrm{E}(\tilde{\beta})=\beta$ holds．

That is, we need the condition: $C X=I_{k}$.
Next, we obtain the variance of $\tilde{\beta}=C y$.

$$
\tilde{\beta}=C(X \beta+u)=\beta+C u .
$$

Therefore, we have:

$$
\left.\mathrm{V}(\tilde{\beta})=\mathrm{E}(\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(C u u^{\prime} C^{\prime}\right)=\sigma^{2} C C^{\prime}
$$

Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, \mathrm{V}(\tilde{\beta})$ is rewritten as:

$$
\mathrm{V}(\tilde{\beta})=\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} .
$$

Moreover, because $\hat{\beta}$ is unbiased, we have the following:

$$
C X=I_{k}=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k} .
$$

Therefore, we have the following condition:

$$
D X=0 .
$$

Accordingly, $\mathrm{V}(\tilde{\beta})$ is rewritten as:

$$
\begin{aligned}
\mathrm{V}(\tilde{\beta}) & =\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=\mathrm{V}(\hat{\beta})+\sigma^{2} D D^{\prime}
\end{aligned}
$$

Thus, $\mathrm{V}(\tilde{\beta})-\mathrm{V}(\hat{\beta})$ is a positive definite matrix.
$\Longrightarrow \mathrm{V}\left(\tilde{\beta}_{i}\right)-\mathrm{V}\left(\hat{\beta}_{i}\right)>0$
$\Longrightarrow \hat{\beta}$ is a minimum variance (i.e., best) linear unbiased estimator of β.

Note as follows:
$\Longrightarrow A$ is positive definite when $d^{\prime} A d>0$ except $d=0$.
\Longrightarrow The i th diagonal element of A, i.e., $a_{i i}$, is positive (choose d such that the i th element of d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that $U \sim \chi(n), V \sim \chi(m)$, and U is independent of V.
Then, $\frac{U / n}{V / m} \sim F(n, m)$.
[End of Review]
\boldsymbol{F} Distribution $\left(\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\beta}=\mathbf{0}\right)$: Final Result in this Section:

$$
\frac{(\hat{\beta}-\beta) X^{\prime} X(\hat{\beta}-\beta)^{\prime} / k}{e^{\prime} e /(n-k)} \sim F(k, n-k) .
$$

Consider the numerator and the denominator, separately.

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Therefore, $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$.
2. Proof:

Using $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$, we obtain:

$$
\begin{aligned}
(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u=u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

Note that $X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is symmetric and idempotent, i.e., $A^{\prime} A=A$.

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

The degree of freedom is given by:

$$
\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k
$$

Therefore, we obtain:

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k)
$$

3. (*) Formula:

Suppose that $X \sim N\left(0, I_{k}\right)$.

If A is symmetric and idempotent, i.e., $A^{\prime} A=A$, then $X^{\prime} A X \sim \chi^{2}(\operatorname{tr}(A))$.
Here, $X=\frac{1}{\sigma} u \sim N\left(0, I_{n}\right)$ from $u \sim N\left(0, \sigma^{2} I_{n}\right)$, and $A=X\left(X^{\prime} X\right)^{-1} X^{\prime}$.
4. Sum of Residuals: e is rewritten as:

$$
e=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
$$

Therefore, the sum of residuals is given by:

$$
e^{\prime} e=u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
$$

Note that $\quad I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is symmetric and idempotent.
We obtain the following result:

$$
\frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

where the trace is:

$$
\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k .
$$

Therefore, we have the following result:

$$
\frac{e^{\prime} e}{\sigma^{2}}=\frac{(n-k) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

where

$$
s^{2}=\frac{1}{n-k} e^{\prime} e
$$

5. We show that $\hat{\beta}$ is independent of e.

Proof:

Because $u \sim N\left(0, \sigma^{2} I_{n}\right)$, we show that $\operatorname{Cov}(e, \hat{\beta})=0$.

$$
\begin{aligned}
& \operatorname{Cov}(e, \hat{\beta})=\mathrm{E}\left(e(\hat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(\sigma^{2} I_{n}\right) X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X\left(X^{\prime} X\right)^{-1}-X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\sigma^{2}\left(X\left(X^{\prime} X\right)^{-1}-X\left(X^{\prime} X\right)^{-1}\right)=0
\end{aligned}
$$

$\hat{\beta}$ is independent of e, because of normality assumption on u

[Review]

- Suppose that X is independent of Y. Then, $\operatorname{Cov}(X, Y)=0$. However, $\operatorname{Cov}(X, Y)=0$ does not mean in general that X is independent of Y.
- In the case where X and Y are normal, $\operatorname{Cov}(X, Y)=0$ indicates that X is independent of Y.
[End of Review]

[Review] Formulas - F Distribution:

- $\frac{U / n}{V / m} \sim F(n, m)$ when U
$\operatorname{sim}^{2}(n), V \sim \chi^{2}(m)$, and U is independent of V.
- When $X \sim N\left(0, I_{n}\right), A$ and B are $n \times n$ symmetric idempotent matrices, $\operatorname{Rank}(A)=\operatorname{tr}(A)=G, \operatorname{Rank}(B)=\operatorname{tr}(B)=K$ and $A B=0$, then $\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim$ $F(G, K)$.

Note that the covariance of $A X$ and $B X$ is zero, which implies that $A X$ is independent of $B X$ under normality of X.
[End of Review]
6. Therefore, we obtain the following distribution:

$$
\begin{aligned}
& \frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k) \\
& \frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}(n-k)
\end{aligned}
$$

$\hat{\beta}$ is independent of e, because $X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=0$.
Accordingly, we can derive:

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) / k}{s^{2}} \sim F(k, n-k)
$$

Under the null hypothesis $H_{0}: \beta=0, \frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}} \sim F(k, n-k)$.
Given data, $\frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}}$ is compared with $F(k, n-k)$.
If $\frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}}$ is in tha tail of the F distribution, the null hypothesis is rejected.

Coefficient of Determination（決定係数）， \boldsymbol{R}^{2} ：
1．Definition of the Coefficient of Determination，$R^{2}: \quad R^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
2．Numerator：$\quad \sum_{i=1}^{n} e_{i}^{2}=e^{\prime} e$
3．Denominator：$\quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y$
（＊）Remark

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{n}-\bar{y}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)-\left(\begin{array}{c}
\bar{y} \\
\bar{y} \\
\vdots \\
\bar{y}
\end{array}\right)=y-\frac{1}{n} i i^{\prime} y=\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y,
$$

where $i=(1,1, \cdots, 1)^{\prime}$ ．
4. In a matrix form, we can rewrite as: $\quad R^{2}=1-\frac{e^{\prime} e}{y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y}$

F Distribution and Coefficient of Determination:

\Longrightarrow This will be discussed later.

