Econometrics |
(Tue., 8:50-10:20)
Room # 4 (LR B EIR)

e The prerequisite of this class Basic Statistics §E5tE#) (by Prof. Oya, Tue.,
16:20-17:50, this semester) aBdonometrics (3 ./ X b 1) v 2 X) (undergradu-
ate level, next semestef &t &#EF ) LA #h &, #Fritbth),

e The class ofSpecial Lectures in Economics (Statistical Analysis)& &= 455m
(#x5HF24T)  (by Prof. Oya, Wed., 10:30-12:00, this semester) should be registere
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TA Session (by Mr. Yonekura):

From
Wed.,
Room

Content:

April 21, 2014
16:20 - 17:50
# 605 (ERAF it & 304%)

Basic Statistics, Matrix Algebra, and etc.



Statistics Test §R5TH#& ) on June 22 (Sun.)

e Exams: Level 2 (2%%) — Level 4 (4%%)
Note that Level 4 is Junior high school level,
Level 3 is High school level, and
Level 2 is the 1st or 2nd year statistics in undergraduate school.
See http: //www.toukei-kentei.jp/index.html in more detail.

e Qualification for Exam (2ER&Eg) :

Undergraduate and Graduate Students in Osaka University
e Application Period (Z5XE:AHAE) :  April 14 (Mon.) — May 14 (Wed.)

e Application Fee (Z5&#) : Free
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% 17— 2ITHD S BREMR LM B RIZE T 2 MEHBEERGE] 75X
Lons,
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MatiE 2% 10:30~12:00 5,0004
fREtE 3%  13:30~14:30 4,0004
MatE 4%  10:30~11:30 3,000
AN

e Exam Date G8&H) : June 22 (Sun.)
e Exam Place (ZFf) : ERSGHEFBM AL -#4
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1 Regression Analysis[al)&% 47)

1.1 Setup of the Model

When i, 1), (X2, ¥2), - -+, (X, Yn) are available, suppose that there is a linear rela

tionship betweerny andx, i.e.,

Yi = B+ B2X + Ui, (1)
fori=12,---,n. x; andy; denote theth observations.
— Single (or simple) regression model#EFE T )L)

yi is called thedependent variable (E/E@Z%X) or theexplained variable (¢#&ztEHZ
#0), while x; is known as théndependent variable ¢H3IIZ %) or theexplanatory

(or explaining) variable (5tFAZ%X).



B1 = Intercept (Y1 F), B> = Slope (EZ)
1 andp, are unknowrparameters (X7 X —%, 8% to be estimated.
B1 andg, are called theegression cofficients (2l JZ{%%%).

u; is the unobserveerror term ( 22ZI8) assumed to be a random variable with mear

zero and variance=.

o? is also a parameter to be estimated.

x; is assumed to beonstochastic §E#EZRY), buty; is stochastic fE3H) because
y; depends on the erroy.

The error termsly, Uy, - - -, U, are assumed to be mutually independently and ident

cally distributed, which is calledd. —  discussed later.
It is assumed thag has a distribution with mean zero, i.e.Ug(= 0 is assumed.
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Taking the expectation on both sides of (1), the expectatignisfrepresented as:

E(i) = E(B1 + B2Xi + U) = 1+ 2% + E(U)
= B1 + B2X;,

fori=12,---,n. Using Ef;) we can rewrite (1) ag = E(y;) + u;.
(2) represents the true regression line.
Let3; andj3, be estimates ¢#; andg..
Replacing3; andgs, by 3; andj,, (1) turns out to be:
Yi = B1+BoX + €,

fori=1,2,---,n, whereg is called theresidual ((%Z).

The residuak is taken as the experimental value (or realization), of

)
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We definey; as follows:
% = B+ BaXi, 4)

fori=1,2,---,n, which is interpreted as tharedicted value (F;f{&) of y;.

(4) indicates the estimated regression line, whichfiedent from (2).

Moreover, using; we can rewrite (3) ag = y; + €.

(2) and (4) are displayed in Figure 1.

Consider the case of= 6 for simplicity. x indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated

gression line (4) is drawn with the dotted line.
Based on the observed data,andg, are estimated ag; and,.
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Figure 1. True and Estimated Regression Lines[f/FE#R)

Distributions
of the Errors

9 = 1+ BoX
(Estimated
Regression Line)

X

In the next section, we consider how to obtain the estimatgs afidg,, i.e.,3; and

~

Ba.



1.2 Ordinary Least Squares Estimation

Suppose thatq, y1), (X2, ¥2), - - -, (X0, Yn) @re available.
For the regression model (1), we consider estimagingnd;3,.
ReplacingB; andg, by their estimateg; andj,, remember that the residualis
given by:
& =Yi— % =Vi—B1—Bax.

The sum of squared residuals is defined as follows:
~ ~ n n ~ ~
S(B1.82) = Z & = Z(yi — B1 - B2Xi).
i=1 i=1

It might be plausible to choose tig andj3, which minimize the sum of squared

residuals, i.e.S(51, 32).
This method is called therdinary least squares estimation &/N =%k, OLS).
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To minimize S(3,, 3,) with respect t¢3; andj,, we set the partial derivatives equal

to zero:
as(ﬂl’BZ)
-2 : — =
9, Z(y —B1— fBax) =
aS(ﬁl,ﬁz)
2 By — Box) =
%, le (Y — B1 — B2%) =

The second order condition for minimization is:
(925(31,32) (325(,@1ﬁ2) n .
( o, oBribo ) _ ( 2n 23X )
PSB1p2)  PSBLB) | n .
613251[7‘12 6ﬁ% ; 2% % 22 %

should be a positive definite matrix.

The diagonal elementsiand 23, x? are positive.
The determinant:

2n 230X

| 2y % 230 %

4nZ X2 — 4(2 X)? = 4n Z(x, —X)?

i=1
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is positive. —  The second-order condition is satisfied.

The first two equations yield the following two equations:

Y = B1 + X,
n

n
XY = nxél +,éz Z X.-Z,
i=1 i=1

wherey = Z y; andX = Z Xi.

Multiplying (5) by nx and subtractlng (6), we can deriggas follows:

B _ Zinzl XY — NXy _ Zinzl(xi -X) (i —-Y)
T Sa(i-®2

From (5),5; is directly obtained as follows:
Br=Y- X

12
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When the observed values are takenyfoandx; fori = 1,2,---,n, we say thaB;
andp, are called therdinary least squares estimats (or simply theeast squares

estimates, &/N —FH#EE) of B, andp,.

Wheny; fori = 1,2, ---,n are regarded as the random sample, we say3thaind3,
are called theordinary least squares estimatos (or theleast squares estimatos,

R/NZFHEEE) of B, andp..

1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

5= SR =9 SRy IR =X)
©T (k- %72 z.” 6 —%2 (% - %2

Z Z|— kX| X)Zyl ZCUM 9)
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C N 1<
In the third equalityZ(xi —X) = 0 is utilized because 6t = - Z X.
i=1 i=1

X — X
Y% —X)?°

wj IS nonstochastic becaugeis assumed to be nonstochastic.

In the fourth equalityw; is defined asw; =

wi has the following properties:
X — X Y% = %)
Wi = — =0,
Z | Z Ziti (X —X)? Zin=1(xi - X)?

Zina(x —%)?
Zw.x Zw.(m—X) e

n n _ 2 _
2 _ X—-X XN CER 1
. Z(Zinzl(ﬁ —7)2) (-7 Dhei-XF

2 (% — X)z)

The first equality of (11) comes from (10).

i=1 i=1

14
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From now on, we focus only of,, because usuallg, is more important thag, in
the regression model (1).

In order to obtain the properties of the least squares estimfiatare rewrite (9) as:

ﬁZ_Zwlyl Zwl(ﬁl + B2X + W)

—ﬁlzw,+ﬁ22w,x.+2w,u, ﬁ2+2wu, (13)

In the fourth equality of (13), (10) and (11) are utilized.
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[Review] Random Variables
Let X1, X5, .-+, X, be n random variavles, which are mutually independently anc

identically distributed.

mutually independent = f(x;, X;) = fi(x) f;(x;) fori # |.
f(x, X;) denotes a joint distribution of; andX;.
f(X) indicates a marginal distribution .

identical = fi(X) = fj(x) fori # j.

[End of Review]
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[Review] Mean and Variance
Let X andY be random variables (continuous type), which are independently di

tributed.

Definition and Formulas:

e E(g(X)) = f g(x)f(x)dx for a functiong(-) and a density functior(-).

o V(X)=E(X-p? = f(X—p)zf(X)dX for u = E(X).

e E@@X+b)=aE(X)+b and V@X+ b) = V(aX) = a?V(X) for constanta andb.
e EXXxY)=EMX)+£E(Y) and VX =Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of,@z: U, Uy, -+, Uy are assumed to be mutually indepen-
dently and identically distributed with mean zero and variam€ebut they are not
necessarily normal.

Remember that we do not need normality assumption to obtain mean and varia
but the normality assumption is required to test a hypothesis.

From (13), the expectation @§ is derived as follows:
R n n n
EG) =E@2+ ) o) =B+ EQ wit) =fo+ Y wEWU) =2 (14)
i=1 i=1 i=1

It is shown from (14) that the ordinary least squares estimg@tds an unbiased
estimator of3,.

From (13), the variance @ is computed as:
V(B2) = V(B2 + Y| with) =V wit) = > V(w) = )" wpV(w)
i=1 i=1 i=1 i=1

18



n 2
=0 wi =

i=1 - Zln=1(xi - )_()2

The third equality holds becauseg u,, - - -, U, are mutually independent.

The last equality comes from (12).
Thus, EB,) and V(3,) are given by (14) and (15).

19
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[Review] Three Good Properties on Estimator:
6 . Parameter
6: Estimator ofg, i.e.,0 = 6(X1, Xa, - - -, Xn),
whereX, Xo, - - -, X, are mutually independent random variables.

(*) Estimate ofo: 0= é(xl, X2, +, Xn), Wherex; denotes the observed dataXof

e UnbiasednessTimiE): E@©) = 6.
e Efficiency (83hts):

The minimum variance estimator within all the unbiased estimators.

(*) It is not easy to checkféciency in general. Instead, consider thest linear
unbiased estimator (BLUE, X RiREI MRt EE).

e Consistency —H#): 6 — gasn — co. Note that) depends on # of obs.

[End of Review]
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Gauss-Markov Theorem (7 R - <)L O 7 EE): It has been discussed above

thatp3, is represented as (9), which implies tpats a linear estimator, i.e., linear in
Yi-
In addition, (14) indicates thab is an unbiased estimator.

Therefore, summarizing these two facts, it is shown ﬁ)as alinear unbiased
estimator (R AR EE).

Furthermore, here we show t@thas minimum variance within a class of the linear

unbiased estimators.
Consider the alternative linear unbiased estim,éiras follows:
n n
Ba = Z CYi = Z(wi + )i,
i=1 i=1
wherec; = w; + d; is defined andl, is nonstochastic.
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Then,j, is transformed into:

n

B2 = Z Cyi = Z(‘Ui + i) (B + BaXi + W)
=)

i=1

:,Blia)i +ﬂ2iwixi +Zn:wiui +,31idi +ﬁzidixi +Zn:diui
i=1 i=1 i=1 i=1 i=1 i=1
=P +,312n:di +ﬁzzn1dixi + anwiui + andiui-
i=1 i=1 i=1 i=1

Equations (10) and (11) are used in the forth equality.

Taking the expectation on both sides of the above equation, we obtain:
- n n n n
EB) =B+p1 ) di+Bo ) X+ ) wEW)+ ) dEW)
i=1 i=1 i=1 i=1

=2 +,31§n:di +ﬁzzn:dixi-
i1 i1

Note thatd; is not a random variable and thatB(= O.
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Sincep, is assumed to be unbiased, we need the following conditions:

idizo, id,KZO
i=1 i=1

When these conditions hold, we can rewfijeas:
y n
B2 =2+ Z(wi +d)u.
i=1

The variance oﬁz is derived as:

n

V(B2) =V ,82+Z(a), +d)u) = Z(w, +d)u) = > V((w +d)u)
i=1
= Z(w. + d)AV(u) = Z(Zw + ZZw.d +Zn:d2)
= O'Z(Z w? + Z d?).
i=1 i=1
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From unbiasedness g§, usingy", d; = 0 andy.", d;x = 0, we obtain:

i widi _ Zinzl(xi - T()di _ Zin=1 Xidi _T(Zinzl di _0,
i=1

S OYIL(—%2 Yt (X = X)?

which is utilized to obtain the variance g§ in the third line of the above equation.

From (15), the variance g, is given by: V3,) = 02 Y1, w?.

Therefore, we have:

V(B2) > V(,éz),

because o, d* > 0.

When},d*=0,i.e., wherd; =d, =--- =d, =0,
we have the equality: &) = V(5,).

Thus, inthecaseaf;=d,=---=d, =0, ﬁz is equivalent t(fiz.
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As shown above, the least squares estimatagjives us theminimum variance lin-
ear unbiased estimator /N3 B A REHEEE), or equivalently théest linear
unbiased estimator & R#FFF~m#EEE, BLUE), which is called theGauss-
Markov theorem (7 X - <)L 7 EE).
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Asymptotic Properties (8EHIME) of B,:  We assume that asgoes to infinity

we have the following:
n
%Z(xi -X)? — m< oo,
i=1

wheremis a constant value. From (12), we obtain:

1
”Z“’ TS

Note that f(x,) — f(m) whenx, — m, calledSlutsky’s theorem (RJL*) +—

EIE), wheremis a constant value anf(-) is a function.

We show botttonsistency 2##) of 3, andasymptotic normality (i IE $8 1)
of V(B2 - Ba).
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@ First, we prove thas, is a consistent estimator g5.

[Review] Chebyshev's inequality = £ = 7 DAZFER) is given by:
2
g

P(X -l > €) < =,
€

whereu = E(X), o = V(X) and anye > 0.

[End of Review]
ReplaceX, E(X) and V(X) by:

n 2
A, E(B,) = , and VB, = o2 wizzo'—_‘
B2 B2) = B2 (2) ; %
Then, whem — o, we obtain the following result:
~ 2 n_ 2 2n n_ 2
P(B2 — B2 > €) < 0 i1 &) _ 0N il Wi Y

€? ne?

1 .
whereY [, w? — 0 becausa Y ; w? — = from the assumption.
Thus, we obtain the result th,ég — 3, asn — co.

Therefore, we can conclude thtis aconsistent estimator (—E#E ) of B..
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@ Next, we want to show thai/n(3, — 3,) is asymptotically normal.

[Review] TheCentral Limit Theorem ( R/OMBFREE, CLT) is: for random vari-
ablesXy, X,, - -+, X,
X-EX) _ L X -ECLX)

/V(Y) B VV(ZiL X)

— N(0,1), as n— oo,

1<
whereX = — Z X;.
n= _
X1, X, - -+, Xy @re not necesarily iid, if Vi) is finite asn goes to infinity.

[End of Review]
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Note that3, = 8, + 3", wil; as in (13), and; is replaced byw;u.

From the central limit theorem, asymptotic normality is shown as follows:

Yinwit - EGL, wiu) Yiwil ,[;’2 - B2
VV(Zin:]_wiui) O'\[Zh 1w ZI 1(X| - )2

— N(0,1),

where
o EQLiwiu) =0
e V(XL wiu) =o? Y, w?, and
o SLiwili = B2 - B

are substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

B2 - B2 _ V(B2 - B2) .
Y% —%?% o/ \/(1/n) Yini(X —X)?

