8 Generalized Least Squares Method (GLS—#% 1t &
INEFEIR)
1. Regression model: y = X8 + u, u~ N(0,0%2Q)

2. Heteroscedasticity IR&E D8, FHE—9E)

0—% 0 --- 0
0 o2

o’Q = 2 )
0 0 o2
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First-Order Autocorrelation ( —F& D B 248, *7IHEE)

In the case of time series data, the subscript is conventionally givembyi .

U = pU_1 + &, & ~ iid N(0, o)
1 p P P
o 1 p e p"?
2 o’ 2 n-3
ngzl—pz 0 0 1 - p
ol 2 pn-3 1

o
V(W) =02 = €
h 1= 2

3. The Generalized Least Squares (GLS-f%{t i/ — k) estimator ofg,
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denoted byb, solves the following minimization problem:

min (y — Xby QX (y — Xb)
b

The GLSE ofg is:
b=(XQ X)Xty
. In general, wheif is symmetricQ is decomposed as follows.

Q=AAA

A is a diagonal matrix, where the diagonal elements afe given by the eigen
values.

Ais a matrix consisting of eigen vectors.

WhenQ is a positive definite matrix, all the diagonal elementa @ire positive.
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5. There exist® such thaQQ = PP (i.e., takeP = AAY?), — PlQP1 =1,

Multiply P~ on both sides of = X8 + u.
We have:
y* =X +u,
where y*=Ply, X*=P1X, and u*=Plu
The variance oti* is:
V(u*) = V(Pu) = PV(U)P ™t = o?PIQP T = o,

becaus® = PP, i.e.,P1QP 1 =|,.
Accordingly, the regression model is rewritten as:
y* = X*B+ U*, u* ~ (0,0l,)
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Apply OLS to the above model.
Let b be as estimator ¢d from the above model.

That is, the minimization problem is given by:

min (y* — X*b)’'(y* — X*b),
b

which is equivalent to:

min (y — Xb)'Q}(y — Xb).
b

Solving the minimization problem above, we have the following estimator:
b — (X*fx*)—lx*/y*
— (x/Q—lx)—lle—ly’
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which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:
b=pg+ (X*X")X"u* =g+ (XQ X)X QM
The mean and variance bfare given by:
E() =5,
V(b) = c#(X*'X*) ! = (X' QX)
6. Suppose that the regression model is given by:
y = X8+ U, u ~ N(0, 0%Q).
In this case, when we use OLS, what happens?
B=(X'X)"IX'y = B+ (X'X)™X'u
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V(B) = o2(X X)X QX (X' X)L

Compare GLS and OLS.

(a) Expectation:
E@G)=p8 and Ep)=p
Thus, both3 andb are unbiased estimator.

(b) Variance:

V(B) = ?(X' X)X QX (X' X) ™
V(b) = o (X'Q1X)?

Which is more éicient, OLS or GLS?.
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V(B) - V(b) = o2 (X' X)X QX(X'X) ™t - o2(X'Q71X) 2
= (X' X)X - (X QX)X QT
x((XX) X = (X QX)X
= 0’ AQA’
Q is the variance-covariance matrix @fwhich is a positive definite ma-

trix.

Therefore, except faR = 1,,, AQA’ is also a positive definite matrix.

This implies that V8 — V(b;) > 0 for theith element of3.
Accordingly,b is more dficient thans.
7. If u~ N(O, 0?Q), thenb ~ N(B, c2(X'Q1X)™1).
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Consider testing the hypothesid, : R3 =r.
R: Gxk, rankR =G <k
Rb~ N(RB, r2R(X'Q"1X)"'R).
Therefore, the following quadratic form is distributed as:

(Rb—r)Y(RX'Q1X)R) *(Rb-r)

— ~ X*(G)

8. Becausey* — X*b)'(y* — X*b)/o? ~ y(n - k), we obtain:

— 'O~y —
(y Xb) QZ (y Xb) ~X2(n_ k)

g

9. Furthermore, from the fact thatis independent oy — Xb, the following F

distribution can be derived:
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(Rb—r) (RX'QX)R) ™ (Rb-r)/G

- ~F(G,n—K)
(y - Xb'Q(y - Xb)/(n-K)

10. Let b be the unrestricted GLSE aiibe the restricted GLSE.

Their residuals are given l/andu, respectively.

Then, theF test statistic is written as follows:

Q- eQle)/G
eQte/(n-K)

~F(G,n-K)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)
A generalization of the restricted OLS= Stochastic linear restriction:

r=R8+V, E(v) =0 and V{) = c2¥

y=XB+uU, E() =0 and V() = oI,
Using a matrix form,

C) (e el (o) e ) =[]

For estimation, we do not need normality assumption.
Applying GLS, we obtain:

o=[oc =5 ) () e (5 3)°C)
= (XX +R¥R)(Xy+R¥r).
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Mean and Variance df: b is rewritten as follows:

o<(oc wfy ) Gl o f5 20
_ -1
sefoc mfg o) G ()
Therefore, the mean and variance are given by:

E() =8 = b is unbiased.

-l ol ()

= (XX + R¥R)

-1
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9 Maximum Likelihood Estimation (MLE, &=L%)

—> Review
1. The distribution function of X}, is f(x;6), wherex = (X, X, ---, X,) and

0= (u3).

Note thatX is a vector of random variables ards a vector of their realizations

(i.e., observed data).

Likelihood functionL(-) is defined as.(¢; x) = f(x; 6).

Note thatf(x;0) = 1L, f(x;6) whenXy, Xp, ---, X, are mutually indepen-
dently and identically distributed.
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The maximum likelihood estimator (MLE) @fis 6 such that:

max L(6; X). = max logL(#; X).
6 6

MLE satisfies the following two conditions:

dlogL(6; X)
(a) 50 =0.
2 .
(b) M is a negative definite matrix.

0006’
2. Fisher's information matrix ( 7 1 < + —D1E#,RTT3) is defined as:

0% log L(6; X))

JORS 9000

where we have the following equality:

0%logL(8; X) dlogL(#; X) dlogL(8; X) dlogL(8; X)
)= & V()

_E( 006’ 90 EY 90
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