Finally, replacing σ^2 by its consistent estimator s^2 , it is known as follows:

$$\frac{\hat{\beta}_2 - \beta_2}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \longrightarrow N(0, 1), \tag{16}$$

where s^2 is defined as:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2} x_{i})^{2},$$
 (17)

which is a consistent and unbiased estimator of σ^2 . \longrightarrow Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test the hypothesis.

[Review] Confidence Interval (信頼区間,区間推定)):

Suppose X_1, X_2, \dots, X_n are iid with mean μ and variance σ^2 . \longrightarrow No N assumption

From CLT,
$$\frac{\overline{X} - E(\overline{X})}{\sqrt{V(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Replacing σ^2 by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, we have: $\frac{\overline{X} - \mu}{S / \sqrt{n}} \longrightarrow N(0, 1)$.

That is, for large n,

$$P(-1.96 < \frac{\overline{X} - \mu}{S / \sqrt{n}} < 1.96) = 0.95$$
, i.e., $P(\overline{X} - 1.96 \frac{S}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{S}{\sqrt{n}}) = 0.95$.

Note that 1.96 is obtained from the normal distribution table.

Then, replacing the estimators \overline{X} and S^2 by the estimates \overline{x} and s^2 , we obtain the 95% confidence interval of μ as follows:

$$(\overline{x} - 1.96 \frac{s}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{s}{\sqrt{n}}).$$

[End of Review]

Going back to OLS, we have:

$$\frac{\hat{\beta}_2 - \beta_2}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \longrightarrow N(0, 1).$$

Therefore,

$$P\left(-2.576 < \frac{\hat{\beta}_2 - \beta_2}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} < 2.576\right) = 0.99,$$

i.e.,

$$P(\hat{\beta}_2 - 2.576 \frac{s}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}} < \beta_2 < \hat{\beta}_2 + 2.576 \frac{s}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}) = 0.99.$$

Note that 2.576 is 0.005 value of N(0, 1), which comes from the statistical table.

Thus, the 99% confidence interval of β_2 is:

$$(\hat{\beta}_2 - 2.576 \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}, \hat{\beta}_2 + 2.576 \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}),$$

where $\hat{\beta}_2$ and s^2 should be replaced by the observed data.

[Review] Testing the Hypothesis (仮説検定):

Suppose that X_1, X_2, \dots, X_n are iid with mean μ and variance σ^2 .

From CLT, $\frac{\overline{X} - \mu}{S / \sqrt{n}} \longrightarrow N(0, 1)$, where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, which is known as the unbiased estimator of σ^2 .

- The null hypothesis H_0 : $\mu = \mu_0$, where μ_0 is a fixed number.
- The alternative hypothesis $H_1: \mu \neq \mu_0$

Under the null hypothesis, in large sample we have the following disribution:

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim N(0, 1).$$

Replacing \overline{X} and S^2 by \overline{x} and s^2 , compare $\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ and N(0, 1). H_0 is rejected at significance level 0.05 when $\left|\frac{\overline{x} - \mu_0}{s/\sqrt{n}}\right| > 1.96$.

[End of Review]

In the <u>case of OLS</u>, the hypotheses are as follows:

- The null hypothesis $H_0: \beta_2 = \beta_2^*$
- The alternative hypothesis $H_1: \beta_2 \neq \beta_2^*$

Under H_0 , in large sample,

$$\frac{\hat{\beta}_2 - \beta_2^*}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim N(0, 1).$$

Replacing $\hat{\beta}_2$ and s^2 by the observed data, compare $\frac{\hat{\beta}_2 - \beta_2^*}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}$ and N(0, 1). H_0 is rejected at significance level 0.05 when $\left|\frac{\hat{\beta}_2 - \beta_2^*}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}\right| > 1.96$.

$$H_0$$
 is rejected at significance level 0.05 when $\left| \frac{p_2 - p_2}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \right| > 1.96$.

Exact Distribution of \hat{\beta}_2: We have shown asymptotic normality of $\sqrt{n}(\hat{\beta}_2 - \beta_2)$, which is one of the large sample properties.

Now, we discuss the small sample properties of $\hat{\beta}_2$.

In order to obtain the distribution of $\hat{\beta}_2$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_i \sim N(0, \sigma^2)$.

Writing (13), again, $\hat{\beta}_2$ is represented as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i.$$

First, we obtain the distribution of the second term in the above equation.