Replacing (In) Y, (x — X)? by its converged valum, we have:

V(B2 — B)
T\/ﬁ — N(0, 1),

which implies

2
ViBz - p2) — N(O. 7).

Thus, the asymptotic normality ofn(3, — ) is shown.
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Finally, replacingr? by its consistent estimat@?, it is known as follows:

P2 —pa — N(0,1), (16)

s/ \/Zinzl(xi - X)?

wheres? is defined as:

(i —,él - Iézxi)z, (17)

i=1 i=1

which is a consistent and unbiased estimatarof — Proved later.

Thus, using (16), in large sample we can construct the confidence interval and

the hypothesis.
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[Review] Confidence Interval (E8X[E, XE#E)):

SupposeXy, Xz, - - -, X, are iid with mean: and variancer>. — No N assumption
X-EX) X-pu

X—pu

1 < -
Replacingr?2 by S2 = —— ) (X — X)?, we have:
placings? by n—1;( ) SV

From CLT, — N(0,1).

— N(O,1).

That is, for largen,

P(-1.96 < X-n 1.96) = 0.95, i.e.,P(X - 196> < w< X+ 1.963) = 0.95.
S/ +n Vin Vin

Note that 1.96 is obtained from the normal distribution table.
Then, replacing the estimataxsandS? by the estimate® ands?, we obtain the 95%
confidence interval gt as follows:
S S
X—196—, X+ 1.96—).

[End of Review]

32



Going back to OLSwe have:

B2 — B2
— N(O, ).
s/ \/Zinzl(xi - X)?

Therefore, R
P(-2.576< E — < 2576) = 0.99,
Yimi(X —%)?
ie.,
P(B2 - 2576—— S — <2 <Bo+2576— > —) =099
it (X — X)? V2t (% —%)?

Note that 2.576 is 0.005 value Bi(0, 1), which comes from the statistical table.

Thus, the 99% confidence intervalgfis:

(8- 2576

S ~ S
, B+ 2576 :
Lk -x2 S0 — ‘)2)

where, ands? should be replaced by the observed data.
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[Review] Testing the Hypothesis {RE7i& iE):
Suppose thaXy, X,, - - -, X, are iid with mean: and variancer?.
X7 n

From CLT,u — N(0, 1), whereS? = L Z(Xi — X)?, which is known as
S/ W n-1 i—1

the unbiased estimator of.

e The null hypothesi$ly : u = ug, Whereyg is a fixed number.

e The alternative hypothesid; : u # uo

Under the null hypothesis, in large sample we have the following disribution:

X —Ho
~ N(O, 1).
NG (0,1)
ReplacingX andS? by X ands?, comparew andN(0, 1).
Ho is rejected at significance level 0.05 WW ' > 1.96.

[End of Review]
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In the case of OLShe hypotheses are as follows:

e The null hypothesi$ly : 8, =,
e The alternative hypothestd; : 3, #

UnderHo, in large sample,
B2 B
s/ \/Zin=1(xi -X)?

~ N(0, 1),

Replacings, ands? by the observed data, compare Fa— b andN(0, 1).

§/ V2t (% = X)?

Ho is rejected at significance level 0.05 wHen '8?] b — ‘ > 1.96.
S/ v Xita(X = %)?
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Exact Distribution of 8,: We have shown asymptotic normality afn(3; — 5,),
which is one of the large sample properties.

Now, we discuss the small sample propertieg.of

In order to obtain the distribution @ in small sample, the distribution of the error
term has to be assumed.

Therefore, the extra assumption is that N(0, o).

Writing (13), againj3; is represented as:
R n
B2=pB2+ Zwiui-
i=1

First, we obtain the distribution of the second term in the above equation.
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[Review] Content of Special Lectures in Economics (Statistical Analysis)
Note that thenoment-generating function f&E %L, MGF) is given byM(6) =
E(exp@X)) = expld + 20°6%) whenX ~ N(u, o).

X1, Xo, -+, Xy are mutually independently distributed s ~ N(/ui,aiz) fori =
12,---,n.

MGF of X; is M;(6) = E(expX)) = expif + 30262).

Consider the distribution of = Y., (a; + b X;), wherea; andb; are constant.

M,(6) = E(exp@Y)) = E(expb XL, (a + X))
= [1iL, exp@a)E(expbbiX)) = [1L, expla) Mi(6b)
= [1iL, exp@a;) expuitbi+ ;02(6bi)?) = exp@ T, (& +biwi) +36° T L, bPo?),
which implies thaty ~ N(3 L, (a + biwi), YL, b2o?).

[End of Review]
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Substitutea; = 0, uj = 0, b = w; andO'iZ = o2

Then, using the moment-generating functidii,, wiu; is distributed as:

n n
Zwiui ~ N(O, UZZwiz).
i=1 i=1

Thereforef3, is distributed as:
n n
B2 =p2+ Zwiui ~ N(Bo, O'ZZ w?),
-1 =

or equivalently,

A

B2~ B2 B B2 — B2 ~N(0.1)

oS w? /RN - %P

for anyn.
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[Review 1] t Distribution:
Z ~N(0,1),V ~ ¥?(k), andZ is independent of/.  Then,
[End of Review 1]

v
o t(K).

[Review 2] t Distribution:
Suppose thaXy, X,. - - -, X, are mutually independently, identically and normally dis-
tributed with mean and variancer?.

X 2 . X—u N
X~ N(u,o¢/n), i.e., o/ Vi N(O, 1).

. 1 < < -y . .
DefineS? = =7 Z(Xi — X)?, which is an unbiased estimator @f.
i=1

(n—1)S?

=~ ¥?(n - 1) andX is independesnt d82. (The proof is

It is known that

skipped.)
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X —

_X-
Then, we obtain——2/ " ~t(n-1).
S = §vF 0D
\ ( _1)
X_
As a result, replacing? by S?, ~t(n=1).
placing~ by NG (n-1)

[End of Review 2]

40



Back to OLS:

Replacingo? by its estimatois? defined in (17), it is known that we have:

B2 - B2
s/ \/Zinzl(xi —X)?

wheret(n — 2) denoteg distribution withn — 2 degrees of freedom.

~t(n-2),

Thus, under normality assumption on the error tefmthet(n — 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

B2 - B2 2
~F(,n-2),
( ZP=1(>Q—‘)2) hn=2

which will be proved later.

Before going tanultiple regression model @E)FE 7 L),
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2 Some Formulas of Matrix Algebra

A1 A2 - Az
dp1 Q2 - A

1. LetA=| = . =[]
a1 az - Ak

which is al x k matrix, wheres;; denotesth row andjth column ofA.

Thetransposed matrix @=iE1T75!) of A, denoted by, is defined as:

a1 A1 - Al
) A A - A
A=l .= &,
Ak Ak v Ak

where thdath row of A’ is theith column ofA.
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. (AX) = XA,
whereA andx are al x k matrix and & x 1 vector, respectively.

.a =a,
wherea denotes a scalar.

oa’x 3

a,
0X
wherea andx arek x 1 vectors.

OX' AX
- OX
whereA andx are ak x k matrix and & x 1 vector, respectively.

= (A+ A)X,

Especially, wherA is symmetric,
OX' AX
oX

= 2AX
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6. Let A andB bek x k matrices, and, be ak x k identity matrix ( B4z1751)

(one in the diagonal elements and zero in the other elements).

When AB = |, B is called theinverse matrix (3#17%1) of A, denoted by
B=A"1

Thatis,AAl = A1A=1,.

7. Let A be ak x k matrix andx be ak x 1 vector.

If Ais apositive definite matrix (IE{EE fFS1751), for anyx except forx = 0
we have:

X Ax > 0.

If Ais apositive semidefinite matrix GE&EE FF51751), for any x except
for x = 0 we have:

X Ax > 0.
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If Ais anegative definite matrix (BfEZERFS1751), for anyx except forx = 0

we have:
X Ax < 0.

If Ais anegative semidefinite matrix §E1EfEE fF51771), for any x except

for x = 0 we have:

X Ax < 0.

Trace, Rank and etc.: A kxKk, B: nxKk, C:kxn.

k
1. Thetrace (k L —2) of Ais: tr(A) = Zai, whereA = [a;] .

i=1
2. Therank (> 7, B&%) of Ais the maximum number of linearly independent

column (or row) vectors of, which is denoted by rank.
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3. If Ais anidempotent matrix (X Z%F{751), A= A2,

4. If Ais an idempotent and symmetric matrix= A2 = A'A.

5. Ais idempotent if and only if the eigen valuesAtonsist of 1 and 0.
6. If Aisidempotent, rank) =tr(A) .

7. tr(BC) =tr(CB)

Distributions in Matrix Form:

1. Let X, uandX bek x 1, k x 1 andk x k matrices.

WhenX ~ N(u, X), the density function oKX is given by:

1 1 oe
f(X) = W eXd—E(X —,u) z 1(X —,Ll))
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E(X) = pand V) = E((X - )(X - p)) = £
The moment-generating function(o) = E(exp(@’X)) =exp@u + %0’29)

(*) In the univariate case, whex ~ N(u, 02), the density function oX is:

109 = G 5,200

IF X ~ N(, Z), then X — )= 1(X = 1) ~ x4(K).

Note that X’'X ~ x?(k) whenX ~ N(0, I,).

. Xonx1,  Y:mxd, X ~N@oZ), Y~ Ny,

X is independent of, i.e., (X - i)(Y - 1,)') = 0 in the case of normal
random variables.

(X - ﬂx)lz;l(x — px)/N

(Y = ) I Y = py)/m Hovm
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4. If X ~ N(0, o?l,,) andAis a symmetric idempotemtx n matrix of rankG, then
X' AX/0? ~ ?(G).

Note thatX’AX = (AX)'(AX) and rankf) = tr(A) becausé\ is idempotent.

5. If X ~ N(0, c?l,,), AandB are symmetric idempotentx n matrices of raniG

andK, andAB = 0, then

'AX X'BX _ X'AX/G
Go?2! Ko?2 ~ XBX/K

~ F(G, K).
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—_—

3 Multiple Regression Model E&[al)&E 7 /L)

Up to now, only one independent variable, i>g, is taken into the regression model.
We extend it to more independent variables, which is calledrthitiple regression
model EEVZETIV).

We consider the following regression model:

B
B2
Vi =BaiXia+BoXio+ -+ BuXik + U = (Xia, Xiz, o, Xik) [ Fu=xg+u,

B

fori =1,2,---,n, wherex; andg denote a X k vector of the independent variables
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and ak x 1 vector of the unknown parameters to be estimated, which are given by
B1
B2
X=X %K), B=] .|

B

X; ; denotes théth observation of thgth independent variable.
The case ok = 2 andx;; = 1 for all i is exactly equivalent to (1).
Therefore, the matrix form above is a generalization of (1).
Writing all the equations for=1,2,---,n, we have:

Y1 =B1X1 + BoXez + - + BrXak + U = Xgf + U,

Yo = B1Xo1 + BoXop + -+ + BiXok + U2 = Xof8 + Uy,

Yn = ﬁlxn,l +ﬁ2Xn,2 +-- +ﬁkxn,k + Up = XnB + Up,
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which is rewritten as:

Y1 X1 X2 -0 Xk ) (B1 Up
Y2 Xo1 Xo2 0 Xok || B2 uy
= +
Yn Xn1 Xn2 -t Xnk/ \Bk Un

X1 Uy

X2 U
= . |8+

Xn Un

Again, the above equation is compactly rewritten as:

y=XB+U,
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wherey, X andu are denoted by:

Y1 X11 X2 ot Xk X1 Uy

Y2 Xo1 Xo2 ottt Xok X2 Uy
y={ .| X=[ . . = u=

yn Xn,l Xn,2 Tt Xn,k Xn Un

Utilizing the matrix form (18), we derive the ordinary least squares estimatgy of
denoted by3.

In (18), replacings by 3, we have the following equation:
y=XB+e

wheree denotes & x 1 vector of the residuals.

Theith element okis given bys,.
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The sum of squared residuals is written as follows:
~ n ~ ~ ~ ~
S(B) = ZQ-Z =€e=(y—-XB)(y—XB) = (Y - BX)(y - Xp)
i=1
=YY -YXB-BXY+BXXB =Yy~ 2yXB+ X XB.
In the last equality, note thatX’'y = y'X3 because both are scalars.

To minimize S(3) with respect tg3, we set the first derivative &(3) equal to zero,

i.e.,

8(89('8) —2X'y + 2X'Xj3 = 0.

Solving the equation above with respectdheordinary least squares estimator
(OLS, x/NBEHEE) of Bis given by:

= (X’X)"IXy. (19)
Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

»S(B)

SV = 2X'X
opop

is a positive definite matrix.

Setc = Xd.

For anyd # 0, we haver’c = d’X’Xd > 0.
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Now, in order to obtain the properties gfsuch as mean, variance, distribution and

so on, (19) is rewritten as follows:

B = (X'X)IXy = (X'X)™IX/(XB + u) = (X'X)IX'XB + (X'X) "X 'u
=B+ (X'X)Xu. (20)

Taking the expectation on both sides of (20), we have the following:
E@) = E@+ (X'X)™IX'u) = B+ (X'X)IXE() = 5,

because of E( = 0 by the assumption of the error teun

Thus, unbiasedness gfis shown.
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The variance of is obtained as:

V(B) = E((B - B)B - B)') = E((X'X)X'u((X'X)™X'u))
= E((X’X)™ X uu X(X’X)™) = (X’X) X E(uu) X (X' X)™
= (X' X)X X(X'X) T = o 2(X' X)L

The first equality is the definition of variance in the case of vector.

In the fifth equality, EQu) = 21, is used, which implies that Bf) = o for all i and
E(uu;) = O0fori # j.

Remember that,, Uy, - - -, U, are assumed to be mutually independently and identi

cally distributed with mean zero and variancé
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Under normality assumption on the error teamt is known that the distribution of

Bis given by:
B~ N@B, o (XX)™).

Proof:

First, whenX ~ N(u, X), the moment-generating function, i.@(), is given by:
/ / 1 /
$(6) = E(exp@'X)) = exp(0'u + 56 )
6onx1, uwunxl, Ggkxl, PBkx1
The moment-generating function ofi.e., ¢,(6,), is:
0_2
u(6u) = E(exp@,u)) = ex;(?e[ﬂu),
which isN(0, o1,).
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The moment-generating function,&fi.e.,%(eﬁ), is:

#5(05) = E(exp@B)) = E(exp@B + g5(X'X) X))
= exp@B)E(exp@(X'X)™X'1)) = exp@B)du(G(X X)*X)
= exp@;h) eXF(%Z%(X’X)_léﬁ) = exp(¢8 + %Zeg(x'xrleﬁ),

which is equivalent to the normal distribution with meaand variancer2(X’X) 1.
Note that 6, = X(X'X) 6. QED
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Taking thejth element of3, its distribution is given by:

- . Bi - Bi
Bi ~ N(Bi, o%a;;), e, ——— ~N(0,1),
] ] 1] a\/a_j,-

wherea;; denotes thdth diagonal element of{'X) ™.

