12．2 Instrumental Variable（IV）Method（操作変数法 or IV 法）

Instrumental Variable（IV）

1．Consider the regression model：$y=X \beta+u$ and $u \sim N\left(0, \sigma^{2} I_{n}\right)$ ．
In the case of $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ ，OLSE of β is inconsistent．
2．Proof：

$$
\hat{\beta}=\beta+\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{n} X^{\prime} u \longrightarrow \beta+M_{x x}^{-1} M_{x u},
$$

where

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}, \quad \frac{1}{n} X^{\prime} u \longrightarrow M_{x u} \neq 0
$$

3．Find the Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$ ．

Multiplying Z^{\prime} on both sides of the regression model: $y=X \beta+u$,

$$
Z^{\prime} y=Z^{\prime} X \beta+Z^{\prime} u
$$

Dividing n on both sides of the above equation, we take plim on both sides.
Then, we obtain the following:

$$
\operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta+\operatorname{plim}\left(\frac{1}{n} Z^{\prime} u\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta
$$

Accordingly, we obtain:

$$
\beta=\left(\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1} \operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)
$$

Therefore, we consider the following estimator:

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y
$$

which is taken as an estimator of β ．
\Longrightarrow Instrumental Variable Method（操作変数法 or IV 法）
4．Assume the followings：

$$
\frac{1}{n} Z^{\prime} X \longrightarrow M_{z x}, \quad \frac{1}{n} Z^{\prime} Z \longrightarrow M_{z z}, \quad \frac{1}{n} Z^{\prime} u \longrightarrow 0
$$

5．Distribution of $\beta_{I V}$ ：

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y=\left(Z^{\prime} X\right)^{-1} Z^{\prime}(X \beta+u)=\beta+\left(Z^{\prime} X\right)^{-1} Z^{\prime} u
$$

which is rewritten as：

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)
$$

Applying the Central Limit Theorem to $\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)$ ，we have the following result：

$$
\frac{1}{\sqrt{n}} Z^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{z z}\right)
$$

Therefore,

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right) \longrightarrow N\left(0, \sigma^{2} M_{z x}^{-1} M_{z z} M_{z x}^{\prime-1}\right)
$$

\Longrightarrow Consistency and Asymptotic Normality
6. The variance of $\beta_{I V}$ is given by:

$$
\mathrm{V}\left(\beta_{I V}\right)=s^{2}\left(Z^{\prime} X\right)^{-1} Z^{\prime} Z\left(X^{\prime} Z\right)^{-1}
$$

where

$$
s^{2}=\frac{\left(y-X \beta_{I V}\right)^{\prime}\left(y-X \beta_{I V}\right)}{n-k}
$$

12．3 Two－Stage Least Squares Method（2 段階最小二乗法，2SLS

or TSLS）

1．Regression Model：

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I\right),
$$

In the case of $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ ，OLSE is not consistent．
2．Find the variable Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$ ．
3．Use $Z=\hat{X}$ for the instrumental variable．
\hat{X} is the predicted value which regresses X on the other exogenous variables， say W ．

That is，consider the following regression model：

$$
X=W B+V .
$$

Estimate B by OLS.
Then, we obtain the prediction:

$$
\hat{X}=W \hat{B},
$$

where $\hat{B}=\left(W^{\prime} W\right)^{-1} W^{\prime} X$.
Or, equivalently,

$$
\hat{X}=W\left(W^{\prime} W\right)^{-1} W^{\prime} X .
$$

\hat{X} is used for the instrumental variable of X.
4. The IV method is rewritten as:

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} y .
$$

Furthermore, $\beta_{I V}$ is written as follows:

$$
\beta_{I V}=\beta+\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} u .
$$

