
7. Some Formulas:

Let Xn andYn be the random variables which satisfy plimXn = c and plimYn =

d. Then,

(a) plim (Xn + Yn) = c+ d

(b) plim XnYn = cd

(c) plim Xn/Yn = c/d for d , 0

(d) plim g(Xn) = g(c) for a functiong(·)

=⇒ Slutsky’s Theorem (スルツキー定理)
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8. Central Limit Theorem (中心極限定理)

Univariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed asXi ∼ (µ, σ2).

Then,
X − E(X)√

V(X)
=

X − µ
σ/
√

n
−→ N(0,1),

which implies

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0, σ2).
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Multivariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed asXi ∼ (µ, Σ).

Then,
1
√

n

n∑
i=1

(Xi − µ) −→ N(0,Σ)

9. Central Limit Theorem (Generalization)

X1, X2, · · ·, Xn are mutually independently and identically distributed asXi ∼

(µ, Σi).

Then,
1
√

n

n∑
i=1

(Xi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞

1
n

n∑
i=1

Σi

 .
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10. Definition: Let θ̂n be a consistent estimator ofθ.

Suppose that
√

n(θ̂n − θ) converges toN(0,Σ) in distribution.

Then, we say that̂θn has anasymptotic distribution (漸近分布): N(θ,Σ/n).

11. X1,X2, · · · ,Xn are random variables with density functionf (x; θ).

Let θ̂n be a maximum likelihood estimator ofθ.

Then, under someregularity conditions. θ̂n is a consistent estimator ofθ and

the asymptotic distribution of
√

n(θ̂ − θ) is given by:N

0, lim (
I (θ)
n

)−1.
12. Regularity Conditions:

(a) The domain ofXi does not depend onθ.

(b) There exists at least third-order derivative off (x; θ) with respect toθ, and

their derivatives are finite.
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13. Thus, MLE is

(i) consistent，

(ii) asymptotically normal，and

(iii) asymptotically efficient.
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y = Xβ + u, u ∼ (0, σ2In).

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample sizen.

Consistency: Asn is large,β̂n converges toβ.

2. Assume the stationarity assumption forX, i.e.,

1
n

X′X −→ Mxx.

Then, we have the following result:

1
n

X′u −→ 0.
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Proof:

According to Chebyshev’s inequality, forg(Z) ≥ 0,

P(g(Z) ≥ k) ≤ E(g(Z))
k
,

wherek is a positive constant.

Setg(Z) = Z′Z, andZ =
1
n

X′u.

Apply Chebyshev’s inequality.

E
(
(
1
n

X′u)′
1
n

X′u
)
=

1
n2

E
(
u′XX′u

)
=

1
n2

E
(
tr(u′XX′u)

)
=

1
n2

E
(
tr(XX′uu′)

)
=

1
n2

tr
(
XX′E(uu′)

)
=
σ2

n2
tr(XX′) =

σ2

n2
tr(X′X) =

σ2

n
tr(

1
n

X′X).

Therefore,

P
(
(
1
n

X′u)′
1
n

X′u ≥ k
)
≤ σ

2

nk
tr(

1
n

X′X) −→ 0× tr(Mxx) = 0.
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Note that from the assumption,

1
n

X′X −→ Mxx.

Therefore, we have:

(
1
n

X′u)′
1
n

X′u −→ 0,

which implies:
1
n

X′u −→ 0,

because (
1
n

X′u)′
1
n

X′u indicates a quadratic form.

3. Note that
1
n

X′X −→ Mxx results in (
1
n

X′X)−1 −→ M−1
xx .

=⇒ Slutsky’s Theorem

(*) Slutsky’s Theorem g(θ̂) −→ g(θ), whenθ̂ −→ θ.

180



4. OLS is given by:

β̂n = β + (X′X)−1X′u = β + (
1
n

X′X)−1(
1
n

X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consitent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

√
n(β̂n − β) −→ N(0.σ2M−1

xx ), whenn −→ ∞.

181



2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually indelendently distributed with meanµ and variance

Σi.

Then, we have the following result:

1
√

n

n∑
i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞

1
n

n∑
i=1

Σi

 .
The distribution ofZi is not assumed.

3. DefineZi = x′i ui. Then,Σi = Var(Zi) = σ2x′i xi.
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4. Σ is defined as:

Σ = lim
n→∞

1
n

n∑
i=1

σ2x′i xi

 = σ2 lim
n→∞

(
1
n

X′X

)
= σ2Mxx,

where

X =


x1

x2

...

xn


5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1
√

n

n∑
i=1

x′i ui =
1
√

n
X′u −→ N(0, σ2Mxx).

On the other hand, from̂βn = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1
n

X′X
)−1 1
√

n
X′u.
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Var

((1
n

X′X
)−1 1
√

n
X′u

)
= E

((1
n

X′X
)−1 1
√

n
X′u

((1
n

X′X
)−1 1
√

n
X′u

)′)
=

(1
n

X′X
)−1(1

n
X′E(uu′)X

)(1
n

X′X
)−1

= σ2
(1
n

X′X
)−1
−→ σ2M−1

xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution ofui is not assumed.
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12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

y = X̃β + u

2. Observed variable:

X = X̃ + V

V: is called themeasurement error (測定誤差 or 観測誤差).

3. For the elements which do not include measurement errors inX, the corre-

sponding elements inV are zeros.
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4. Regression using observed variable:

y = Xβ + (u− Vβ)

OLS ofβ is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′(u− Vβ)

5. Assumptions:

(a) The measurement error inX is uncorrelated with̃X in the limit. i.e.,

plim
(1
n

X̃′V
)
= 0.

Therefore, we obtain the following:

plim
(1
n

X′X
)
= plim

(1
n

X̃′X̃
)
+ plim

(1
n

V′V
)
= Σ + Ω
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(b) u is not correlated withV.

u is not correlated with̃X.

That is,

plim
(1
n

V′u
)
= 0, plim

(1
n

X̃′u
)
= 0.

6. OLSE ofβ is:

β̂ = β + (X′X)−1X′(u− Vβ) = β + (X′X)−1(X̃ + V)′(u− Vβ).

Therefore, we obtain the following:

plim β̂ = β − (Σ + Ω)−1Ωβ
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7. Example: The Case of Two Variables:

The regression model is given by:

yt = α + βx̃t + ut, xt = x̃t + vt.

Under the above model,

Σ = plim
(1
n

X̃′X̃
)
= plim

 1
1
n

∑
x̃i

1
n

∑
x̃i

1
n

∑
x̃2

i

 = ( 1 µ

µ µ2 + σ2

)
,

whereµ andσ2 represent the mean and variance of ˜xi.

Ω = plim
(1
n

V′V
)
= plim

( 0 0

0
1
n

∑
v2

i

)
=

( 0 0

0 σ2
v

)
.

Therefore,

plim

(
α̂

β̂

)
=

(
α

β

)
−

(( 1 µ

µ µ2 + σ2

)
+

( 0 0

0 σ2
v

))−1 ( 0 0

0 σ2
v

) (
α

β

)
=

(
α

β

)
− 1
σ2 + σ2

v

(−µσ2
vβ

σ2
vβ

)
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Now we focus onβ.

β̂ is not consistent. because of:

plim(β̂) = β − σ2
vβ

σ2 + σ2
v

=
β

1+ σ2
v/σ

2
< β
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