Replacings? by its estimatois?, we have the following distribution:

ﬁ] B

-k
Sva, ~1(n-kK),

wheret(n — k) denotes the distribution withn — k degrees of freedom.
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[Review] Trace (b L —2R):

1. Anxn, tr(A) = Y., &, wherea;; denotes an element in tfitl row and the

jth column of a matridA.
2. a:scalar (Ix 1), tr(@@ =a
3. AAnxk, B:kxn, tr(AB)=tr(BA)
4, tr(X(X'X)"1X’) = tr((X’X)"IX’X) = tr(ly) = k
5. WhenX is a square matrix of random variablegtrEAX)) = tr(AE(X))

End of Review
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& is taken as follows:
N 1 <, -
52—— elz_— = = X6y (y - %),
which leads to an unbiased estimatoodf

Proof:
Substitutey = X8 + uandp = 8 + (X’X)"1X’uintoe = y — X3.

e=y—XB=XB8+U—-X(@B+ (X'X)"*X'u)
=u—XX'X)Xu = (I, = X(X'X)"X)u
- X(X’X)"1X" is idempotent and symmetric, because we have:
(In = XX X)2X) (I = XX X)X = 1, = XX X)X
(In = X(X'X)™IX) = 1, = X(X' X)X
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& is rewritten as follows:

&= —ke(e— ((| — XX X)X (1 = X(X' X)X )u
= n%ku (In = XX X) XY (1n = X(X' X)X )u
1
= ﬂu'(ln — X(X' X)X
Take the expectation af (I, — X(X’X)~1X’)u and note that tg) = a for a scalam.

iE(tr((ln = X(X'X)™X")uu))

E(S) = ikE(tr(u'(ln = X(X'X) X))

= nitr((l = X(X'X)™X)E(uu)) = ikaztr(u = X(X'X)™X)1n)

= ﬁo-ztr(ln - X(X' X)X = iaz(tr(ln) — tr(X(X'X)"1X"))
= niaz(tr(ln) —tr(X’X)"IX'X)) = i(r?(tr(ln) —tr(l)

- ikaz(n K) =
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— &?is an unbiased estimator of.

Note that we do not need normality assumption for unbiasedness of

[Review]
o X'X ~ y2(n) for X ~ N(O, I,,).

o (X—u)yT XX = p) ~ ¥3(n) for X ~ N(u, ).

X' X
« = ~ x?(n) for X ~ N(O, o2l,,).
X'AX 5 ) . .
* —5 X (G), whereX ~ N(O,c“l,) andA is a symmetric idempotemt x n

matrix of rankG < n.

Remember thab = Rank@) = tr(A) whenA is symmetric and idempotent.

[End of Review]
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Under normality assumption far, the distribution ofs? is:

(n-K  u(l, - X(X'X)X)u
- 2

2 - ~ X (tr(ln = X(X'X) X))

Note that  tfl,, — X(X'X)"1X") = n -k, because

tr(l,) =n
tr(X(X’ X)™1X’) = tr((X’X)"1X’X) = tr(l,) = k
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Asymptotic Normality (without normality assumption on u): Using the central
limit theorem, without normality assumption we can show that as> oo, under the

" 1 :
condition ofﬁX’X — M we have the following result:

ﬁj Bj
SVa;

whereM denotes & x k constant matrix.

— N(O, 1),

Thus, we can construct the confidence interval and the testing procedure, using
t distribution under the normality assumption or the normal distribution without th

normality assumption.
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4 Properties of OLSE

1. Properties of3 : BLUE (best linear unbiased estimatoy & RGN mi
EE), i.e., minimum variance within the class of linear unbiased estimato

(Gauss-Markov theorem 77 R - <¥JLO 7 DEIE)
Proof:

Consider another linear unbiased estimator, which is denot@d=bgy.

B =Cy=C(Xg+u)=CX3+Cu,
whereC is ak x n matrix.

Taking the expectation @f, we obtain:
E(3) = CXB + CE(U) = CXB
Because we have assumed that Cyis unbiased, B) = 8 holds.
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That is, we need the conditio@X = .

Next, we obtain the variance gf= Cy.
B=C(XB+Uu)=p+Cu
Therefore, we have:
V(B) = E((B - B)(B - B)') = E(CuuC’) = 0*CC
DefiningC = D + (X’X)"1X’, V(B) is rewritten as:
V(B) = 02CC’ = o?(D + (X’X)™IX)(D + (X'X)"XY'.
Moreover, becausgis unbiased, we have the following:

CX=lg=(D+ (XX) X)X = DX + |
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Therefore, we have the following condition:

DX =0.

Accordingly, V() is rewritten as:
V(B) = ?CC’ = (D + (X'X)™IX)(D + (X' X)X’y
= o2 (X'X)! + o?DD’ = V(B) + 0°DD’
Thus, V) — V(B) is a positive definite matrix.
= V(B) - V(B) >0

= A is a minimum variance (i.e., best) linear unbiased estimatgr of
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Note as follows:
= Als positive definite whed’Ad > 0 exceptd = 0.

= Theith diagonal element oA, i.e., a;, is positive (choosd such that the

ith element ofl is one and the other elements are zeros).

[Review] F Distribution:

Suppose thdt) ~ y(n), V ~ xy(m), andU is independent o¥/.
u/n
Then,Wm ~ F(n, m).

[End of Review]
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F Distribution (Ho : 8 =0): Final Resultin this Section:

(B - BYX'X(B - B Ik
2o/ -1 ~ F(k,n—K).

Consider the numerator and the denominator, separately.

1. If u~ N(O,02l,), thens ~ N(B, o2(X’ X)) .

Therefore,(ﬂ_ﬁ),if(ﬁ_’g) ~ XK.

2. Proof:

UsingB — B = (X’X)"1X’u, we obtain:

(B — B) X' X(B — B) = (X'X)™2X"u) X' X(X'X) ™1 X'u

= U XX X)X XX X)X U = u X(X' X)X u
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Note thatX(X’' X)X’ is symmetric and idempotent, i.&A = A,
u X(X'X)"1X"u
02 -

XA (tr(X(X'X)71X))
The degree of freedom is given by:
tr(X(X'X)1X’) = tr((X’X)"2X’'X) = tr(ly) = k

Therefore, we obtain:
~x*(K)

uX(X'X)"1X"u
2

. (*) Formula:
Suppose thaX ~ N(0, Iy).

If Ais symmetric and idempotent, i.&VA = A, thenX’AX ~ y2(tr(A)).

1
Here,X = =u ~ N(0, I,,) fromu ~ N(0O, o?l,)), andA = X(X'X)"1X".
g
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4. Sum of Residuals: eis rewritten as:
e=(In— X(X'X)"1X)u.
Therefore, the sum of residuals is given by:
ge=u(l, - X(X'X)X)u.

Note that 1, — X(X’X)"1X’ is symmetric and idempotent.
We obtain the following result:

Iy = XX X)X
ce_ Ul = X( %) M K2(tr(In = X(XX) X)),
g (o8

where the trace is:

tr(l, — X(X’X)™1X) = n—-k.
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Therefore, we have the following result:

ce_0-ks |2<)sz ~ x*(n-K),

o2
where

1
Sz = me(e

5. We show thaf is independent oé.
Proof:
Becausel ~ N(0, o21,,), we show that Co 3) = 0.
Cov(e.f) = E(e(B ~ B)') = E((In = X(X X)X )u((X'X)*X'u)’)
= E((ln — X(X’X)‘lx’)UL{X(X’X)‘l) = (In = X(X'X) X)) EUU)X (X' X) ™
= (In = X(X'X) XYW I)XXIX) T = 021, — XX X)IX)X (X X) ™2
= 2 (XX X)L = XX X)X XX X)) = 2(X(X' X)L = X(X' X)) = 0.
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B is independent oé, because of normality assumption on

[Review]

e Suppose thaK is independent off. Then, Covk,Y) = 0. However,

Cov(X,Y) = 0 does not mean in general th&ais independent oY.

e In the case wherX andY are normal, CoW, Y) = 0 indicates thak is
independent o¥Y.

[End of Review]
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[Review] Formulas — F Distribution:

U/n
. v/m ~ F(n, m) whenU

simy?(n), V ~ x?(m), andU is independent o¥.

e WhenX ~ N(O,1,), A andB aren x n symmetric idempotent matrices,

) ) B X'AX/G
Rank@) = tr(A) = G, Rank@) = tr(B) = K andAB = 0, theny oo
F(G,K).

Note that the covariance #fX andBX is zero, which implies tha&AX is inde-

pendent oBX under normality oiX.

[End of Review]
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6. Therefore, we obtain the following distribution:

B-BYXXB-B)  UXXX)Xu
— = — ~ X*(K),

e (1, — X(X'X -y

o - XD R -k

Bis independent o, becaus&(X’ X)X’ (I, — X(X'X)"1X’) = 0.

Accordingly, we can derive:

(B = BY X' X(5 -~ B) ko .
o? _ B=pXX(B-p)/k

ge ?
ggm—m

~ F(k,n—K)

Under the null hypothesid, : 8 =0,

Given datafBXTX’B/k

If ﬂXTXB/k is in tha tail of theF distribution, the null hypothesis is rejected.

B’ X' X5 /K
é—§@L~me—m.

is compared with=(k, n — k).
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Codficient of Determination (RE%%4), R?:

S, €

1. Definition of the Coéicient of DeterminationR®: R =1- of————=
Zisa(Yi —Y)

n
2. Numerator: Z e =¢e

i=1

3. Denominator: i(yi -2 =y (- %ii’)’(ln - %ii’)y =y(l,- %ii’)y

i=1

(*) Remark

=
|
<
=
<

y 1., 1.,
=117 —y—ﬁ"y—(ln—ﬁn)y,

B
|
<
=
<I

wherei = (1,1,---,1).
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ge

4. In a matrix form, we can rewrite as: R> = 1 — —
y(ln = 5ii)y

F Distribution and Coefficient of Determination:

=— This will be discussed later.
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Testing Linear Restrictions (F Distribution):

1. If u~ N(O,02l,), thens ~ N(B, r2(X’ X)) .
Consider testing the hypothesis : R =r.
R: Gxk, rankR) = G < k.

R3 ~ N(RB, ?R(X'X)"IR).

(R3 - r)(RIX'X)'R) *(R5 - 1)

o2

Therefore, ~ X*(G).

Note thatR3 = .

(@) Wheng ~ N(B, c4(X’X)™1), the mean oR3 is:
E(RB) = RE(B) = RB.
(b) Whenp ~ N(B, 3(X’X)™1), the variance oR3 is:
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V(RB) = E((RB - RB)(R3 - RB)') = E(R(B - B)(B - BY'R)
= RE((3 - B(B-B))R = RV(B)R = o*R(X'X)'R.
(n-Ks* _ee_(y-XB'(y-XB)

2. We know that — =5 - = x’(n-K.

3. Under normality assumption an 3 is independent oé.

4. Therefore, we have the following distribution:

(RB— 1) (RX'X)'R)(R6 - 1)/G
(= XBY(y=XB)/(n-K)

~F(G,n-k)
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5. Some Examples:

(a) t Test:
The case oG = 1,r =0andR = (0,---,1,---,0) (theith element oR
is one and the other elements are zero):
The test oHy : B = O is given by:

(RB - r)’(R(X’X);R)‘l(RB -n/G _ S/j; CFLn-K.

wheres? = ¢e/(n- k), R3 = 3 and
a; = ROX’X)"'R = thei row andith column of ’X)™.

*) Recall thatY ~ F(1, m) whenX ~ t(m) andY = X2,
Therefore, the test dfly : B = 0 is given by:
B
SVai

~t(n - K).
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(b) Test of structural change (Part 1):

{Xiﬁl"‘ui’ i=12---,m

XB2+U, i=m+1m+2-.--.n
Assume that; ~ N(O, o).

In a matrix form,

Y1 X1 0 Uy
Y2 X2 0 U,
Ym 0 (ﬁl ) Um
= +
Ym1 0 Xme1 ﬁz Um+1
Ym+2 0 Xm2 Uni-2
yn O Xn un
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Moreover, rewriting,
(o)=(s )l
= +u
Y 0 X/ \p

Y=XG+U

Again, rewriting,

The null hypothesis i$g : 81 = .
Apply theF test, usingR = (Ix — Ix) andr = 0.
In this caseG = rank®) = kandg is a X« x 1 vector.
The distribution ig=(k, n — 2K).
(c) The hypothesis in which sum of the 1st and 2ndffioents is equal to
one:

R=(11.0,---,0),r=1
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In this caseG = rankR) = 1
The distribution of the test statistic i1, n — k).
(d) Testing seasonality:
In the case ofjuarterly data (FU¥#§7—#4), the regression model is:
y=a+ a1D; + 2Dy + a3D3 + XBp + U
D; = 1inthejth quarter and O otherwise, i.;, | = 1,2,3, are sea-
sonal dummy variables.

Testing seasonality= Hp: a1 =a;=a3=0

a
a1 01 00O0:.--0 0

B=|az|, R=(0 0 1 0 0 --- 0Of, r=|o
as 0O 001 0--0 0
Bo
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In this caseG = rank®) = 3, andB is ak x 1 vector.
The distribution of the test statistic K53, n — k).
(e) Cobb-Douglas Production Function:
Let Q;, K; andL; be production, capital stock and labor.

We estimate the following production function:

log(Q)) = B1 + B210g(Ki) + Bslog(Li) + ui.
We test a linear homogeneous {X[Fl¥X) production function.
The null and alternative hypotheses are:

HO: ﬁ2+ﬁ3:11
Hy: B2+ 63 # 1.

Then, set as follows:

R=(0 1 1), r=1
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() Test of structural change (Part 2):
Test the structural change between time periodsdm + 1.

In the case where both the constant term and the slope are changed,

regression model is as follows:
Yi = @+ B + vt +6dix + Ui,

where
0, fori=12---,m,
d =
1, fori=m+1m+2---,n.
We consider testing the structural change at time 1.
The null and alternative hypotheses are as follows:
Ho : Y= 0=0,
Hi: y#0,0r6 #0.
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Then, set as follows:

0010 0
(o004 "l
0001 0

(g) Multiple regression model:

Consider the case of two explanatory variables:

Vi = a+BX + vz + U.
We want to test the hypothesis that neitkenor z depends ory;.
In this case, the null and alternative hypotheses are as follows:

Ho:ﬂ:)/:O,
Hi: B#0, or,y #0.

Then, set as follows:
01 0 0
=y 0 o) =(o)
0 0 1 0
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Codficient of Determination R? and F distribution:

@ The regression model:

Yi = X + U = B1+ Xoif2 + Ui

where

B
= ). =),
B2
X+ 1xKk, Xoi - 1x(k-1), B kx1, B (k—=1)x1

Define:
X21
X22
X, =
Xon
Then,
B

y=XB+u=(i Xz)( )+u:iﬁ1+Xzﬁz+u,

2
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where the first column oX corresponds to a constant term, i.e.,
1

1
X=(i X)), i=

1

@ Consider testingdy : 8, = 0.

TheF distribution is set as follows:
RZ(O |k—1), r=0

whereRis a k — 1) x k matrix andr is a k — 1) x 1 vector.

(R3 — 1Y (RIX'X)'R) ™ (R3 - 1)/(k — 1)
T ~ Fk-1,n-K)

We are going to show:
(RB— ) (RX'X)'R) ™ (RB — 1) = ByXsMXoB2,
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1.
whereM = |, - ﬁ”/'

Note thatM is symmetric and idempotent, i.&4’'M = M.
Y-y
Y2—-Y
. |=My
Yn—Y

R(X'X)"IR is given by:

lk-1

i,i |X2 !
o ol )
X XoXe) Iy
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[Review] The inverse of a partitioned matrix:

(All Alz)
Aoy Ag)

whereA;; andA,, are square nonsingular matrices.
AL ( Bi1 —Bl1A12A§% )
~APBL A+ ARABLALAL)
whereB;; = (A1 — AAS2 A1), or alternatively,
AL (AI% + AI%A12822A21AI% —AI%Alszz)
—BooAniALL B2, ’
WherEBzz = (A22 - Az]_AI]l_Alz)_l.

[End of Review]
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Go back to thd- distribution.

