2.3 Properties of Least Squares Estimator

Equation (10) is rewritten as:

$$
\begin{align*}
\hat{\beta}_{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} y_{i}=\sum_{i=1}^{n} \omega_{i} y_{i} . \tag{12}
\end{align*}
$$

In the third equality, $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ is utilized because of $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
In the fourth equality, ω_{i} is defined as: $\omega_{i}=\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
ω_{i} is nonstochastic because x_{i} is assumed to be nonstochastic.
ω_{i} has the following properties:

$$
\begin{equation*}
\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0, \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{i=1}^{n} \omega_{i} x_{i}=\sum_{i=1}^{n} \omega_{i}\left(x_{i}-\bar{x}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=1, \tag{14}\\
\sum_{i=1}^{n} \omega_{i}^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{15}
\end{gather*}
$$

The first equality of (14) comes from (13).
From now on, we focus only on $\hat{\beta}_{2}$, because usually β_{2} is more important than β_{1} in the regression model (4).

In order to obtain the properties of the least squares estimator $\hat{\beta}_{2}$, we rewrite (12) as:

$$
\begin{align*}
\hat{\beta}_{2} & =\sum_{i=1}^{n} \omega_{i} y_{i}=\sum_{i=1}^{n} \omega_{i}\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right) \\
& =\beta_{1} \sum_{i=1}^{n} \omega_{i}+\beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} . \tag{16}
\end{align*}
$$

In the fourth equality of (16), (13) and (14) are utilized.

[Review] Random Variables:

Let $X_{1}, X_{2}, \cdots, X_{n}$ be n random variavles, which are mutually independently and identically distributed.
mutually independent $\Longrightarrow f\left(x_{i}, x_{j}\right)=f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right)$ for $i \neq j$.
$f\left(x_{i}, x_{j}\right)$ denotes a joint distribution of X_{i} and X_{j}.
$f_{i}(x)$ indicates a marginal distribution of X_{i}.
identical $\Longrightarrow f_{i}(x)=f_{j}(x)$ for $i \neq j$.
[End of Review]

[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently distributed.

Definition and Formulas:

- $\mathrm{E}(g(X))=\int g(x) f(x) \mathrm{d} x$ for a function $g(\cdot)$ and a density function $f(\cdot)$.
- $\mathrm{V}(X)=\mathrm{E}\left((X-\mu)^{2}\right)=\int(x-\mu)^{2} f(x) \mathrm{d} x$ for $\mu=\mathrm{E}(X)$.
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ and $\mathrm{V}(a X+b)=a^{2} \mathrm{~V}(X)$.
- $\mathrm{E}(X \pm Y)=\mathrm{E}(X) \pm \mathrm{E}(Y)$ and $\mathrm{V}(X \pm Y)=\mathrm{V}(X)+\mathrm{V}(Y)$.
[End of Review]

Mean and Variance of $\hat{\boldsymbol{\beta}}_{2}: u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually indepen－ dently and identically distributed with mean zero and variance σ^{2} ，but they are not necessarily normal．

Remember that we do not need normality assumption to obtain mean and variance but the normality assumption is required to test a hypothesis．

From（16），the expectation of $\widehat{\beta}_{2}$ is derived as follows：

$$
\begin{equation*}
\mathrm{E}\left(\hat{\beta}_{2}\right)=\mathrm{E}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)=\beta_{2} . \tag{17}
\end{equation*}
$$

It is shown from（17）that the ordinary least squares estimator $\hat{\beta}_{2}$ is an unbiased estimator（不偏推定量）of β_{2} ．

From（16），the variance of $\hat{\beta}_{2}$ is computed as：

$$
\begin{align*}
\mathrm{V}\left(\hat{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\omega_{i} u_{i}\right)=\sum_{i=1}^{n} \omega_{i}^{2} \mathrm{~V}\left(u_{i}\right) \\
& =\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{18}
\end{align*}
$$

The third equality holds because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent．
The last equality comes from（15）．
Thus， $\mathrm{E}\left(\hat{\beta}_{2}\right)$ and $\mathrm{V}\left(\hat{\beta}_{2}\right)$ are given by（17）and（18）．