Therefore, we obtain the following expression:

$$
\begin{aligned}
\sqrt{n}\left(\beta_{I V}-\beta\right) & =\left(\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{n} X W^{\prime}\right)^{\prime}\right)^{-1}\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{\sqrt{n}} W^{\prime} u\right) \\
& \longrightarrow N\left(0, \sigma^{2}\left(M_{x w} M_{w w}^{-1} M_{x w}^{\prime}\right)^{-1}\right) .
\end{aligned}
$$

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

$$
\operatorname{plim}\left(\frac{1}{n} W^{\prime} u\right)=0 .
$$

6. Remark:

$$
\hat{X}^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=\hat{X}^{\prime} \hat{X} .
$$

Therefore,

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(\hat{X}^{\prime} \hat{X}\right)^{-1} \hat{X}^{\prime} y,
$$

which implies the OLS estimator of β in the regression model: $y=\hat{X} \beta+u$ and $u \sim N\left(0, \sigma^{2} I_{n}\right)$.

Example:

$$
y_{t}=\alpha x_{t}+\beta z_{t}+u_{t}, \quad u_{t} \sim\left(0, \sigma^{2}\right) .
$$

Suppose that x_{t} is correlated with u_{t} but z_{t} is not correlated with u_{t}.

- 1st Step:

Estimate the following regression model:

$$
x_{t}=\gamma w_{t}+\delta z_{t}+\cdots+v_{t},
$$

by OLS. $\quad \Longrightarrow$ Obtain \hat{x}_{t} through OLS.

- 2nd Step:

Estimate the following regression model:

$$
y_{t}=\alpha \hat{x}_{t}+\beta z_{t}+u_{t},
$$

by OLS. $\quad \Longrightarrow \alpha_{i v}$ and $\beta_{i v}$
Note as follows. Estimate the following regression model:

$$
z_{t}=\gamma_{2} w_{t}+\delta_{2} z_{t}+\cdots+v_{2 t},
$$

by OLS.
$\Longrightarrow \hat{\gamma}_{2}=0, \hat{\delta}_{2}=1$, and the other coefficient estimates are zeros. i.e., $\hat{z}_{t}=z_{t}$.

Eviews Command:
tsls y x z @ w z ...

13 Large Sample Tests

13．1 Wald，LM and LR Tests

Parameter $\theta: k \times 1, \quad h(\theta): G \times 1$ vector function，$G \leq k$
The null hypothesis $H_{0}: h(\theta)=0 \Longrightarrow G$ restrictions
$\tilde{\theta}: k \times 1$ ，restricted maximum likelihood estimate
$\hat{\theta}: k \times 1$ ，unrestricted maximum likelihood estimate
$I(\theta): k \times k$ ，information matrix，i．e．，$\quad I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)$.
$\log L(\theta): \log$－likelihood function
$R_{\theta}=\frac{\partial h(\theta)}{\partial \theta^{\prime}}: G \times k, \quad F_{\theta}=\frac{\partial \log L(\theta)}{\partial \theta}: k \times 1$
1．Wald Test（ワルド検定）：$\quad W=h(\hat{\theta})^{\prime}\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})$
（a）$h(\hat{\theta}) \approx h(\theta)+\frac{\partial h(\theta)}{\partial \theta^{\prime}}(\hat{\theta}-\theta) \Longleftarrow h(\hat{\theta})$ is linearized around $\hat{\theta}=\theta$ ．

Under the null hypothesis $h(\theta)=0$,

$$
h(\hat{\theta}) \approx \frac{\partial h(\theta)}{\partial \theta^{\prime}}(\hat{\theta}-\theta)=R_{\theta}(\hat{\theta}-\theta)
$$

(b) $\hat{\theta}$ is MLE.