( i i )‘1
Xoi X5

(3 (X5 X — x;i(i’i)-li'xz)-l)

(5 (x;(ln—%ii')xz)-l) ( (XéMXz)_l)

Therefore, we obtain:

il i\t 0
o wall) 2
Xél XQXQ o1

_ (0 |k_1)(; °

_ ’ -1
(XéMXz)‘l) ( |k_1) = PeMXa™

Thus, undeHy : B, = 0, we obtain the following result:

(RB—rY (RXX)IR) HRB - r)/(k—1) _ ByXsMXoB,/(k— 1)
ee/(n—Kk) - ee/(n—Kk)

~ F(k-=1,n—K).
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@ Codficient of DeterminatioR?:

Defineease = y — X3. The codiicient of determinant?, is

B ge
y' My’

whereM = |, - ﬁ”" I, is an x nidentity matrix and is an x 1 vector consisting of
l,ie,i=(1,---,1).
Me = My — MXg.

, . (B2
WhenX = (i Xz)and,B:(A )
B2

Me

Il
o

becausé’e = 0, and
MX=M(i Xp)=(Mi MX;)=(0 MX;),
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becauseMi = 0. .

R B R
MXZ = (0 sz)(A ): M Xof3o.

2
Thus,

My= MX3+Me = My = MX,83, + e
y' My is given by: y My = 3,X;MX,8, + €€, becausé&e = 0 andMe = e.
The codficient of determinant?, is rewritten as:
ge

R2:1—y,My €e=(1- Ry My,
_yMy-€e  BXsMXoB, o
R = MY yMy =  ByXMXB, = Ry My.
Therefore,
BXMXPa/(k=1) _  RyMy/k-1) _ RIK=1 o
ee/(n-k  (1-R)yMy/(n-k)  (1-R)/(n-k) ’ '

Thus, usingR?, the null hypothesisly : 38, = 0 is easily tested.
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5 Restricted OLS (##917 & wR/NZFE)

1. Letj be the restricted estimator.

Consider the linear restrictiofRg =r.
2. Minimize (y — XB)'(y — XB) subject toR3 = r.
Let L be the Lagrangian for the minimization problem.
L= (y—XB)(y—XB) - 2U(RB - 1)

Becauses and.A minimize the Lagrangiah,

oL ~ -

— = -2X'(y - -2RA=0
PY: (- XB)

oL ~

— = —2 —-I) = O

7 R3-T)
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OX AX

(*) Remember thata;l—xx =aand = (A+ A)x.

Froma—E = 0, we obtain:
B
B=XX)IXy+ (X'X) IR =B+ (X'X) R

Multiplying R from the left, we have:

R3 = R3 + RX'X) 'R 1.
BecauseR3 = r has to be satisfied, we have the following expression:

r = R+ RX'X) 'R 1.
Therefore, solving the above equation with respeat, we obtain:

1= (RXX)R) " (r - RB)
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Substitutingl into 3 = 8 + (X’X)"'R'1, the restricted OLSE is given by:
B =B+ (XX R(RXX)R) ™ (r - RB).
(a) The expectation ¢ is:

E(@) = EB) + (XX)'R(RX'X)'R)(r - RE(3))
=B+ (X' X)'R(RX'X)'R) ™ (r - RB)
= ﬁ,

because oR3 = .

Thus, it is shown thag is unbiased.
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(b) The variance of is as follows.

First, rewrite as follows:

B - B)

B-B) + (XX) 'R (RXX)'R) " (R8 - RY)
B-B) - (XX) 'R (RXX)'R) " (RB - R)
= (B-B) - (XX 'R (RXX)'R) " RB - p)
= (k= (XX R (RXX)'R) " R)B - )

= W(@B-B),

whereW = Iy — (X' X)R (RXX)R) R
Then, we obtain the following variance:
V(B) = E((B-B)(B - B)') = E(W(B - B)(B - B W)
= WE((B - B)(B - B) )W = WV(BW' = c®W(X'X) W
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= o?(1 = (XX) R (RXX)IR) T R)(XYX)™

x(1 = (XX) 'R (RXX)'R) " R)
= 2(XX) = (X X) R (RXX)IR) T RXOX)™
= V(B) - 2(XX) R (RXX)R) T RXOX)™

Thus, V) — V(B) is positive definite.
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3. Another solution:

Again, write the first-order condition for minimization:

oL ~ -
— = =-2X'(y - -2R1=0,
PY: (y - Xp)
oL ~
— = —2 -r)= O,
5 (RB-T)
which can be written as:
X'XB-R1 =Xy,
RG=r

Using the matrix form:



The solutions off and—-1 are given by:
)0 S0
i/ VR o0 r)

(*) Formula to the inverse matrix:

(A B)‘1 ( E F)
B D/ \F G/
whereE, F andG are given by:
=(A-BD'B)!t=A1+AB(D-BA!B)'BA?
F=-(A-BD'B)!BD?!=-A'B(D-BA!B)™

=(D-BA'B)*=D'+D'!B(A-BD'B)!BD*
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In this caseE andF correspond to:
E=(XX)"t- (X’X)‘lF((R(X’X)‘lR’)_lR(X’X)‘l
F = (X0 R(RXX)R)

Thereforeg is derived as follows:

B=EXy+Fr
= B+ (XX R(RXX)R) " (r - R).

The variance is:

Therefore, V) is:
V(B) = 0?E = o?((X'X) ™" - (X’X)‘lRV(R(X’X)‘lR/)_lR(X’X)‘l)
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Under the restrictionRg =r,
V(B) - V(B) = (X X)R(RXX)'R) ROXX)™

Is positive definite.

6 F Distribution (Restricted and Unrestricted OLSS)

1. As mentioned above, under the null hypothesis R3 =,
(RE - Y RXX)'R)MRE-N/G Lo
(y = XB)'(y — XB)/(n— K) ’ ’
whereG = RankR).

Usingg = B+ (X’ X)"'R (R(X’X)‘lFi“)_l (r — RB), the numerator is rewritten as

follows:
(R3 = ) (R(X'X)'R)H(RB - ) = (B - BY X'X(B - B).
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Moreover, the denominator is rewritten as follows:
(y = XB)'(y — XB)=(y — XB — X(B - B))'(y — XB - X(B - B))
=(y — XBY' (Y — XB) + (B— By X'X(B - B)
—(y = XBYX(B - B) — (B - By X'(y — XB)
=(y — XB)'(y = XB) + (B - B) X'X(B - ).

X'(y = XB) = X’e = 0 is utilized.
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Summarizing, we have following representation:

(R - ) (RX'X)*R) ™R3 - r)=(8 - B) X' X(B - B)
=(y = XB)'(y — XB) — (y — XB)'(y — XB)

=00 - €e

wheree and U are the restricted residual and the unrestricted residual, i.e
e=y- XBandu=y- X5.
Therefore, we obtain the following result:

(R3 - r)(RX'X)'R) *(R3-1)/G_(lii- €€)/G

B P> = ~ F(G,n=Kk).
(v = %B) (y - XB)/(n - K) gein—ly ~ FGn-k
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7 Example: F Distribution (Restricted OLS and Un-
restricted OLS)

Date file = cons99.txt (Next slide)

Each column denotes year, nominal household expenditgt@sigZf, 10 billion
yen), household disposable inconz@g} 7/ 4L 73 Firfs, 10 billion yen) and household
expenditure deflatok #7427 7 L — &, 1990=100) from the left.
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1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

5430.
5974.
6686.
7169.
8019.
9234.
10836.
12430.
14506.
16674.
18820.
21680.
24914.
28452.
32705.

-
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6135.
6828.
7619.

8153
9274
10776
12869
14701

17042.

19709

22337.

25514

29012.

34233

39486.

w o ! R 0N R A W WU 2

18.
18.
19.
19.
19.
20.
21.
23.
24.
26.
27.
29.
30.
31.
32.
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1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

37784.
42571.
49124.
59366.
71782.
83591
94443
105397
115960.
127600
138585.
147103
157994.
166631
175383.

N R N - - N R e

45913.
51944.
60245.
74924.
93833.
108712.
123540.
135318.
147244.
157071.
169931.
181349.
190611.
199587.
209451.
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35.
37.
39.
44.
53.
59.
65.
70.
73.
76.
81.
85.
87.
89.
91.
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1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

185335.
193069.
202072.
212939.
227122.
243035.
255531.

265701

272075.
279538.
283245.
291458.
298475.
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220655.
229938.
235924.
247159.
263940.
280133.
297512.
309256.
317021.
325655.
331967.
340619.
345522.

93.
94.
95.

95
97

102
104

105.

106

106.

106

107.
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I NE B S I T T T R T S I I A T S I A M K N R R A
AR RHHAATNTRAARTRTRAARTTRARATRTRARANRTRTRARTRTRTRARTTRRARARNTRRARARNER

freq a;
smpl 1955 1997;

read(file="cons99.txt’) year cons yd price;
rcons=cons/(price/100);

ryd=yd/(price/100) ;

d1=0.0;

smpl 1974 1997;

di=1.0;

smpl 1956 1997;

dlryd=d1l*ryd;

olsq rcons c ryd;

olsqg rcons c dl ryd dlryd;

end;

L
I
|
I
I
|
I
I
I
I
I
I
I
I

e el
FWNRFRQQOWOONOUVIE WN R

PO R K OO RN
WHRRRARARTE®
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Equation 1

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .127951E+10
Variance of residuals = .319878E+08
Std. error of regression = 5655.77
R-squared = .994890
Adjusted R-squared = .994762
Durbin-Watson statistic = .116873
F-statistic (zero slopes) = 7787.70
Schwarz Bayes. Info. Crit. = 17.4101
Log of likelihood function = -421.469

Estimated Standard
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Variable Coefficient Error t-statistic
C -3317.80 1934.49 -1.71508
RYD .854577 .968382E-02 88.2480
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Equation 2

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .244501E+09
Variance of residuals = .643423E+07
Std. error of regression = 2536.58
R-squared = .999024
Adjusted R-squared = .998946
Durbin-Watson statistic = .420979
F-statistic (zero slopes) = 12959.1
Schwarz Bayes. Info. Crit. = 15.9330
Log of likelihood function = -386.714

Estimated Standard
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Variable Coefficient Error t-statistic

C 4204.11 1440.45 2.91861
D1 -39915.3 3154.24 -12.6545
RYD .786609 .015024 52.3561
D1RYD . 194495 .018731 10.3839
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1. Equation 1
Significance test:
Equation 1is:
RCONS = 81 + B,RYD
Ho: Bo=0
(No.1) t Test = Compare 88.2480 art42 — 2).
R?/G 9948901

(1-R)/(n—-K _ (1—.994890y(42-2) _
77878 andF(1,40). Note thaty7787.8 = 88.2485.

(No.2) F Test = Compare

1% point ofF(1,40) = 7.31

Ho : B> = 0is rejected.
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2. Equation 2:
RCONS = 81 + B2D1 + B3RYD + B4RYD X D1

Ho: B2=B3=pB4a=0

R?/G _ .9990243
(1-R)/(n—-K  (1-.999024)(42- 4)

F Test = Compare = 129655

andF(3, 38).

1% point of F(3,38) = 4.34

Ho : B> = B3 = B4 = O is rejected.

3. Equation 1vs.Equation 2

Test the structural change between 1973 and 1974.
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Equation 2is:
RCONS = ﬁl +,82D1 +ﬁ3RYD +ﬂ4RYD x D1

Ho: B2=B4=0
Restricted OLS= Equation 1

Unrestricted OLS= Equation 2

(- €e)/G _ (.127951E + 10 — .244501E + §9)/2
ee/(n-k .244501E + 09/(42 - 4)

= 8043

which should be compared witi(2, 38).
1% point of F(2,38) = 5.211 < 80.43
Ho : B> = B4 = O is rejected.

= The structure was changed in 1974.
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8 Generalized Least Squares Method (GLS—#% 1t &
INEFEIR)
1. Regression model: y = X8 + u, u~ N(0,0%2Q)

2. Heteroscedasticity IR&E D8, FHE—9E)

0—% 0 --- 0
0 o2

o’Q = 2 )
0 0 o2
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First-Order Autocorrelation ( —F& D B 248, *7IHEE)

In the case of time series data, the subscript is conventionally givembyi .

U = pU_1 + &, & ~ iid N(0, o)
1 p P P
o 1 p e p"?
2 o’ 2 n-3
ngzl—pz 0 0 1 - p
ol 2 pn-3 1

o
V(W) =02 = €
h 1= 2

3. The Generalized Least Squares (GLS-f%{t i/ — k) estimator ofg,
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denoted byb, solves the following minimization problem:

min (y — Xby QX (y — Xb)
b

The GLSE ofg is:
b=(XQ X)Xty
. In general, wheif is symmetricQ is decomposed as follows.

Q=AAA

A is a diagonal matrix, where the diagonal elements afe given by the eigen
values.

Ais a matrix consisting of eigen vectors.

WhenQ is a positive definite matrix, all the diagonal elementa @ire positive.
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5. There exist® such thaQQ = PP (i.e., takeP = AAY?), — PlQP1 =1,

Multiply P~ on both sides of = X8 + u.
We have:
y* =X +u,
where y*=Ply, X*=P1X, and u*=Plu
The variance oti* is:
V(u*) = V(Pu) = PV(U)P ™t = o?PIQP T = o,

becaus® = PP, i.e.,P1QP 1 =|,.
Accordingly, the regression model is rewritten as:
y* = X*B+ U*, u* ~ (0,0l,)
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Apply OLS to the above model.
Let b be as estimator ¢d from the above model.

That is, the minimization problem is given by:

min (y* — X*b)’'(y* — X*b),
b

which is equivalent to:

min (y — Xb)'Q}(y — Xb).
b

Solving the minimization problem above, we have the following estimator:
b — (X*fx*)—lx*/y*
— (x/Q—lx)—lle—ly’
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which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:
b=pg+ (X*X")X"u* =g+ (XQ X)X QM
The mean and variance bfare given by:
E() =5,
V(b) = c#(X*'X*) ! = (X' QX)
6. Suppose that the regression model is given by:
y = X8+ U, u ~ N(0, 0%Q).
In this case, when we use OLS, what happens?
B=(X'X)"IX'y = B+ (X'X)™X'u
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V(B) = o2(X X)X QX (X' X)L

Compare GLS and OLS.

(a) Expectation:
E@G)=p8 and Ep)=p
Thus, both3 andb are unbiased estimator.

(b) Variance:

V(B) = ?(X' X)X QX (X' X) ™
V(b) = o (X'Q1X)?

Which is more éicient, OLS or GLS?.
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V(B) - V(b) = o2 (X' X)X QX(X'X) ™t - o2(X'Q71X) 2
= (X' X)X - (X QX)X QT
x((XX) X = (X QX)X
= 0’ AQA’
Q is the variance-covariance matrix @fwhich is a positive definite ma-

trix.

Therefore, except faR = 1,,, AQA’ is also a positive definite matrix.

This implies that V8 — V(b;) > 0 for theith element of3.
Accordingly,b is more dficient thans.
7. If u~ N(O, 0?Q), thenb ~ N(B, c2(X'Q1X)™1).
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Consider testing the hypothesid, : R3 =r.
R: Gxk, rankR =G <k
Rb~ N(RB, r2R(X'Q"1X)"'R).
Therefore, the following quadratic form is distributed as:

(Rb—r)Y(RX'Q1X)R) *(Rb-r)

— ~ X*(G)

8. Becausey* — X*b)'(y* — X*b)/o? ~ y(n - k), we obtain:

— 'O~y —
(y Xb) QZ (y Xb) ~X2(n_ k)

g

9. Furthermore, from the fact thatis independent oy — Xb, the following F

distribution can be derived:
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(Rb—r) (RX'QX)R) ™ (Rb-r)/G

- ~F(G,n—K)
(y - Xb'Q(y - Xb)/(n-K)

10. Let b be the unrestricted GLSE aiibe the restricted GLSE.

Their residuals are given l/andu, respectively.