Gauss－Markov Theorem（ガウス・マルコフ定理）：$\hat{\beta}_{2}$ has minimum variance within a class of the linear unbiased estimators．
\longrightarrow best linear unbiased estimator（BLUE，最良線型不偏推定量）
（Proof is omitted．）

Distribution of $\hat{\beta}_{2}$: We discuss the small sample properties of $\hat{\beta}_{2}$. In order to obtain the distribution of $\hat{\beta}_{2}$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
Writing (16), again, $\hat{\beta}_{2}$ is represented as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} .
$$

First, we obtain the distribution of the second term in the above equation.
It is well known that sum of normal random variables results in a normal distribution.
Therefore, $\sum_{i=1}^{n} \omega_{i} u_{i}$ is distributed as:

$$
\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(0, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

Therefore, $\hat{\beta}_{2}$ is distributed as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(\beta_{2}, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

or equivalently,

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1)
$$

for any n.

Moreover, replacing σ^{2} by its estimator $s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)^{2}$, it is known that we have:

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2)
$$

where $t(n-2)$ denotes t distribution with $n-2$ degrees of freedom.

Thus, under normality assumption on the error term u_{i}, the $t(n-2)$ distribution is used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

$$
\left(\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)^{2} \sim F(1, n-2) .
$$

［Review］Confidence Interval（信頼区間，区間推定））：
Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently，identically and normally dis－ tributed with mean μ and variance σ^{2} ．
Then，we can obtain：$\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$ ，where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ．
That is，

$$
P\left(-t_{\alpha / 2}(n-1)<\frac{\bar{X}-\mu}{S / \sqrt{n}}<t_{\alpha / 2}(n-1)\right)=1-\alpha
$$

i．e．，

$$
P\left(\bar{X}-t_{\alpha / 2}(n-1) \frac{S}{\sqrt{n}}<\mu<\bar{X}+t_{\alpha / 2}(n-1) \frac{S}{\sqrt{n}}\right)=1-\alpha .
$$

Note that $t_{\alpha / 2}(n-1)$ is obtained from the t distribution table，given α and $n-1$ ．
Then，replacing \bar{X} by \bar{x} ，we obtain the $100(1-\alpha) \%$ confidence interval of μ as follows：

$$
\left(\bar{x}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right) .
$$

［End of Review］

In the case of OLS,

$$
P\left(-t_{\alpha / 2}(n-2)<\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}<t_{\alpha / 2}(n-2)\right)=1-\alpha,
$$

where $t_{\alpha / 2}(n-2)$ denotes $100 \times \alpha / 2 \%$ point from the $t(n-2)$ distribution.
Rewriting,

$$
P\left(\hat{\beta}_{2}-t_{\alpha / 2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}<\beta_{2}<\hat{\beta}_{2}+t_{\alpha / 2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)=1-\alpha .
$$

Replacing $\hat{\beta}_{2}$ and s^{2} by observed data, the $100(1-\alpha) \%$ confidence interval of β_{2} is given by:

$$
\left(\hat{\beta}_{2}-t_{\alpha / 2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}, \hat{\beta}_{2}+t_{\alpha / 2}(n-2) \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right) .
$$

［Review］Testing the Hypothesis（仮説検定）：
Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently，identically and normally dis－ tributed with mean μ and variance σ^{2} ．
Then，we obtain：$\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$ ，where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ，which is known as the unbiased estimator of σ^{2} ．
－The null hypothesis $H_{0}: \mu=\mu_{0}$ ，where μ_{0} is a fixed number．
－The alternative hypothesis $H_{1}: \mu \neq \mu_{0}$
Under the null hypothesis，we have the disribution：$\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t(n-1)$ ．
Replacing \bar{X} and S^{2} by \bar{x} and s^{2} ，compare $\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$ and $t(n-1)$ ．
H_{0} is rejected when $\left|\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}\right|>t_{\alpha / 2}(n-1)$ ．
$t_{\alpha / 2}(n-1)$ is obtained from the significance level α and the degrees of freedom $n-1$ ．
［End of Review］

