
2.3 Properties of Least Squares Estimator

Equation (10) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2

− y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑
i=1

xi − x∑n
i=1(xi − x)2

yi =

n∑
i=1

ωiyi . (12)

In the third equality,
n∑

i=1

(xi − x) = 0 is utilized because ofx =
1
n

n∑
i=1

xi.

In the fourth equality,ωi is defined as:ωi =
xi − x∑n

i=1(xi − x)2
.

ωi is nonstochastic becausexi is assumed to be nonstochastic.

ωi has the following properties:

n∑
i=1

ωi =

n∑
i=1

xi − x∑n
i=1(xi − x)2

=

∑n
i=1(xi − x)∑n

i=1(xi − x)2
= 0, (13)
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n∑
i=1

ωi xi =

n∑
i=1

ωi(xi − x) =
∑n

i=1(xi − x)2∑n
i=1(xi − x)2

= 1, (14)

n∑
i=1

ω2
i =

n∑
i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2(∑n

i=1(xi − x)2
)2
=

1∑n
i=1(xi − x)2

. (15)

The first equality of (14) comes from (13).

From now on, we focus only on̂β2, because usuallyβ2 is more important thanβ1 in

the regression model (4).

In order to obtain the properties of the least squares estimatorβ̂2, we rewrite (12) as:

β̂2 =

n∑
i=1

ωiyi =

n∑
i=1

ωi(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωi xi +

n∑
i=1

ωiui = β2 +

n∑
i=1

ωiui . (16)

In the fourth equality of (16), (13) and (14) are utilized.
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[Review] Random Variables:

Let X1, X2, · · ·, Xn be n random variavles, which are mutually independently and

identically distributed.

mutually independent =⇒ f (xi , xj) = fi(xi) f j(x j) for i , j.

f (xi , x j) denotes a joint distribution ofXi andXj.

fi(x) indicates a marginal distribution ofXi.

identical =⇒ fi(x) = f j(x) for i , j.

[End of Review]
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[Review] Mean and Variance:

Let X andY be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

• E(g(X)) =
∫

g(x) f (x)dx for a functiong(·) and a density functionf (·).

• V(X) = E((X − µ)2) =
∫

(x− µ)2 f (x)dx for µ = E(X).

• E(aX+ b) = aE(X) + b and V(aX+ b) = a2V(X).

• E(X ± Y) = E(X) ± E(Y) and V(X ± Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and varianceσ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (16), the expectation ofβ̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑
i=1

ωiui) = β2 + E(
n∑

i=1

ωiui) = β2 +

n∑
i=1

ωiE(ui) = β2. (17)

It is shown from (17) that the ordinary least squares estimatorβ̂2 is an unbiased

estimator (不偏推定量) of β2.

38



From (16), the variance of̂β2 is computed as:

V(β̂2) = V(β2 +

n∑
i=1

ωiui) = V(
n∑

i=1

ωiui) =
n∑

i=1

V(ωiui) =
n∑

i=1

ω2
i V(ui)

= σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)2

. (18)

The third equality holds becauseu1, u2, · · ·, un are mutually independent.

The last equality comes from (15).

Thus, E(̂β2) and V(̂β2) are given by (17) and (18).

Gauss-Markov Theorem (ガウス・マルコフ定理): β̂2 has minimum variance

within a class of the linear unbiased estimators.

−→ best linear unbiased estimator (BLUE,最良線型不偏推定量)

(Proof is omitted.)
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Distribution of β̂2: We discuss the small sample properties ofβ̂2.

In order to obtain the distribution of̂β2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is thatui ∼ N(0, σ2).

Writing (16), again,̂β2 is represented as:

β̂2 = β2 +

n∑
i=1

ωiui .

First, we obtain the distribution of the second term in the above equation.

It is well known that sum of normal random variables results in a normal distribution.

Therefore,
∑n

i=1ωiui is distributed as:

n∑
i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ).
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Therefore,̂β2 is distributed as:

β̂2 = β2 +

n∑
i=1

ωiui ∼ N(β2, σ
2

n∑
i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
∼ N(0,1),

for anyn.

Moreover, replacingσ2 by its estimators2 =
1

n− 2

n∑
i=1

(yi − β̂1 − β̂2xi)
2, it is known

that we have:
β̂2 − β2

s/
√∑n

i=1(xi − x)2
∼ t(n− 2),

wheret(n− 2) denotest distribution withn− 2 degrees of freedom.
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Thus, under normality assumption on the error termui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√∑n

i=1(xi − x)2

)2
∼ F(1,n− 2).
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[Review] Confidence Interval (信頼区間，区間推定)):

Suppose thatX1,X2, · · · ,Xn are mutually independently, identically and normally dis-

tributed with meanµ and varianceσ2.

Then, we can obtain:
X − µ
S/
√

n
∼ t(n− 1), whereS2 =

1
n− 1

n∑
i=1

(Xi − X)2.

That is,

P
(
−tα/2(n− 1) <

X − µ
S/
√

n
< tα/2(n− 1)

)
= 1− α

i.e.,

P
(
X − tα/2(n− 1)

S
√

n
< µ < X + tα/2(n− 1)

S
√

n

)
= 1− α.

Note thattα/2(n− 1) is obtained from thet distribution table, givenα andn− 1.

Then, replacingX by x, we obtain the 100(1−α)% confidence interval ofµ as follows:

(x− tα/2(n− 1)
s
√

n
, x+ tα/2(n− 1)

s
√

n
).

[End of Review]
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In the case of OLS,

P
(
−tα/2(n− 2) <

β̂2 − β2

s/
√∑n

i=1(xi − x)2
< tα/2(n− 2)

)
= 1− α,

wheretα/2(n− 2) denotes 100× α/2% point from thet(n− 2) distribution.

Rewriting,

P
(
β̂2 − tα/2(n− 2)

s√∑n
i=1(xi − x)2

< β2 < β̂2 + tα/2(n− 2)
s√∑n

i=1(xi − x)2

)
= 1− α.

Replacingβ̂2 ands2 by observed data, the 100(1− α)% confidence interval ofβ2 is

given by:

(
β̂2 − tα/2(n− 2)

s√∑n
i=1(xi − x)2

, β̂2 + tα/2(n− 2)
s√∑n

i=1(xi − x)2

)
.
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[Review] Testing the Hypothesis (仮説検定):

Suppose thatX1,X2, · · · ,Xn are mutually independently, identically and normally dis-

tributed with meanµ and varianceσ2.

Then, we obtain:
X − µ
S/
√

n
∼ t(n− 1), whereS2 =

1
n− 1

n∑
i=1

(Xi −X)2, which is known

as the unbiased estimator ofσ2.

• The null hypothesisH0 : µ = µ0, whereµ0 is a fixed number.

• The alternative hypothesisH1 : µ , µ0

Under the null hypothesis, we have the disribution:
X − µ0

S/
√

n
∼ t(n− 1).

ReplacingX andS2 by x ands2, compare
x− µ0

s/
√

n
andt(n− 1).

H0 is rejected when
∣∣∣∣x− µ0

s/
√

n

∣∣∣∣ > tα/2(n− 1).

tα/2(n− 1) is obtained from the significance levelα and the degrees of freedomn− 1.

[End of Review]
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