Then, theF test statistic is written as follows:

Q- eQle)/G
eQte/(n-K)

~F(G,n-K)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)
A generalization of the restricted OLS= Stochastic linear restriction:

r=R8+V, E(v) =0 and V{) = c2¥

y=XB+uU, E() =0 and V() = oI,
Using a matrix form,

C) (e el (o) e ) =[]

For estimation, we do not need normality assumption.
Applying GLS, we obtain:

o=[oc =5 ) () e (5 3)°C)
= (XX +R¥R)(Xy+R¥r).

126



Mean and Variance df: b is rewritten as follows:

o<(oc wfy ) Gl o f5 20
_ -1
sefoc mfg o) G ()
Therefore, the mean and variance are given by:

E() =8 = b is unbiased.

-l ol ()

= (XX + R¥R)

-1
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9 Maximum Likelihood Estimation (MLE, &=L%)

—> Review
1. The distribution function of X}, is f(x;6), wherex = (X, X, ---, X,) and

0= (u3).

Note thatX is a vector of random variables ards a vector of their realizations

(i.e., observed data).

Likelihood functionL(-) is defined as.(¢; x) = f(x; 6).

Note thatf(x;0) = 1L, f(x;6) whenXy, Xp, ---, X, are mutually indepen-
dently and identically distributed.
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The maximum likelihood estimator (MLE) @fis 6 such that:

max L(6; X). = max logL(#; X).
6 6

MLE satisfies the following two conditions:

dlogL(6; X)
(a) 50 =0.
2 .
(b) M is a negative definite matrix.

0006’
2. Fisher's information matrix ( 7 1 < + —D1E#,RTT3) is defined as:

0% log L(6; X))

JORS 9000

where we have the following equality:

0%logL(8; X) dlogL(#; X) dlogL(8; X) dlogL(8; X)
)= & V()

_E( 006’ 90 EY 90

129



Proof of the above equality:

fL(H; xX)dx =1

Take a derivative with respect &

f&L(Q; X)dx 0
a0

(We assume that (i) the domainxtioes not depend anand (ii) the derivative
oL(0; X)
a0

Rewriting the above equation, we obtain:

dlogL(6;x), , B
f %0 L(6; X)dx = 0,

exists.)
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Again, differentiating the above with respectfowne obtain:

d%logL(6;x), , dlogL(#; X) OL(6; X)
f ST L(6; X)dx + f %9 54 dx

_ [ *logL(®;x), . dlogL(#; X) dlog L(6; X)
- f 3000’ LG xax + f 90 00
_ (9logL(6; X) dlogL(6; X) 6log L(6; X)
- E( 3000’ ) i E( a0 00

L(6; x)dx

)=0.

Therefore, we can derive the following equality:

_E(az log L(6; X)) _ E(a log L(6; X) 0log L(; X)) _v ((’) log L(6; X))
3600’ B 90 00 - 90 ’

where the second equality utiIizez( Iogal_e(e; X)) =0.

3. Cramer-Rao Lower Bound (7 2 X —JL - A D TFR): (1(0)*

Suppose that an estimatoréis given bys(X).
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The expectation of(X) is:

() = [ s09L(6: e
Differentiating the above with respect#o

8E(S(X)) fs( )5'—(9 X) 4x — fs( )ML(Q x)dx

= Cov(s(X), —GIOQ(;SH X))
For simplicity, lets(X) andé be scalars.
Then,
FE(S(X) ) dlogL(6; X)\\* dlogL(6; X)
(557 =[cov(s00 Z225ER ) < visoonv (FREEER)
dlogL(d; X)
<v (s (Z222020),
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: : dlogL(6; X
wherep denotes the correlation ciheient betweers(X) andM

09 B
Cov( ). 0 Iog(I?_Q(H; X))
p:
) \/ M)

Note thatp| < 1.
Therefore, we have the following inequality:

(DN < vispop v

dlogL(g; X)
00 ’

IE(S(X))\?
=)
v (6 Iog(;.@(e; X))

V(s(X)) =
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Especially, when EX)) = 6,

1

d%logL(8; X)
=5

V(s(X)) 2 = (1)

Even in the case wher#X) is a vector, the following inequality holds.

V(s(X)) = (1(6) ™,

wherel (0) is defined as:

2 .
0--e[Z15%)
_E dlogL(0; X) dlog L(6; X) _v dlogL(0; X)
_( 90 00 )_( 90 )

The variance of any unbiased estimatop a larger than or equal td (¢)) .
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4. Asymptotic Normality of MLE:
Let 6 be MLE of 6.

As n goes to infinity, we have the following result:

V(@ - 6) — N(O ||m( ())_l)

n

. (1(6
where it is assumed that I|<n%) converges.

Nn—oo

That is, whem is large,d is approximately distributed as follows:
~N(6.(1()).

Suppose thas(X) = 6.
Whennis large, (s(X)) is approximately equal td (6)) .

135



5. Optimization (&&1k):
MLE of 6 results in the following maximization problem:

max logL(#8; x).
0

We often have the case where the solutiof ©f not derived in closed form.

= Optimization procedure

_OlogL(g;x) adlogL(¢*;x) 6%logL(6”;X)

0 50 0 00

@ - 6).

Solving the above equation with respectiave obtain the following:

0=6"— (52 logL(6"; x))‘1 dlogL(6": x)

06000’ 00

Replace the variables as follows:
g —s 60+Y)
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g — Y

Then, we have:

D _ ) _ 821og L(6"; x)\ " alogL(6D; x)
B A000 90 '

= Newton-Raphson method Eax— kY - STV ViK)

Replaci
eplaciNg— a0 9000

timization algorithm:

S0 _ g0 _ [P 1ogL(e?; %) “alogL(69; x)
0006’ 00
-1 9logL(Y; x)
00

2 @i)- 2 (i)
M b E(M), we obtain the following op-

=60+ (1(69))

= Method of Scoring (R 3 773%)
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9.1 MLE: The Case of Single Regression Model

The regression model:

Yi = B1+ B2X + Ui,
1. u ~ N(0, o?) is assumed.

2. The density function ofj; is:

() =

! ex —iu2
\2no? P\72021 )
Becauseuy, Uy, - - -, U, are mutually independently distributed, the joint density

function ofug, Uy, - - -, U, IS written as:

f(ug, Up, - -+, un) = fug) f(uz) - - - f(upn)
2

1 1 <
= @2z P 202 2,4
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3. Using the transformation of variable;(= y; — 81 — 82X), the joint density

function ofyy, s, - - -, ¥y iS given by:

1 1 %

f e = - E - — By — BoX)?
(yl’ Yo, s Yn) (271'0'2)”/2 eXp 20_2 - (y ﬁl 182X|)

= L(ﬁ].’ﬁZ’ 0'2|Y1, YZ, Tty Yn)

L(B1, B2, 2ly1. Yo, - - -, Yn) is called the likelihood function.

log L(B1. B2, |y, Y2, - - -, Yn) is called the log-likelihood function.

|Og L(ﬂl’ﬂ27 O-2|yla y29 Tty yn)
n n 1 &
= —5 log(2x) - 5 log(e?) - 5~ ;(yt ~ B1— Boxi)?
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4. Transformation of Variable (Z#Z#i) — Review.
Suppose that the density function of a random variabie f,(x).

Defining X = g(Y), the density function oY, f(y), is given by:

50) = fa0) | |

In the case wherX andg(Y) aren x 1 vectors

’M' should be replaced by

'6g(y)‘ which is an absolute value of a determinant of the ma&ﬂgl
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Example: WhenX ~ U(0, 1), derive the density function of = —log(X).

f(X) = 1

X = exp(Y) is obtained.

Therefore, the density function &f fy(y), is given by:

f(y) = j—§ f.(00)) = | - exp(y)| = expl-y)
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5. Given the observed data, Y-, - - -, Yn, the likelihood functionL(B1, B2, o2|yx,
Yo, <=+, Yn), Or the log-likelihood function lod(81, B2, o2ly1, Y2, -+, Yn) IS

maximized with respect tg(, 8o, o?).

Solve the following three simultaneous equations:

dlog L(B1, B, 02Y1, Vo, - - - 1 <
gL(B: ,32(;81M Y2 Yn) :;Z(yi — B1 - Bax) = 0,
i=1

0 |0g L(ﬂl,ﬁz, 0'2|y1, Yo, Yn) 1 n
=— ) (Vi—B1—B2x)% =0,
B2 o? ;

(9 |Og L(ﬁl’ﬁ27 0'2|Y1, y27 Tty yn) — n 1 1

7 Z(Yi — B1—B2x)? = 0.
i=1

02 202 " 207 «

The solutions of £, 5,, o) are called the maximum likelihood estimates,
denoted byf:, B2, 52).
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The maximum likelihood estimates are:

- YL (= X)(Yi - ) s s L, 1 . .
B2 = éin:l(xi_y()z ’ B1 =Y~ B2X, Uzzﬁ;(yi_ﬁl_ﬁzxi)z-

The MLE of o2 is divided byn, notn — 2.
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9.2 MLE: The Case of Multiple Regression Model |

1. Multivariate Normal Distribution: X : nx 1 andX ~ N(u, X)

The density function oKX is:
1
_ /215 1—-1/2 ry-1
f(x) = (2n)"Z| ex;{—z(x—y) ) (x—,u)).

2. Regression model: y=X8+u, u~ N(0,c?l,)
Transformation of Variables fromto y:
1
— 2\—-n/2 ’
fu(u) = 2ro)™ exr(—ﬁu u)
ou
oy’
1
_ 2y-n/2 = (v— XBY(v—
= (2r0?) " exp(~ =5 (y - XB) (v - XB))
=L(8;y, X),

L) = fuly - XB) \
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whered = (8, o?), because 01(%{ =1,

Therefore, the log-likelihood function is:
. n 2 1 ’
logL(#; Y, X) = ~5 109(2r0%) ~ 5—5(y ~ XB) (¥ = XB).

Note thatZ| 2 = |02l Y% = 2.

3. max logL(8;y, X)

6
(FOC) W =0
2 .
(SOC) 9 IO%;‘;Z 2 is a negative definite matrix.

145



We obtain MLE ofg ando:

52 V= XB - XB)

B =(X'X)XYy, .

whered? is divided byn, notn — k.

4. Fisher's information matrix is:

9*logL(8;y, X))
06006’

1(6) = —E(

The inverse of the information matrix(6)~!, provides a lower bound of the

variance - covariance matrix for unbiased estimatois.of

(O'Z(X’X)‘l 0 )

1) = 204

B B\ (FPXX)T 0
For largen, we approximately obtain( . 2) ~N (( ) ) , ( 0 204 ))
g d T
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9.3 MLE: The Case of Multiple Regression Model Il

1. Regression model: y=X8+u, u~ N(0,c?Q)

Transformation of Variables fromtoy:

fu(u) = (2na?) Q2 ex;( 53U 'Q u)

= (2n0?) QM x5 5y~ XBY Ny - XB))
~L(@B:y. X).

whered = (B, 0?), because o% =1,
The log-likelihood function is:
. n 2 1 1 r-1
logL(67y, X) = 5 log(2r0) — 5 log || - 5—(y = XB) Q™ (y — Xp),
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whereé = (8, 52).

2. max logL(6;y, X)
0

(Foc) 19LEOY.X)

0% logL(6;y, X)
0000’
Then, we obtain MLE of ando?:

(SOC) is a negative definite matrix.

2 V=X Y- XP)

B — (X/Q—lx)—lle—ly, -

3. Fisher’s information matrix is defined as:

d%logL(8;y, X))

16) = -§( 8060

The inverse of the information matrix(6)~!, provides a lower bound of the
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variance - covariance matrix for unbiased estimato wfhich is given by:

a2(X'QIX)t 0 )

16) " = ( 0 20"
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9.4 MLE: AR(1) Model

The pth-order Autoregressive Model, i.e., AB(Model (p ¥X® A c.[alF € 7 V):

Yo = @Y1+ PaYr2+ -+ PpYip + U

AR(1) Model: t=2,3,---,n,
Vi = 11 + U, U~ N(O, 0'2)
where|¢;| < 1 is assumed for now.

To obtain the joint density function @f, y», - - -, Yn, (Y, Yn-1,- -, Y1) IS decomposed

as follows:
n
F Yo Yoo, 5 ya) = ) | | F ORIy, ya).
t=2
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Fromy; = ¢1Y;_1 + U, We can obtain:

E(ytlyt—l» Y yl) = ¢lyt—11 and V@tlyt—l’ Y yl) = 0-2'

Therefore, the conditional distributiolr{y|y;_1, - - -, Y1) IS:

1
f(VilYi-1, -+, Y1) = eXp(_ZT-Z(yt — p1ye1)?|.

1
V202
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To obtain the unconditional distributiof(y;), y; is rewritten as follows:

Vi = P1Yr1 + W

2
= P7Vi—2 + Uy + P1Ui1

= @Yo j + U+ drlhg + - + Pl |

= Up+ Pl 1 + Palh_p + -, whenj goes to infinity.
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The unconditional expectation and varianceas:

0.2

= 1_¢%_

Therefore, the unconditional distribution yfis given by:

1

1
expl -——
2102/(1 - ¢?) p( 202/(1 - ¢7)

fy) = yz) |

153



Finally, the joint distribution o¥/,y,, - - -, ¥, iS given by:

n
F(Yo Y1, ¥1) = Fya) | | FORIYen, -+, y)
t=2

1

1
expl—————=-
J2ra? /(1 - ¢2) p( 20%/(1 - ¢7)

n
X

g

e %
|| o2 Xp T 552 Vi — d1Yi-1
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The log-likelihood function is:

1
202/(1 - ¢§)

n-— 1 2 1 - 2
—— log(2r0°) - 252 ;(yt = P1Ye-1)".

1
10gL(¢1, 0%} Y Y-, Y1) = =5 l0g(2n0*/ (1 - 6)) - yi

Maximize logL with respect tap, ando?.

Maximization Procedure:

¢ Newton-Raphson Method, or Method of Scoring

e Simple Grid Search (search maximization within the ranfje< ¢; < 1, chang-
ing the value ofp; by 0.01)
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9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

Vi = XLB + U, U = pU—1 + &, & ~ iid N(O, O'E)

The joint distribution ofu,, Uy_1, - - -, Uy IS:

n
fu(Un, Un 1, s p, 02) = fu(uz; p, ) | ] fulWhln s, -+, s p, )
t=2

= (2no2/(1 - p?)) V2 exp(—mﬁ)

1 n
2\—(n-1)/2 2
x(2no?)~1) exp[— 5 g (U — pUr_1) ]

€ t=2
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By transformation of variables fromy,, Un_1,- -+, Uy tO Y, Yn_1, - - -, Y1, the joint dis-

tribution of y,, Y1, -+, Y1 iS:

fy (Yo Y1+ +» Y15 0, 02, B)

]
= fulYn = XaB, Y1 = X018, -+, Y1 — Xu8; p, 02) a;"
_ 2 _ 2 -1/2 _ 1 _ 2
— @ro2 (1~ ) 7 exp{ 5y 01 - 38

n

X(2r0?) (12 exp[— 2;_2 Z((Yt = PYr-1) — (X — PXt—l)ﬁ)z)

€ t=2

1
2
207

= (2n0?) (1 - p?)V? eXIO(— (V1-p2y1— y1- pleﬂ)z)

n

X(2r02) "D/ eXp[— 22-_2 Z((Yt = PYr1) — (% — PXt—l)ﬁ)zJ

€ t=2

= (2n02) (1 — pA)V2 exp(—%(ﬁ - x*;,g)z) X exp(— 2(172 Z(Y{ - Xfﬁ)z)

€ t=2
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1
= (20 oD (L PP exp[— =
0-6

= L(0, 02,8 Y Y1, *» Y1)

wherey; andx are given by:

v1- P*Yrs
ytk =
Yt — PYr-1,
By \/1 - pzxt,
Xt =
Xt — PXi-1,

n

fort =1,
fort=2,3,---
fort=1,
fort=2,3,---
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© For maximization, the first derivative &fjo, o2, 8; Yn, Yn-1. - - - » Y1) With respect to

8 should be zero.
5 T T
B=0 %) O K
t=1 t=1
— (X*,X*)_lx*,w

— This is equivalent to OLS from the regression modgl:= X*B + € ande ~
N(O, 021 ,), whereo? = 02/(1 - p?).
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© For maximization, the first derivative &fjo, o2, 8; Yn, Yn-1. - - - » Y1) With respect to
a2 should be zero.

