2.3 **Properties of Least Squares Estimator**

Equation (10) is rewritten as:

$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} - \frac{\overline{y}\sum_{i=1}^{n} (x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ = \sum_{i=1}^{n} \frac{x_{i} - \overline{x}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} y_{i} = \sum_{i=1}^{n} \omega_{i} y_{i}.$$
(12)

In the third equality, $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$ is utilized because of $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. In the fourth equality, ω_i is defined as: $\omega_i = \frac{x_i - \overline{x}}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$. ω_i is nonstochastic because x_i is assumed to be nonstochastic.

 ω_i has the following properties:

$$\sum_{i=1}^{n} \omega_i = \sum_{i=1}^{n} \frac{x_i - \overline{x}}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = 0,$$
(13)

$$\sum_{i=1}^{n} \omega_{i} x_{i} = \sum_{i=1}^{n} \omega_{i} (x_{i} - \overline{x}) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = 1,$$
(14)
$$\sum_{i=1}^{n} \omega_{i}^{2} = \sum_{i=1}^{n} \left(\frac{x_{i} - \overline{x}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \right)^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\left(\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)^{2}} = \frac{1}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$$
(15)

The first equality of (14) comes from (13).

From now on, we focus only on $\hat{\beta}_2$, because usually β_2 is more important than β_1 in the regression model (4).

In order to obtain the properties of the least squares estimator $\hat{\beta}_2$, we rewrite (12) as:

$$\hat{\beta}_{2} = \sum_{i=1}^{n} \omega_{i} y_{i} = \sum_{i=1}^{n} \omega_{i} (\beta_{1} + \beta_{2} x_{i} + u_{i})$$
$$= \beta_{1} \sum_{i=1}^{n} \omega_{i} + \beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i} + \sum_{i=1}^{n} \omega_{i} u_{i} = \beta_{2} + \sum_{i=1}^{n} \omega_{i} u_{i}.$$
(16)

In the fourth equality of (16), (13) and (14) are utilized.

[Review] Random Variables:

Let X_1, X_2, \dots, X_n be *n* random variables, which are mutually independently and identically distributed.

mutually independent \implies $f(x_i, x_j) = f_i(x_i)f_j(x_j)$ for $i \neq j$.

 $f(x_i, x_j)$ denotes a joint distribution of X_i and X_j .

 $f_i(x)$ indicates a marginal distribution of X_i .

identical \implies $f_i(x) = f_j(x)$ for $i \neq j$.

[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently distributed.

Definition and Formulas:

• $E(g(X)) = \int g(x)f(x)dx$ for a function $g(\cdot)$ and a density function $f(\cdot)$.

•
$$V(X) = E((X - \mu)^2) = \int (x - \mu)^2 f(x) dx$$
 for $\mu = E(X)$.

- E(aX + b) = aE(X) + b and $V(aX + b) = a^2V(X)$.
- $E(X \pm Y) = E(X) \pm E(Y)$ and $V(X \pm Y) = V(X) + V(Y)$.

Mean and Variance of $\hat{\beta}_2$: u_1, u_2, \dots, u_n are assumed to be mutually independently and identically distributed with mean zero and variance σ^2 , but they are not necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance but the normality assumption is required to test a hypothesis.

From (16), the expectation of $\hat{\beta}_2$ is derived as follows:

$$E(\hat{\beta}_2) = E(\beta_2 + \sum_{i=1}^n \omega_i u_i) = \beta_2 + E(\sum_{i=1}^n \omega_i u_i) = \beta_2 + \sum_{i=1}^n \omega_i E(u_i) = \beta_2.$$
(17)

It is shown from (17) that the ordinary least squares estimator $\hat{\beta}_2$ is an **unbiased** estimator (不偏推定量) of β_2 .

From (16), the variance of $\hat{\beta}_2$ is computed as:

$$V(\hat{\beta}_{2}) = V(\beta_{2} + \sum_{i=1}^{n} \omega_{i}u_{i}) = V(\sum_{i=1}^{n} \omega_{i}u_{i}) = \sum_{i=1}^{n} V(\omega_{i}u_{i}) = \sum_{i=1}^{n} \omega_{i}^{2}V(u_{i})$$
$$= \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$$
(18)

The third equality holds because u_1, u_2, \dots, u_n are mutually independent. The last equality comes from (15).

