Homework (Due: July 8, 2014 AM10:20)

Let y, X, β and u be a $n \times 1$ vector, a $n \times k$ matrix, a $k \times 1$ vector and a $n \times 1$ vector, respectively, where X is nonstochastic, u is an error term, and β is a parameter.

Consider the regression model: $y = X\beta + u$.

- E(u) = 0 and $V(u) = \sigma^2 I_n$ are assumed.
 - (1) Derive an OLS estimator of β , which is denoted by $\hat{\beta}$.
 - (2) Obtain the mean and variance of $\hat{\beta}$.
 - (3) Prove that $\hat{\beta}$ is a best linear unbiased estimator.
 - (4) Show that $\hat{\beta}$ is a consistent estimator of β . Which assumptions are used?
 - (5) As n goes to infinity, what is a distribution of $\sqrt{n}(\hat{\beta} \beta)$?
 - (6) Let R and r be a $G \times k$ matrix and a $G \times 1$ vector, where $G \leq k$ and Rank(R) = G. Suppose that the linear restriction is given by $R\beta = r$ (G restrictions). Derive the restricted OLS estimator, denoted by $\tilde{\beta}$.
 - (7) Consider $\hat{\sigma}^2 = \frac{1}{n-k}\hat{u}'\hat{u}$ as an estimator of σ^2 . Prove that $\hat{\sigma}^2$ is an unbiased estimator of σ^2 .
- $u \sim N(0, \sigma^2 I_n)$ is assumed.
 - (8) Derive distributions of $\hat{\beta}$ and $\frac{(n-k)\hat{\sigma}^2}{\sigma^2}$.
 - (9) Show that $\hat{\sigma}^2$ is a consistent estimator of σ^2 . Assume that $u \sim N(0, \sigma^2 I_n)$.
 - (10) Using the distributions of $\hat{\beta}$ and $\frac{(n-k)\hat{\sigma}^2}{\sigma^2}$ obtained in Question (8), explain how to test $H_0: R\beta = r$ against $H_1: R\beta \neq r$.
 - (11) Using $\hat{u} = y X\hat{\beta}$ and $\tilde{u} = y X\tilde{\beta}$, show that the test statistic obtained in Question (10) is given by $\frac{(\tilde{u}'\tilde{u} \hat{u}'\hat{u})/G}{\hat{u}'\hat{u}/(n-k)}$.
 - (12) Obtain ML estimators of β and σ^2 , which are denoted by $\overline{\beta}$ and $\overline{\sigma}^2$.
 - (13) Derive a distribution of $\sqrt{n} \begin{pmatrix} \overline{\beta} \beta \\ \overline{\sigma}^2 \sigma^2 \end{pmatrix}$ when *n* goes to infinity.

- $u_t = \rho u_{t-1} + \epsilon_t$, $t = 1, 2, \dots, n$, and $\epsilon \sim N(0, \sigma^2 I_n)$ are assumed.
 - (14) Obtain the unconditional distribution of u_t .
 - (15) Obtain the conditional distribution of u_t , given $u_{t-1}, u_{t-2}, \dots, u_1$.
 - (16) Derive the likelihood function of β , σ^2 and ρ , given data y and X.
 - (17) Explain how to obtain the maximum likelihood estimators of β , σ^2 and ρ .