- 1% IO .
52 5 LV RB = 0 - XY - XB)

where
y; \ 1- pzyl Xj_ aY; 1- p2X1
Y Y2 — pY1 X5 X2 — pXg
yk = '2 = . . X>‘< = 2 =
Yn Yn — PYn-1 Xn Xn — PXn-1

160



© For maximization, the first derivative &fjo, o2, 8; Yn, Yn-1. - - - » Y1) With respect to

p should be zero.

maxL(p,0?,B;Y) is equivalent to mak (o, 52,3, Y).
ﬂ’a—esp P

L(p, 52 B;y) is called theconcentrated log-likelihood function EE KX EA B RI%R

), which is a function op, i.e., botho2 and depend only om.
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The log-likelihood function is written as:

.o n n - 1 n
logL(p,52,8;Y) = =3 log(2r) - > log(5?) + > log(1-p%) - 5

= —g log(2r) — 2 - g log(6%(p)) + % log(1 - p?)

For maximization of lod., use Newton-Raphson method, method of scoring or sirr

ple grid search

Note thato? = 53(p) = %(y* — X'BY (y* = X*B) for B = (X' X*) 71Xy
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Remark: The regression model with AR(1) error is:

Vi = XfB + U, U = pl—1 + &, & ~ 1id N(O, 0'?)

1 o pz pn—l
o 1 o p2 . pn—2
2 n-3
rmop 1op P o2
V(u) = o? , , = 0%Q, wheres? = ——.
e -p
: p
pn—l pn—z .. p2 p 1
where Cov(i, u;) = E(uiu;) = o?0'1l, i.e., theith row andjth column ofQ is p!-Jl.
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The regression model with AR(1) erroris: y= X8+ U, u ~ N(O, 2Q).
There existd? which satisfies tha = PP, becaus® is a positive definite matrix.
Multiply P! on both sides from the left.

Ply=PIXg+Plu =y =Xpg+u andu’ ~ N(O,ac?l,)
= Apply OLS.
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=
|
o)
N
o
o

Y V1-p?%y y
1 ! o 1 0 of[”
Y5 Y2 — py Y2
W = 2 = . ! = 0 —pP 1 = P_ly
Yn Yn — PYn-1 0 i 0 —p 1 Yn
X; V1-p%%
X X2 — pX1
X = _2 = ) = P1X = CheckP1QPY = al,,
: : wherea is constant.
X; Xn — PXn-1
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9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, th

gression model is written as follows:
Vi = X6 + U, U ~ id N(O, O'iz), 0_i2 = (Zia/)z.
The joint distribution ofu,, u,_1, - - -, Uz, denoted byf,(-; -), is given by:

n
10g fu(Un, Un-1,++, Ug; 03+, 08) = Y log fu(u; o)
i=1

n 1< 1 (u\?
= _E IOg(??T) - E iél |Og(0'|2) - z izgl (;I)
n 1< 1 u )\
= log(2r) - > él log(ze)? - > 2 (Z_a)

By the transformation of variables froog, u,_1,---,U; t0 Yn, Yn-1,- - -, Y1, the log-
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likelihood function is:

L., ; Yn. Yn-1, - - > Y1) = l0g fy(Yn, Yn-1. - - -, Y1 @, B)

= log fu(Yn — XaB, Yn-1 — Xn-18, - -, Y1 — X45; 0'|2)

ou
oy’
n 1< 1 (- %8\
_ 1 _ = N2 _ = i~
= log(2n) > él log(z ) > él ( > )

= Maximize the above log-likelihood function with respectanda.
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10 Asymptotic Theory

1. Definition: Convergence in Distribution (%3 #1 IX3R)

A series of random variable§;, X,, - - -, X, - - - have distribution functionk,

F», - - -, respectively.

If
Ilm Fn = F,

n—oo

then we say that a series of random variabtgs X, - - - converges td- in

distribution.
2. Consistency &t%):

(a) Definition: Convergence in Probability (FERIXR)

Let{Z,: n=1,2,---} be a series of random variables.
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If the following holds,
lim P(|Z,— 0| <€) =1,
Nn—oo

for any positivee, then we say thaf, converges t@ in probability.

g is called aprobability limit ( #ERIER) of Z,.
plim Z, = 6.
(b) Letd, be an estimator of parameter
If 6, converges t@ in probability, we say thaf, is a consistent estimator
of 6.
3. A General Case aChebyshev’s Inequality:

Forg(X) > 0,

Pa0) 2 K < D9,
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wherek is a positive constant.

4. Example: For arandom variabl¥, setg(X) = (X — u)’ (X —u), E(X) = x and
Var(X) = X

Then, we have the following inequality:
tr(z
P — ) (X —p) > K) < )

Note as follows:

E((X = ) (X = 1)) = E{tr((X = ) (X = ) = E(tr((X = 1)(X = 1))
= tr{E((X - ))(X = 1)) = tr().
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5. Example 1 (Univariate Case):
Suppose thaX; ~ (u,0?),i=1,2,---,n.

Then, the sample averades a consistent estimator pf

Proof:
2
Note thatg(X) = (X — )2, € = k, E(g(X) = V(X) = .
Use Chebyshev’s inequality.
If N — oo,
P(X-ul>€<— —0, for anye.
Ne

That is. for anye,
lim P(X —ul <€) = 1.
n—oo

= Chebyshev’s inequality
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6. Example 2 (Multivariate Case):
Suppose thaX; ~ (u,X),i=1,2,---,n
Then, the sample averades a consistent estimator pf
Proof:
Note thatg(X) = (X — u)'(X — ), €2 = k, E(g(X)) = V(X) = %Z.
Use Chebyshev’s inequality.

If n — oo,

()

P(X — )'(X — ) = K) = P(X — | > €) < —— — 0, for any positivee.

That is. for any positive, lim,_., P((X —,u)’(Y —u) <k)=1.

Note thatX — u| = \/(Y — 1)"(X — 1), which is the distance betweéhandp.

= Chebyshev’s inequality
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7. Some Formulas:
Let X, andY,, be the random variables which satisfy plip = c and plimY, =
d. Then,
@) plim (X, +Y,) =c+d
(b) plim X,Y, = cd
(c) plim X,/Y, =c/dford # 0

(d) plim g(X,) = g(c) for a functiong(-)
= Slutsky’s Theorem (R /LY ¥ —E1E)
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8. Central Limit Theorem ( H/OVMERR E 1)

Univariate Case: Xi, X, - -, X, are mutually independently and identically

distributed asX; ~ (u, o2).

Then, _ _ _
X - E(X) X

NS o/

— N(O, 1),

which implies

_ 1 <
X—p) = — Xi —u) — N(0,52).
V(X — u) ﬁ;( 1) (0,0?)
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Multivariate Case: Xi, Xy, - - -, X, are mutually independently and identically
distributed as$; ~ (u, X).

Then,
=
Vi
. Central Limit Theorem (Generalization)
X1, Xz, - -+, Xn are mutually independently and identically distributedXas-
(1, Zp).
Then,
»
— ) (Xi—u) — N(O.%),
=
where

(1 &
Z:lm[azzi]'

i=1
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10. Definition: Let#, be a consistent estimator @f

Suppose that/n(é, — 6) converges tdN(0, =) in distribution.

Then, we say thal, has amasymptotic distribution (E4375): N(6, Z/n).
11. X3, X5, - -+, Xy are random variables with density functid(x; 6).

Let én be a maximum likelihood estimator 6f

Then, under someegularity conditions. é, is a consistent estimator 6fand

the asymptotic distribution of/n(6 — 6) is given by:N (0 lim (I(G)) )

12. Regularity Conditions:

(a) The domain ofX; does not depend ah

(b) There exists at least third-order derivativef¢k; ) with respect t@#, and

their derivatives are finite.
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13. Thus, MLE is

() consistent
(if) asymptotically normal and

(iif) asymptotically dficient.
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y= Xg8+u, u~ (0,c2ly).

Consistency:
1. LetB, = (X’X)"1X’y be the OLS with sample size
Consistency: Asiis large 3, converges tg.
2. Assume the stationarity assumption ¥ri.e.,
%X’X — Mgy
Then, we have the following result:

1'X’u — 0.
n
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Proof:

According to Chebyshev’s inequality, fgZ) > 0,

P(o(2) 2 k) < 0

wherek is a positive constant.
1
Setg(Z2) = Z2’Z, andZ = ﬁX’u.

Apply Chebyshev’s inequality.
E((}X’u)’}X’u) = iE(u'XX’u) = 1E(tr(u'XX'u)) = 1E(tr(XX’uur))
n n n2 n2 n2

1 , o? .o o? 1,
= ﬁtr(XX E(uu)) = Z(XX) = Sr(X'X) = —tr(=X'X).

Therefore,

1 ’ /1 ’ 0-2 1 ’
P((ﬁx u) ﬁx u> k) < m(tr(ﬁx X) — 0xtr(My) = 0.
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Note that from the assumption,

1
HX,X — Mxx.

Therefore, we have:
1 1
(=X'u)=X'u— 0,
n n

which implies:

1
—X'u— 0,
n
ulo, :
because%x u) EX u indicates a quadratic form.

1 .

. Notethat —X'X — My, resultsin %X’X)‘1 — M.
n

= Slutsky’s Theorem

(*) Slutsky’s Theorem  g(6) — g(6), whend — 6.
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4. OLS is given by:
P ’ -1 1 ’ -1 l ’
Bn =B+ (X'X) Xu:,8+(ﬁx X) (ﬁx u).
Therefore,
Bn— B+Mix0=2

Thus, OLSE is a consitent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

VA3, —B) — N(0.02MzY), whenn — oo.
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2. Central Limit Theorem: Greenberg and Webster (1983)

Zy, Zp, - - -, Z, are mutually indelendently distributed with meaand variance

2.
Then, we have the following result:
1 n
T = (Z _/J) — N(O’ 2)’

where
(18
z = lim (ﬁ ; zi].
The distribution ofz; is not assumed.

3. Definez; = Xu;. Then,%; = Var(Z) = X .
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4. Y is defined as:

(1 . (1
Y=Ilim|= Z X x| = 0% lim (—X’X) = %My,
n—-oo | N = n—oo \ N

where
X1
X2
X=1
Xn
5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obta
the following:
1 v 1
— ) Xu = —X'u— N(0,0°Myy).
ﬁ ; XI | w ( o XX)
On the other hand, from, = 8 + (X’X)"1X’u, we can rewrite as:
A 1 -1 1
niB-p)=(=X'X) —=X'u.
B -p) = (X %) =
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1,011, 1,1, /1,011, v
Var((ﬁx X) %Xu):E((HXX) %Xu((ﬁx X) %x u))
- (%X’X)_l(]ﬁ'X’E(UU)X)(%X’X)_l
:az(%X'x)‘l — ML

Therefore,
VR -B) — N(O,0*M
= Asymptotic normality §iix# E#{1:) of OLSE

The distribution ofu; is not assumed.
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12 Instrumental Variable (2/EZ %)

12.1 Measurement Error (Bl EIRE)

Errors in Variables

1. True regression model:

2. Observed variable:

V: is called themeasurement error (8| EEFRZE or £AIERE).

3. For the elements which do not include measurement errok§ ithe corre-

sponding elements M are zeros.
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4. Regression using observed variable:
y=Xg+(Uu-Vp)
OLS ofBis:

B = XXXy = B+ (XX) X (U~ Vp)

5. Assumptions:
(@) The measurement error Kis uncorrelated witX in the limit. i.e.,
1~
lim(=X'V) = 0.
p |m(n )
Therefore, we obtain the following:
1 1l.,o 1
lim(=X'X) = plim(=X"X Im=V'V)=Z+Q
plm(n ) plm(n )+p|m(n )=+
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(b) uis not correlated withy.
uis not correlated withX.

That is,
N N R
pllm(ﬁV u) =0, pllm(nX u) =0.
6. OLSE ofgis:
B=pB+ XXX (U=-VB) =B+ (X'X)HX + V) (u-VB).
Therefore, we obtain the following:

plimB=8- (= + Q) 0B
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7. Example: The Case of Two Variables:
The regression model is given by:
yt:01+ﬁ)~(t+ut, Xt:)~(t+vt.

Under the above model, L
Cdooy L5 Z %) (1 m
= pllm(ﬁX’X) = plim| 4 2 . L
- Yxos Z popro
whereu ando? represent the mean and varlancex.of
0O O )

Q = pli (1V’V) l (O 0
= plim(= = plim 1 = .
n 0 —Zvlz) (O 0\2,
n

e S

+




Now we focus orp.
B is not consistent. because of:

2
o __ B

o2+02 1+ 02/0?

plim(3) =5 - <p
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12.2 Instrumental Variable (IV) Method (Z/EZ0% or IV %)

Instrumental Variable (1V)

1. Consider the regression modgl= X3 + u andu ~ N(0, o?l,,).

In the case of EX'u) # 0, OLSE ofg is inconsistent.

2. Proof:

. 1 1
B=B+ (HX’X)‘lﬁX’u — B+ MMy,

X

where

1 1
EXIX i Mxx, EX/U - qu¢0

. . .1
3. Find theZ which satlsfles—nZ’u — My, =0.
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Multiplying Z’ on both sides of the regression modek X8 + u,
Z'y=27'Xp+Z'u

Dividing n on both sides of the above equation, we take plim on both sides.

Then, we obtain the following:
I S R o U ISP
plim (HZ y) = plim (nZ X)ﬁ + plim (nZ u) = plim (nZ X)ﬁ.

Accordingly, we obtain:

T\ &

B = (pllm (EZ X)) plim (HZ y) .

Therefore, we consider the following estimator:

B = (Z'X)ZY,
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which is taken as an estimator @f

= Instrumental Variable Method (I 2/EZHU% or IV %)

4. Assume the followings:
%Z’X — My, %2'2 — My, %Z’u — 0
5. Distribution of By :
Biv = (Z'X)1Z2'y = (ZX)1Z/(XB + u) =B+ (Z'X) 2,

which is rewritten as:

V6w -p) = (;2%) ' (~2)

. - 1._, . )
Applying the Central Limit Theorem %Z u), we have the following result:
1
%Z,u 4 N(O, O'ZMZZ).
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Therefore,

VW6 ~B) = (12%) ' (z20) — NO.o MMM,

= Consistency and Asymptotic Normality

6. The variance oB,y is given by:
V(Bv) = S(Z’X)12’2(X'2)71,

where
2 - (Y — XBiv)'(y — XBiv)
B n—k ’
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12.3 Two-Stage Least Squares Method &g &/ 5%, 2SLS
or TSLS)
1. Regression Model:
y=XB8+uU, u~ N(0,c?),

In the case of EX’u) # 0, OLSE is not consistent.
. . . 1
2. Find the variabl& which satlsflesﬁZ’u — M,, = 0.