Thus, $E(\hat{\beta}_2)$ and $V(\hat{\beta}_2)$ are given by (17) and (18).

Gauss-Markov Theorem (ガウス・マルコフ定理): $\hat{\beta}_2$ has minimum variance within a class of the linear unbiased estimators.

→ best linear unbiased estimator (BLUE, 最良線型不偏推定量) (Proof is omitted.) **Distribution of** $\hat{\beta}_2$: We discuss the small sample properties of $\hat{\beta}_2$. In order to obtain the distribution of $\hat{\beta}_2$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_i \sim N(0, \sigma^2)$.

Writing (16), again, $\hat{\beta}_2$ is represented as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i.$$

First, we obtain the distribution of the second term in the above equation.

It is well known that sum of normal random variables results in a normal distribution. Therefore, $\sum_{i=1}^{n} \omega_i u_i$ is distributed as:

$$\sum_{i=1}^n \omega_i u_i \sim N(0, \ \sigma^2 \sum_{i=1}^n \omega_i^2).$$

Therefore, $\hat{\beta}_2$ is distributed as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i \sim N(\beta_2, \sigma^2 \sum_{i=1}^n \omega_i^2),$$

or equivalently,

$$\frac{\hat{\beta}_2 - \beta_2}{\sigma \sqrt{\sum_{i=1}^n \omega_i^2}} = \frac{\hat{\beta}_2 - \beta_2}{\sigma / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim N(0, 1),$$

for any *n*.

Moreover, replacing σ^2 by its estimator $s^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i)^2$, it is known

$$\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim t(n-2),$$

where t(n-2) denotes t distribution with n-2 degrees of freedom.

Thus, under normality assumption on the error term u_i , the t(n - 2) distribution is used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

$$\left(\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)^2 \sim F(1, n-2).$$

[Review] Confidence Interval (信頼区間,区間推定)):

Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

Then, we can obtain:
$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$
, where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

That is,

$$P\left(-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right) = 1 - \alpha$$

i.e.,

$$P\left(\overline{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right) = 1 - \alpha.$$

Note that $t_{\alpha/2}(n-1)$ is obtained from the *t* distribution table, given α and n-1. Then, replacing \overline{X} by \overline{x} , we obtain the 100(1- α)% confidence interval of μ as follows:

$$(\overline{x}-t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}},\ \overline{x}+t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}).$$

In the case of OLS,

$$P\left(-t_{\alpha/2}(n-2) < \frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} < t_{\alpha/2}(n-2)\right) = 1 - \alpha,$$

where $t_{\alpha/2}(n-2)$ denotes $100 \times \alpha/2\%$ point from the t(n-2) distribution. Rewriting,

$$P(\hat{\beta}_2 - t_{\alpha/2}(n-2)\frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} < \beta_2 < \hat{\beta}_2 + t_{\alpha/2}(n-2)\frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \Big) = 1 - \alpha.$$

Replacing $\hat{\beta}_2$ and s^2 by observed data, the 100(1 – α)% confidence interval of β_2 is given by:

$$(\hat{\beta}_2 - t_{\alpha/2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}, \, \hat{\beta}_2 + t_{\alpha/2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}).$$

[Review] Testing the Hypothesis (仮説検定):

Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 . Then, we obtain: $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$, where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, which is known as the unbiased estimator of σ^2 .

- The null hypothesis H_0 : $\mu = \mu_0$, where μ_0 is a fixed number.
- The alternative hypothesis H_1 : $\mu \neq \mu_0$

Under the null hypothesis, we have the disribution: $\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$. Replacing \overline{X} and S^2 by \overline{x} and s^2 , compare $\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ and t(n-1). H_0 is rejected when $\left|\frac{\overline{x} - \mu_0}{s/\sqrt{n}}\right| > t_{\alpha/2}(n-1)$. $t_{\alpha/2}(n-1)$ is obtained from the significance level α and the degrees of freedom n-1.