2.3 Properties of Least Squares Estimator

Equation (10) is rewritten as:

5= Sl O =9 _ SL0 =Xy Y2 =)
T L% - X)? z.” 6 —%2 T (% - %)2

] Z S Z“"y' 42

. X N 1<
In the third equallty,g (% —X) = 0is utilized because of = - g X.
i= i=1

X — X
Y =%

wj IS nonstochastic becauggeis assumed to be nonstochastic.

In the fourth equalityw; is defined asw; =
wji has the following properties:
X-X YL -X)
wi = — =0, 13
Z Z Y 1(X| - X)Z Vit (X% — X)? (13)
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Zwl)q Zwl()q ~X) = ZI (X — ) =1, (14)

ZI (X| X)2
n n _ 2 _
w? = X~ X _ YL — X)? B 1
e (Z‘n:l(” i X)Z) I R T AR CES

The first equality of (14) comes from (13).

From now on, we focus only gy, because usuall§, is more important thag; in

the regression model (4).

In order to obtain the properties of the least squares estirigtore rewrite (12) as:

B = Zwlyl Zwu(ﬁl + B2X + W)

—ﬁlzw,+ﬁ22w,x.+2w.u, ﬁ2+2w,u, (16)

In the fourth equality of (16), (13) and (14) are utilized.
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[Review] Random Variables
Let X1, X5, .-+, X, be n random variavles, which are mutually independently anc

identically distributed.

mutually independent = f(x;, X;) = fi(x) f;(x;) fori # |.
f(x, X;) denotes a joint distribution of; andX;.
f(X) indicates a marginal distribution .

identical = fi(X) = fj(x) fori # j.

[End of Review]
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[Review] Mean and Variance
Let X andY be random variables (continuous type), which are independently di

tributed.

Definition and Formulas:

e E(g(X)) = f g(x)f(x)dx for a functiong(-) and a density functior(-).
o V(X)=E(X-p? = f(X—p)zf(X)dX for u = E(X).

e E@@X+b)=aE(X)+b and V@X+ b) = a?V(X).

e EXxY)=EX)xE(Y) and VX +Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of,@z: U, Uy, -+, Uy are assumed to be mutually indepen-
dently and identically distributed with mean zero and variam€ebut they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and varia

but the normality assumption is required to test a hypothesis.

From (16), the expectation @§ is derived as follows:
R n n n
EB) =E@o+ ) wi) =B +EQ witi) =B+ ) wEW) =fo.  (17)
i=1 i=1 i=1

It is shown from (17) that the ordinary least squares estimgatds an unbiased

estimator (FMRIEEE) of Bs.
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From (16), the variance @ is computed as:

V(Bz) = V(B2 + Zw.u.) - V(Zw u) = ZV(w.u) = sz\/(u)

= o

The third equality holds becauseg u,, - - -, U, are mutually independent.
The last equality comes from (15).
Thus, EB,) and V(3,) are given by (17) and (18).

Gauss-Markov Theorem (i R - <L 37 EHE): B, has minimum variance
within a class of the linear unbiased estimators.
— best linear unbiased estimator (BLUE, R R Rt EE

(Proof is omitted.)
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Distribution of 8,: We discuss the small sample propertiegof

In order to obtain the distribution ¢ in small sample, the distribution of the error
term has to be assumed.

Therefore, the extra assumption is tbat N(0O, 2).

Writing (16), againg; is represented as:
. n
B2=pB2+ Zwiui-
i=1

First, we obtain the distribution of the second term in the above equation.
Itis well known that sum of normal random variables results in a normal distributiol

Therefore Y. ; wiy; is distributed as:

n n
Zwiui ~ N(O, UZZa)iz).
i=1 i=1
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Therefore 3, is distributed as:
n n
B2 =P+ Zwiui ~ N(B2, O'ZZ w?),
o1 =)

or equivalently,

for anyn.

. . . 1 P .
Moreover, replacing-? by its estimators? = p— (yi — B1 — B2X)?, it is known
i=1
that we have: A
ﬁi _ﬁz — ~ t(n - 2)7
Yin (% —X)?

wheret(n — 2) denoteg distribution withn — 2 degrees of freedom.
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Thus, under normality assumption on the error tefmthet(n — 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( B2 - B2
Zin=1(xi —-X)?

) ~F(Ln-2)
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[Review] Confidence Interval (E8X[E, XE#E)):
Suppose thaXy, X,, - - -, X, are mutually independently, identically and normally dis-

tributed with meamn and variance-2.

X 1
Then, we can obtaine—£ ~ t(n - 1), whereS? = —Z(X X)2.
S/ +/n n

That is,

P(—ta/z(n - 1) < ;(/ \/_

<typ(n-1)=1-a

- S = S
P(X - toa(n - 1)% << X+ty(n- 1)%) =1-a.

Note thatt,»(n — 1) is obtained from thédistribution table, givew andn — 1.

Then, replacingC by X, we obtain the 100(«)% confidence interval gf as follows:

X+ tyo(n — 1)—).

(X = tajo(n — 1)— -

N2

[End of Review]
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In the case of OLS,

A

B2— B2
s/ \/Zinzl(xi - X)?

wheret, »(n — 2) denotes 10& a/2% point from thet(n — 2) distribution.

P(—ta/z(n - 2) <

< ta/z(n - 2)) =1-a,

Rewriting,

~ S
<ﬁ2<ﬂ2+ta/2(n—2) ):1—0’

S
V2L (X - %)? V2ita (% —X)?

Replacing3, ands? by observed data, the 100{1x)% confidence interval g8, is

P(Bz - ta,/z(n — 2)

given by:

S ~ S
s :82 + ta/Z(n - 2) )

3 _ta -2
(:82 /Z(n )\/m m
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[Review] Testing the Hypothesis {RE7i& iE):
Suppose thaXy, X,, - - -, X, are mutually independently, identically and normally dis-
tributed with mean and variancer?.

X - 1 < - -y
Then, we obtainie—£ ~ t(n— 1), whereS? = 7 Z(Xi — X)?, which is known
n IR

as the unbiased estimatorf.
e The null hypothesisly : u = uo, Whereuo is a fixed number.

e The alternative hypothesis; : u # uo

Under the null hypothesis, we have the disributle);n/% ~ t(n-1).
ReplacingX andS? by X ands?, compare/—\/ﬁ andt(n - 1).
S

. . X — Mo
Hy is rejected whe > t,o(n—1).
0 ) W‘ r2( )
t.;2(n—1) is obtained from the significance levebnd the degrees of freedam- 1.

[End of Review]
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