3. UseZ = X for the instrumental variable.

X is the predicted value which regres$ésn the other exogenous variables,

sayW.

That is, consider the following regression model:
X=WB+ V.
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EstimateB by OLS.
Then, we obtain the prediction:

X = WB,
whereB = (WW) W' X.
Or, equivalently,

X = WWW)2wW’'X.
X is used for the instrumental variable Xf
. The IV method is rewritten as:
Biv = (X X)Xy = (X' WWW) W X)X WIW'W) 2 Wy.
Furthermorep,y is written as follows:
Biv =B+ (X'WWW)~ W X)X WW W)W u.
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Therefore, we obtain the following expression:

Vit - = (xw) B (o)) () Bwew) (e

—> N(0, (MM M;,) ™).
5. Clearly, there is no correlation betwe#handu at least in the limit, i.e.,
pIim(%W’u) =0.
6. Remark:
X'X = X'WWW) W' X = X'W(W W) 2WWWW) WX = X'X.
Therefore,
Biv = (X'X) Xy = (X' X)Xy,
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which implies the OLS estimator gfin the regression modey:= X3 + u and
u~ N(O, oly).

Example:

Vi=ax +B%+U, W~ (0,09

Suppose that; is correlated withy butz is not correlated withy,.
e 1st Step:

Estimate the following regression model:
X = YWt + 0% + -+ - + Vg,

by OLS. = Obtainx; through OLS.
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e 2nd Step:

Estimate the following regression model:
Yo = a% + Bz + W,
by OLS. = aj, andgj
Note as follows.  Estimate the following regression model:
Z = yoWe + 02Z + -+ - + Va,

by OLS.

= ¥, =0, 5, = 1, and the other cdicient estimates are zeros. i.B.="z.

Eviews Command:

tslsyxz@wz ...
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13 Large Sample Tests

13.1 Wald, LM and LR Tests

Parameted : kx 1, h(9) : G x 1 vector functionG < k
The null hypothesi$ly : h(6) = 0 = G restrictions
6 : kx 1, restricted maximum likelihood estimate

6 kx 1, unrestricted maximum likelihood estimate
1(6) : k x k, information matrix, i.e., 1(6) = —E(w)
: ’ T B 0000

log L(6) : log-likelihood function
_oh() | _ 0logL(®) .
Ry = by, 1 G x Kk, Fo = o0 tkx1

1. Wald Test (7L k#85): W = h@) (Ri(1)*R;) h(d)

an(o)

W(é —0) <« h(d)is linearized around = 6.

(@) h(6) ~ h(o) +
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Under the null hypothesis(d) = 0

oh(6)

- (0-0) =R(6-0)

h(6) ~

(b) 6 is MLE.
From the properties of MLE,
Viid ) — N(o.lim ({2
That is, approximately, we have the following result:
6-0 ~ N(O.(1(6)™).
(c) The distribution oh(d) is approximately given by:

h@ ~ N(O,R/(1(6))'R)

200



(d) Therefore, thg?(G) distribution is derived as follows:

h@)(R(1 )Ry "h@ — xG).

Furthermore, from the fact th& — R,andl(§) — 1(f) asn — o

(i.e., convergence in probabilityi# %X %), we can replac® by 6 as

follows:
h@)(Rs(1(B)'R;) @) — x*(G).
2. Lagrange Multiplier Test (545 > ¥ t REME): LM = F(10)*F;
(&) MLE with the constraint(¢) = O:
mgax logL(#), subjectto h(®) =0

The Lagrangian function isL = log L(6) + 2h(6).
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(b) For maximization, we have the following two equations:
oL _dlogL(®) . oh(6) oL
- Y " m

The restricted MLE satisfiesh(d) = 0

= h(9) = 0.

(c) Mean and variance IogeL(e) are given by:

dlogL(0) 82 1og L(0)
; )= e

V( 00 0000’

) =100).

(d) Therefore, using the central limit theorem,

1 8Iog L(@) dlog f(X.,H) .1
7 Z — N, lim (71))
(e) Therefore, '%9 L(9)(| @) 12190 | e

o0’
UnderHp : h(e) = 0, replacing by 8 we have the result:

F(1@)'F; — x*(G).
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3. Likelihood Ratio Test (LELL&RE): LR=-2logl — x?(G)
_L®
L)
(a) By Taylor series expansion evaluatedat 6, logL(6) is given by:

al og L) & logL(b)

(-6 + (9 ~ ) 3060
9*log (9)

0600’

logL(6) = log L(6) +

:IogL(é)+%(9—é)’ O-0)+--

dlogL(h)

50 = 0 becausé® is MLE.

Note that

& logL(d)

~2(logL(¢) - log L(®)) ~ —(¢ - 6) (— > prE )©-6)
16%log L(O)) N

= V- 0y(-; N 0600
— x*(G)
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Note:

(1) 6 — 6,

2) - 14 logL(h) & logL(b)

1 1
n 0000 — ‘M‘O(HE( 8000’ )) - lm(ﬁl(e))'
(3) Vvh(@-6) — N(O, m(%ue))).

(b) UnderHg : h(6) = 0,
—2(logL(8) — logL(8)) — x*(G).
Remember that(d) = 0 is always satisfied.
For proof, see Theil (1971, p.396).

4. All of W, LM andLR are asymptotically distributed 3(G) random variables
under the null hypothesidy : h(#) = 0.
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5. Under some comditions, we havé > LR > LM. See Engle (1981) “Wald,
Likelihood and Lagrange Multiplier Tests in Econometrics,” Chap. 13and-

book of Econometri¢d/ol.2, Grilliches and Intriligator eds, North-Holland.

13.2 Example: W, LM and LR Tests

Date file = cons99.txt (same data as before)

Each column denotes year, nominal household expenditgtgsiti 2, 10 billion
yen), household disposable incorg&{[ 7l 4L/ fli4#, 10 billion yen) and household
expenditure deflatoEk EHEE 7 7 L — &, 1990=100) from the left.
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1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

5430.
5974.
6686.
7169.
8019.
9234.
10836.
12430.
14506.
16674.
18820.
21680.
24914.
28452.
32705.

-

N N @ O U v o ® NV W N W N

6135.
6828.
7619.

8153
9274
10776
12869
14701

17042.

19709

22337.

25514

29012.

34233

39486.

w o ! R 0N R A W WU 2

18.
18.
19.
19.
19.
20.
21.
23.
24.
26.
27.
29.
30.
31.
32.

© O Rk @ ® @ © N K U N R @ W e

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

37784.
42571.
49124.
59366.
71782.
83591
94443
105397
115960.
127600
138585.
147103
157994.
166631
175383.

N R N - - N R e

45913.
51944.
60245.
74924.
93833.
108712.
123540.
135318.
147244.
157071.
169931.
181349.
190611.
199587.
209451.

© © U1 N U R N R O N s W N
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35.
37.
39.
44.
53.
59.
65.
70.
73.
76.
81.
85.
87.
89.
91.

® U N A @ U R N W oR N U N

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

185335.
193069.
202072.
212939.
227122.
243035.
255531.

265701

272075.
279538.
283245.
291458.
298475.

N R N WO ® NN L o o

220655.
229938.
235924.
247159.
263940.
280133.
297512.
309256.
317021.
325655.
331967.
340619.
345522.

93.
94.
95.

95
97

102
104

105.

106

106.

106

107.
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OoONOUVLIHAd WN =

PROGRAM

T R R T R R R T R L X T

freq a;

smpl 1955 1997;
read(file="cons99.txt’) year cons yd price;
rcons=cons/ (price/100);
ryd=yd/(price/100);

lyd=log(ryd);

olsq rcons c ryd;

olsq @res @res(-1);

arl rcons c ryd;

olsq rcons c lyd;

param al 0 a2 0 a3 1;

frml eq rcons=al+a2*((ryd**a3)-1.)/a3;
1sq(tol=0.00001,maxit=100) eq;
a3=1.15;

rryd=((ryd**a3)-1.)/a3;

arl rcons c rryd;

207



Equation 1

Method of estimation = Ordinary Least

Dependent variable: RCONS
Current sample: 1955 to
Number of observations:

Mean of dep. var.

Std. dev. of dep. var.
Sum of squared residuals
Variance of residuals
Std. error of regression

R-squared

Adjusted R-squared

Variable
C
RYD

Estimated
Coefficient
-2919.54
.852879

1997
43

146270.
79317.2

5624.36
.995092
.994972

Standard
Error

1847.55

.935486E-02

LM het. test
Durbin-Watson

.129697E+10 Jarque-Bera test
.316335E+08 Ramsey’s RESET2

F (zero slopes)
Schwarz B.I.C.
Log likelihood

t-statistic P-value

-1.58022 [.122]
91.1696 [.000]

208

Squares

.207443 [.649]
.115101 [.000, .000]
9.47539 [.009]
53.6424 [.000]
8311.90 [.000]
435.051

-431.289



Equation 2

Method of estimation = Ordinary Least Squares

Dependent variable: G@RES
Current sample: 1956 to 1997
Number of observations: 42

Mean of dep. var. = -95.5174
Std. dev. of dep. var. = 5588.52
Sum of squared residuals = .146231E+09
Variance of residuals = .356662E+07
Std. error of regression = 1888.55
R-squared = .885884
Adjusted R-squared = .885884
LM het. test = .760256 [.383]
Durbin-Watson = 1.40409 [.023,.023]
Durbin’s h = 1.97732 [.048]
Durbin’s h alt. = 1.91077 [.056]
Jarque-Bera test = 6.49360 [.039]
Ramsey’s RESET2 = .186107 [.668]
Schwarz B.I.C. = 377.788
Log likelihood = -375.919
Estimated Standard
Variable Coefficient Error t-statistic P-value
@RES(-1) .950693 .053301 17.8362 [.000]
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Equation 3

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999480
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999454
Sum of squared residuals = .145826E+09 Durbin-Watson = 1.38714
Variance of residuals = .364564E+07 Schwarz B.I.C. = 391.061
Std. error of regression = 1909.36 Log likelihood = -385.419
Standard
Parameter Estimate Error t-statistic P-value
C 1672.42 6587.40 .253881 [.800]
RYD .840011 .027182 30.9032 [.000]
RHO .945025 .045843 20.6143 [.000]
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Equation 4

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

146270. LM het. test
79317.2 Durbin-Watson
.256040E+11 Jarque-Bera test
.624487E+09 Ramsey’s RESET2

Mean of dep. var.

Std. dev. of dep. var.
Sum of squared residuals
Variance of residuals

2.21031 [.137]
.029725 [.000, .000]
3.72023 [.156]
344.855 [.000]

Std. error of regression 24989.7 F (zero slopes) 382.117 [.000]
R-squared .903100 Schwarz B.I.C. 499.179
Adjusted R-squared .900737 Log likelihood = -495.418
Estimated Standard
Variable Coefficient Error t-statistic P-value
C -.115228E+07 66538.5 -17.3175 [.000]
LYD 109305. 5591.69 19.5478 [.000]
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NONLINEAR LEAST SQUARES

CONVERGENCE ACHIEVED AFTER 84 ITERATIONS

Number of observations = 43 Log likelihood = -414.362
Schwarz B.I.C. = 420.004
Standard
Parameter Estimate Error t-statistic P-value
Al 16544.5 2615.60 6.32530 [.000]
A2 .063304 .024133 2.62307 [.009]
A3 1.21694 .031705 38.3839 [.000]

Standard Errors computed from quadratic form of analytic first derivatives
(Gauss)

Equation: EQ
Dependent variable: RCONS

LM het. test
Durbin-Watson

.174943 [.676]
.253234 [.000, .000]

Mean of dep. var. = 146270.

Std. dev. of dep. var. = 79317.2
Sum of squared residuals = .590213E+09
Variance of residuals = .147553E+08

Std. error of regression = 3841.27

R-squared = .997766

Adjusted R-squared = .997655
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Equation 5

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999470
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999443
Sum of squared residuals = .140391E+09 Durbin-Watson = 1.43657
Variance of residuals = .350977E+07 Schwarz B.I.C. = 389.449
Std. error of regression = 1873.44 Log likelihood = -383.807
Standard
Parameter Estimate Error t-statistic P-value
C 12034.8 3346.47 3.59628 [.000]
RRYD .140723 .282614E-02  49.7933 [.000]
RHO .876924 .068199 12.8583 [.000]
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1. Equation 1vs.Equation 3 (Test of Serial Correlation)

Equation 1is:
RCONS, = 1 + BRYD( + Uy, & ~ iid N(O, 02
Equation 3is:
RCONS; = 1 + BoRYDy + W, U = pU-1 + &, & ~ iid N(0,0?)

The null hypothesisisly: o =0
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Restricted MLE= Equation 1
Unrestricted MLE= Equation 3

The log-likelihood function oEquation 3 is:

1
l0gL(5, %, ) = ~3 log(2r) - 310g(r?) + 5 log(1- p?)
1 < . ) )
~55 ) (RCONS; — B1CONST; — GRYD;)?
€ t=1

where

\/1 - p?RCONS;, fort =1,

RCONS; =
RCONS; — pRCONS;_;, fort=23,---,n,

. 1-p2 fort=1,
CONST; =
1-p, fort=2,3,---,n,
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v/1 — p?RYDy, fort=1,

RYD; =
RYD; — pRYD; ;, fort=2,3,---,n.

e MLE with the restrictionp = 0 (Equation 1) solves:

maxlog L(B, a?,0)

M€

Restricted MLE= j3, 52

Log of likelihood function = -431.289

e MLE without the restrictiorp = 0 (Equation 3) solves:

maxiog L (8, 0%, p)
BoZp

Unrestricted MLE= 3, 2, /

Log of likelihood function = -385.419
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The likelihood ratio test statistic is:

;) = ~2(logL(%52.0) - log L(B. 52.9))
a2,p

—2(—431289— (-385419)) = 9174,

—2log(l) = -2 |og( (ﬂ

The asymptotic distribution is given by:

~2log() ~ x*(G),
whereG is the number of the restrictions, i.&,= 1 in this case.

The 1% upper probability point af?(1) is 6.635.
9174 > 6.635

ThereforeHy : p = 0is rejected.

There is serial correlation in the error term.
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2. Equation 1 (Test of Serial Correlation— Lagrange Multiplier Test)

Equation 2is:

@RES; = p@RES;_; + &, & ~ N(0, 02),
where @RES; = RCONS; — 31 — 3,RYD;, andB; andp, are OLSEs.
The null hypothesisisly : p =0

@RES(-1) .950693 .053301 17.8362 [.000]

Therefore, the Lagrange multiplier test statistic isSBBZ = 31813 > 6.635.

Ho : p = 0isrejected.

3. Equation 3 (Test of Serial Correlation— Wald Test)
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Equation 3is:
RCONS; = 81 + BoRYD; + U, U = pl1 + &, & ~ iid N(0,0?)

The null hypothesisisly : p =0
RHO .945025 .045843 20.6143 [.000]

The Wald test statistics is 8143 = 424,95, which is compared witl?(1).

. Equation 1 vs.NONLINEAR LEAST SQUARES (Choice of Functional Form —

linear):
NONLINEAR LEAST SQUARES estimates:

RYD — 1

RCONS; = al + a2
a3

+ U
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Whena3 = 1, we have:
RCONS; = (al — a2) + a2RYD; + U,

which is equivalent t&quation 1.

The null hypothesis isly : a3 =1, whereG = 1.

e MLE with a3 =1 MLE (Equation 1)

Log of likelihood function = -431.289

e MLE withouta3 = 1 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is given by:

~2log(1) = —2(-431289- (-414362)) = 33854
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The 1% upper probability point gf?(1) is 6.635.
33.854> 6.635

Ho : a3 = 1lis rejected.