From the properties of MLE,

$$
\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

That is, approximately, we have the following result:

$$
\hat{\theta}-\theta \sim N\left(0,(I(\theta))^{-1}\right)
$$

(c) The distribution of $h(\hat{\theta})$ is approximately given by:

$$
h(\hat{\theta}) \sim N\left(0, R_{\theta}(I(\theta))^{-1} R_{\theta}^{\prime}\right)
$$

（d）Therefore，the $\chi^{2}(G)$ distribution is derived as follows：

$$
h(\hat{\theta})\left(R_{\theta}(I(\theta))^{-1} R_{\theta}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G)
$$

Furthermore，from the fact that $R_{\hat{\theta}} \longrightarrow R_{\theta}$ and $I(\hat{\theta}) \longrightarrow I(\theta)$ as $n \longrightarrow \infty$ （i．e．，convergence in probability，確率収束），we can replace θ by $\hat{\theta}$ as follows：

$$
h(\hat{\theta})\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G)
$$

2．Lagrange Multiplier Test（ラグランジェ乗数検定）：$\quad L M=F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}}$
（a）MLE with the constraint $h(\theta)=0$ ：

$$
\max _{\theta} \log L(\theta), \quad \text { subject to } \quad h(\theta)=0
$$

The Lagrangian function is：$L=\log L(\theta)+\lambda h(\theta)$ ．
(b) For maximization, we have the following two equations:

$$
\frac{\partial L}{\partial \theta}=\frac{\partial \log L(\theta)}{\partial \theta}+\lambda \frac{\partial h(\theta)}{\partial \theta}=0, \quad \frac{\partial L}{\partial \lambda}=h(\theta)=0
$$

The restricted MLE $\tilde{\theta}$ satisfies $h(\tilde{\theta})=0$.
(c) Mean and variance of $\frac{\partial \log L(\theta)}{\partial \theta}$ are given by:

$$
\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=0, \quad \mathrm{~V}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)=I(\theta)
$$

(d) Therefore, using the central limit theorem,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \rightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)
$$

(e) Therefore, $\frac{\partial \log L(\theta)}{\partial \theta}(I(\theta))^{-1} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}} \longrightarrow \chi^{2}(G)$.

Under $H_{0}: h(\theta)=0$, replacing θ by $\tilde{\theta}$ we have the result:

$$
F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}} \longrightarrow \chi^{2}(G)
$$

3．Likelihood Ratio Test（尤度比検定）：$\quad L R=-2 \log \lambda \longrightarrow \chi^{2}(G)$

$$
\lambda=\frac{L(\tilde{\theta})}{L(\hat{\theta})}
$$

（a）By Taylor series expansion evaluated at $\theta=\hat{\theta}, \log L(\theta)$ is given by：

$$
\begin{aligned}
\log L(\theta) & =\log L(\hat{\theta})+\frac{\partial \log L(\hat{\theta})}{\partial \theta}(\theta-\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots \\
& =\log L(\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots
\end{aligned}
$$

Note that $\frac{\partial \log L(\hat{\theta})}{\partial \theta}=0$ because $\hat{\theta}$ is MLE．

$$
\begin{aligned}
-2(\log L(\theta)-\log L(\hat{\theta})) & \approx-(\theta-\hat{\theta})^{\prime}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)(\theta-\hat{\theta}) \\
& =\sqrt{n}(\hat{\theta}-\theta)^{\prime}\left(-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}(\hat{\theta}-\theta) \\
& \longrightarrow \chi^{2}(G)
\end{aligned}
$$

Note:
(1) $\hat{\theta} \longrightarrow \theta$,
(2) $-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}} \longrightarrow-\lim _{n \rightarrow \infty}\left(\frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)$,
(3) $\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)$.
(b) Under $H_{0}: h(\theta)=0$,

$$
-2(\log L(\tilde{\theta})-\log L(\hat{\theta})) \longrightarrow \chi^{2}(G)
$$

Remember that $h(\tilde{\theta})=0$ is always satisfied.

For proof, see Theil (1971, p.396).
4. All of $W, L M$ and $L R$ are asymptotically distributed as $\chi^{2}(G)$ random variables under the null hypothesis $H_{0}: h(\theta)=0$.