Therefore, the functional form of the regression model is not linear.

. Equation 4 vs.NONLINEAR LEAST SQUARES (Choice of Functional Form —
log-linear):

In NONLINEAR LEAST SQUARES, i.e.,

RYD2 — 1
RCONS; = al + a2————

¥ U,
a3 t

if a3 = 0, we have:

RCONS; = al + a2 logRYDy) + u,
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which is equivalent t&quation 3.

The null hypothesis isly : a3 =0, whereG = 1.

e MLE with a3 = 0 (Equation 3)

Log of likelihood function = -495.418

e MLE withouta3 = O (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362
The likelihood ratio test statistic is:
~2log(1) = -2(-495418- (-414362)) = 162112> 6.635
ThereforeHy : a3 = 0 is rejected.

As aresult, the functional form of the regression model is not log-linear, eithe
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6. Equation 1 vs. Equation 5 (Simultaneous Test of Serial Correlation and

Linear Function):

Equation 5 iS:

RYD2 — 1
RCONS; = al + a2——+— =
a3

+ U, U = pU-1 + &, & ~ iid N(O, 0'3)
The null hypothesisisly: a3=1, p=0
Restricted MLE= Equation 1

Unrestricted MLE= Equation 4

Remark: InLines 14—16 oPROGRANM, we have estimateEquation 4, given
a3 =0.00,0.01,0.02 - - -.

As aresulta3 = 1.15 gives us the maximum log-likelihood.

223



The likelihood ratio test statistic is:
~2log(1) = —2(-431289- (-383807)) = 94.964

—-210g(1) ~ x?(2) in this case.

The 1% upper probability point gf?(2) is 9.210.
94.964> 9.210

Ho: a3=1,p = 0is rejected.
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Equation 3 vs. Equation 5 vs. (Taking into account serially correlated

errors, Choice of Functional Form — linear):
The null hypothesisisly: a3=1, p=0

FromEquation 3,

Log likelihood = -385.419
FromEquation 5,
Log likelihood = -383.807

2(—383807- (-385419))= 3.224< 6.635
Ho : a3 = 1is not rejected, givep # 0.

Thus, if serial correlation is taken into account, the regression model is linez
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14 Unit Root (81i748) and Cointegration (F#143)

Textbooks

- J.D. Hamilton (1994 conometric Analysis
A - JE EER (2006) TR R FUfENT (& - T)J

- A.C. Harvey (1981)lime Series Models
E & - IUAGER (1985) MR %1€ 7V AMI

- AR (2010) [#EHs - 7 7 1 F Y AT — X DFHERRS )
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14.1 Unit Root #{I4R) Test (Dickey-Fuller (DF) Test)
1. Why is a unit root problem important?

(a) Economic variables increase over time in general.
One of the assumptions of OLS is stationarityypandx;.

This assumption implies thai}X’X converges to a fixed matrix 8sis

large.

That is, asymptotic normality of OLS estimator does not hold.

(b) In nonstationary time series, the unit root is the most important.

In the case of unit root, OLSE of the first-order autoregressivéicant

is consistent.

OLSE is VT-consistent in the case of stationary AR(1) process, but OLS

is T-consistent in the case of nonstationay AR(1) process.
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(c) A lot of economic variables increase over time.
It is important to check an economic variable is trend stationary (i.e
Vi = ag + a4t + &) or difference stationary (i.ey; = bg + yi_1 + &).
Considerk-step ahead prediction for both cases.
(Trend Stationarity) Yirkit = 8o + a1t + K)

(Difference Stationarity) VY.t = bok + Vi
2. The Case ofi¢,]| < 1:
Vi = P1Vi1 + &, & ~ i.i.d. N(0, o?), Yo =0, t=1---,T

Then, OLSE ofp, is:

T
Z Y-Vt

t=1

D Vs

t=1

b1 =
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In the case ofgp,| < 1,

— ¢1+

Note as follows:

E(yt 1€t)

E(ytz l) ¢l-

1J
T Z Y16 — E(Ye16) = 0.
=1

By the central limit theorem,

where



E(ye) =0,

1y 1y
V(T8 = V(3 D Yesd) = E((5 > %eaer)?)
t=1 t=1

1 T T 1 T 1
= ﬁE(Z Z Yt—lyS—lftEs) = -lsz(Z ytz_lftz) = ?0'37(0),
t=1 s=1 t=1

wherey(r) = Cov(y:, Yir) = E((: — E0)) (Vs — E(1i))). Therefore,

Ve 1 1 «
ye = Z Yiri& — N(O, 1),
t=1

VoHyQ)/T  aey(0) VT

which is rewritten as:

1 T
ﬁmeﬁm&my
t=1
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1y . o
Using — Z y2, — E(2,) = ¥(0), we have the following asymptotic distri-
t=1

bution:

1 T

ﬁ Z Yi-16& )
VT (1 - ¢1) = : = N(,yfg))ﬂ(o,l—aﬁ).
13
t=1
2

Note thaty(0) = . q%.

. Inthe case of; = 1, as expected, we have:
\/T(le -1 — 0.

That is, ¢, has the distribution which converges in probabilitygto= 1 (i.e.,

degenerated distribution).
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Is this true?

The Case of¢, = 1. = Random Walk Process

Vi = Vi1 + & With yp = 0 is written as:
Vi=&+ 6 1+6 o2+ - +6€1.

Therefore, we can obtain:
yi ~ N(O, o?t).
The variance of; depends on timeé = Y, iS nonstationary.

. Remember thap, = ¢, + Zy;‘zlet

t-1

(a) First, consider the numeratdly;_1 €.

We havey? = (yi-1 + &)* = yt2_1 + 2Yi16 + €.
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Therefore, we obtain:

1
Yi-16 = E(ytz - Yt2_1 - Etz)

Taking into accouny, = 0, we have:

ZYt 16 = —y-zr——z

t=1

Divided by 2T on both sides, we have the following:

1 1 o
O_Z-I—Zytlt ( )— ?Zl

Fromy; ~ N(0, o?t), we obtain the following result:

E
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Moreover, the second term is derived from:

T Zet —s E(¢) = o2

Therefore,
1 < 1( yr )2 11w, 1,
V16 = = - =) & — s(x(1)-1).
GET; 2\o VT 202T L t 2

(b) Next, considey y?,.

T T
E(Zyg—l]zz tl)—Z‘Tz(t )=0 T(TT:L)

t=1 t=1 t=1

Thus, we obtain the following result:

1

.
—E[Z Ytz—l) — afixed value
t=1
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Therefore,

1« o
=3 E y2, — adistribution
t=1

6. Summarizing the results up to NoW(¢; — ¢1), not VT (¢, — ¢1), has limiting

distribution in the case af; = 1.

— adistribution
/T Xv2,

T(¢1— 1) =

We say that, is super-consistent 88— ) or T-consistent

Remember that whejg| < 1 we have VT (¢1 — ¢1) — N(0,1 - ¢?), and in

this case we say that is VT-consistent
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Conventionat test statistic is given by:

t:él—l’
Sy

where

1/2

i)

t=1

1 v,
and &= T—_]_;(Yt—%)h—l)z-

$r—1

7. The distributions of thé statistic:
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Remember that thiedistribution is:

t Distribution

T | 0.010 Q025 Q050 Q100 Q900 Q950 Q975 Q990

25| -249 -206 -171 -132 132 171 206 249
50| -240 -201 -168 -130 130 168 201 240
100 -236 -198 -166 -129 129 166 198 236
250| -234 -197 -165 -128 128 165 197 234
500 -233 -196 -165 -128 128 165 196 233
o | -233 -196 -164 -128 128 164 196 233
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@Ho: Yt =VYi1+ &
Hi: Vi =@1yier+ e for gy <lor-1< ¢,

T | 0.010 Q025 Q050 Q100 Q900 Q950 Q975 Q990

25| -266 -226 -195 -160 092 133 170 216
50| -262 -225 -195 -161 091 131 166 208
100 -260 -224 -195 -161 09 129 164 203
250| -258 -223 -195 -162 089 129 163 201
500 -258 -223 -195 -162 089 128 162 200
o | =258 -223 -195 -162 089 128 162 200
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O)Ho: Vi =Yi1+ &
Hi: iy =ag+d1yi1+eforg, <lor-1< ¢,

T | 0.010 Q025 Q050 Q100 Q900 Q950 Q975 Q990

25| -375 -333 -300 -263 -037 000 034 Q72
50| -358 -322 -293 -260 -040 -003 029 066
100 -351 -317 -289 -258 -042 -005 026 063
250| -346 -314 -288 -257 -042 -006 024 062
500| -344 -313 -287 -257 -043 -0.07 024 061
o | =343 -312 -286 -257 -044 -007 023 060
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(@) Ho: Yt =ao+ Y1+ &
Hi: yi=ao+ait + ¢1yio1 + € for ¢ < Lor-1< ¢,

T | 0.010 Q025 Q050 Q100 Q900 Q950 Q975 Q990

25| -438 -395 -360 -324 -114 -080 -050 -0.15
50| -415 -380 -350 -318 -119 -087 -058 -024
100| -404 -373 -345 -315 -122 -090 -062 -0.28
250| -399 -369 -343 -313 -123 -092 -064 -031
500 -398 -368 -342 -313 -124 -093 -065 -032
o | =396 -366 -341 -312 -125 -094 -0.66 -0.33
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14.2 Serially Correlated Errors

Consider the case where the error term is serially correlated.

14.2.1 Augmented Dickey-Fuller (ADF) Test

Consider the following ARg) model:
Vi = ¢1Yr1+ P2V 2+ -+ PpYip t+ &, & ~ iid(0, o),

which is rewritten as:
d(L)y: = &.

When the above model has a unit root, we ha{@g = 0, i.e.,¢1 + o + - - - + ¢pp = 1.

The above ARp) model is written as:

Vi = PYi-1 + 01AY11 + 62AYi 2 + -+ - + +0p_1AYi_pi1 + &,
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Wherep = ¢1 + ¢2 + -+ ¢p andéj = _(¢j+l + ¢j+2 t+e- ¢P)

The null and alternative hypotheses are:
Ho : p =1 (Unit root) Hi,: p < 1 (Stationary)

Use thet test, where we have the same asymptotic distributions as before.
Choosep by AIC or SBIC.
UseN(0,1) totestHy : ¢; =0againsH; : 6;#0forj=1,2,---,p-1.

Reference

Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Develog
ment and PerspectiveJapan Statistical Society/ol.38, Series J, No.1, pp.39 — 57.
Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html
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14.3 Cointegration ¢t#14)

1. For a scalay;, when (1- L)Y, is stationary, we writg;, ~ 1(d).

WhenAy; = y; — ;1 is stationary, we writé\y; ~ [(0) ory, ~ ().

2. Definition of Cointegration:

Suppose that each series ig& 1 vectory; is 1(1), i.e., each series has unit
root, and that a linear combination of each series & for a nonzero vector

a) is 1(0), i.e., stationary.

Then, we say that has a cointegration.

3. Example:

Suppose thay; = (Y1, Y21)' is the following vector autoregressive process:

Y1t = yYar + €1y,
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Yor = Yor1 + €.
Then,
Ay1y = yer + €11 — €11-1,  (MA(1) process)
Ayt = €4,

where bothy;; andy,; arel (1) processes.

The linear combinatiog; — vy, is 1(0).

In this case, we say thgt = (Y11, Y21)’ iS cointegrated witla = (1, —y).

a= (1, —y) is called thecointegrating vector t#19~X 2 kL), which is not

unique. Therefore, the first elementanis set to be one.

4. Suppose thag ~ 1(1) andx; ~ 1(1).
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For the regression modg! = x8 + u;, OLS does not work well if we do not

have thes which satisfiesy ~ 1(0).

—> Spurious regression & & A\ F DEF)

(a) OLSEyt is not consistent.

1 T
b) £ =—— ) {?diverges.
(b) T_ggt g

(c) Thet test statistic diverges.
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5. Resolution for Spurious Regression:
Suppose thaf; = @ + y'Y2¢ + U IS @ Spurious regression.

(1) Estimatey1; = @ + y'Yar + @Y1t-1 + 0Yor-1 + U

Then,yt is VT-consistent, and thietest statistic goes to the standard norma

distribution undeH, : y = 0.

(2) EstimateAys; = « + y’Ays; + U. Then,ar andBr are VT-consistent, and

thet test andF test make sense.

(3) Estimatey,; = a + y'y,: + U by the Cochrane-Orcutt method, assuming

thatu, is the first-order serially correlated error.

Usually, choose (2).
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However, there are two exceptions.
(i) The true value of in (1) above is not one, i.e., less than one.

(ii) y.r andy,; are the cointegrated processes.

In these two cases, taking the firstfdrence leads to the misspecified regres:
sion.

. Cointegrating Vector:

Suppose that each elementypfs | (1) and tha&'y, is 1(0).

ais called acointegrating vector Gt#143~X %7 kJL), which is not unique.

Setz = @'y, wherez is scalar, ané andy; areg x 1 vectors.
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Forz ~ 1(0) (i.e., stationary)

T T
T Z2=T1) (@ay)? — E@).
t=1 t=1
Forz ~ 1(1) (i.e., nonstationary, i.ea is not a cointegrating vector),
T T
T2 Z Z=T7" Z:(a’yt)2 — Distribution
t=1 t=1
If ais not a cointegrating vectof,* 3|, Z diverges.

— We can obtain a consistent estimate of a cointegrating vector by minimi
ing Y1, Z with respect taa, where a normalization condition anhas to be

imposed.

The estimator of thaincluding the normalization condition is super-consisten

(T-consistent).
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Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Co
tegrating Vectors,EconometricaVol.55, pp.1035 — 1056.

14.4 Testing Cointegration

14.4.1 Engle-Granger Test

e ~ 1(1)
Yit= @+ 7YYo + U
e U; ~ 1(0) = Cointegration

e U ~ I(1) = Spurious Regression
Estimatey;; = @ + y'Y2; + U by OLS, and obtaim~

EStlmataJ; = pat—l + 51Aﬂt_1 + 62A0t_2 + -+ 6p—1A0t—p+1 + & by OLS.
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ADF Test:
e Hy: p =1 (Sprious Regression)
e H; : p <1 (Cointegration)

— Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Han
(1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, | (a) Regressors have no drift | (b) Some regressors have drift

excluding constant 1% 2.5% 5% 10%| 1% 25% 5% 10%

1 -396 -3.64 -337 -307|-396 -3.67 -341 -313
2 -431 -402 -377 -345|-436 -407 -3.80 -3.52
3 -473 -437 -411 -383|-465 -439 -416 -3.84
4 -5.07 -471 -445 -416| -504 -477 -449 -4.20
5 -528 -498 -471 -443|-536 -502 -4.74 -4.46

J.D. Hamilton (1994)Time Series Analysip.766.
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The Other Topics

e Generalized Method of Moments%{Lii &%, GMM)

e System of Equations (Seemingly Unrelated Regression (SUR), Simultaneous Ec
tion (#Z /£ ), and etc.)

e Panel Data{X %)V - 7—X)

¢ Discrete Dependent Variable, and Limited Dependent Variable

e Bayesian Estimation{ 1 X E)

e Semiparametric and Nonparametric Regressions and Fests (7 X ~ 1) v 2,
JURTANY Y THEE - MUE)

252



Exam — Aug. 5, 2014 (AM8:50-10:20)

e 60 - 70% from two homeworks including optional an additional questions 2
D 5 60 - 70%)

e 30 - 40% of new questions (30 - 409 L\ [ii]i&)

e Questions are written in English, and answers should be in English or Japane
(B EE, MR I3 0EEE £ 72 13 H ARGE

e With no carrying in §F53AA7% L)
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