[Review] Content of Special Lectures in Economics (Statistical Analysis)

Note that the **moment-generating function** (積率母関数, **MGF**) is given by $M(\theta) \equiv E(\exp(\theta X)) = \exp(\mu \theta + \frac{1}{2}\sigma^2\theta^2)$ when $X \sim N(\mu, \sigma^2)$.

 X_1, X_2, \dots, X_n are mutually independently distributed as $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, \dots, n$.

MGF of X_i is $M_i(\theta) \equiv E(\exp(\theta X_i)) = \exp(\mu_i \theta + \frac{1}{2}\sigma_i^2 \theta^2)$.

Consider the distribution of $Y = \sum_{i=1}^{n} (a_i + b_i X_i)$, where a_i and b_i are constant.

$$M_{y}(\theta) \equiv \mathrm{E}(\exp(\theta Y)) = \mathrm{E}(\exp(\theta \sum_{i=1}^{n} (a_{i} + b_{i}X_{i})))$$

$$= \prod_{i=1}^{n} \exp(\theta a_{i}) \mathrm{E}(\exp(\theta b_{i}X_{i})) = \prod_{i=1}^{n} \exp(\theta a_{i}) M_{i}(\theta b_{i})$$

$$= \prod_{i=1}^{n} \exp(\theta a_{i}) \exp(\mu_{i}\theta b_{i} + \frac{1}{2}\sigma_{i}^{2}(\theta b_{i})^{2}) = \exp(\theta \sum_{i=1}^{n} (a_{i} + b_{i}\mu_{i}) + \frac{1}{2}\theta^{2} \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}),$$
which implies that $Y \sim N(\sum_{i=1}^{n} (a_{i} + b_{i}\mu_{i}), \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}).$

[End of Review]

Substitute $a_i = 0$, $\mu_i = 0$, $b_i = \omega_i$ and $\sigma_i^2 = \sigma^2$.

Then, using the moment-generating function, $\sum_{i=1}^{n} \omega_i u_i$ is distributed as:

$$\sum_{i=1}^n \omega_i u_i \sim N(0, \ \sigma^2 \sum_{i=1}^n \omega_i^2).$$

Therefore, $\hat{\beta}_2$ is distributed as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i \sim N(\beta_2, \ \sigma^2 \sum_{i=1}^n \omega_i^2),$$

or equivalently,

$$\frac{\hat{\beta}_2 - \beta_2}{\sigma \sqrt{\sum_{i=1}^n \omega_i^2}} = \frac{\hat{\beta}_2 - \beta_2}{\sigma / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim N(0, 1),$$

for any n.

Moreover, replacing σ^2 by its estimator s^2 defined in (17), it is known that we have:

$$\frac{\hat{\beta}_2 - \beta_2}{s / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim t(n-2),$$

where t(n-2) denotes t distribution with n-2 degrees of freedom.

Thus, under normality assumption on the error term u_i , the t(n-2) distribution is used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

$$\left(\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)^2 \sim F(1, n-2),$$

which will be proved later.

Before going to multiple regression model (重回帰モデル),

2 Some Formulas of Matrix Algebra

1. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lk} \end{pmatrix} = [a_{ij}],$$

which is a $l \times k$ matrix, where a_{ij} denotes ith row and jth column of A.

The **transposed matrix** (転置行列) of A, denoted by A', is defined as:

$$A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{l1} \\ a_{12} & a_{22} & \cdots & a_{l2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{lk} \end{pmatrix} = [a_{ji}],$$

where the *i*th row of A' is the *i*th column of A.

2.
$$(Ax)' = x'A'$$
,

where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.

3.
$$a' = a$$
,

where a denotes a scalar.

$$4. \ \frac{\partial a'x}{\partial x} = a,$$

where a and x are $k \times 1$ vectors.

5.
$$\frac{\partial x' A x}{\partial x} = (A + A')x$$
,

where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.

Especially, when A is symmetric,

$$\frac{\partial x'Ax}{\partial x} = 2Ax.$$

6. Let A and B be $k \times k$ matrices, and I_k be a $k \times k$ identity matrix (単位行列) (one in the diagonal elements and zero in the other elements).

When $AB = I_k$, B is called the **inverse matrix** (逆行列) of A, denoted by $B = A^{-1}$.

That is, $AA^{-1} = A^{-1}A = I_k$.

7. Let A be a $k \times k$ matrix and x be a $k \times 1$ vector.

If A is a **positive definite matrix** (正値定符号行列), for any x except for x = 0 we have:

$$x'Ax > 0$$
.

If A is a **positive semidefinite matrix** (非負値定符号行列), for any x except for x = 0 we have:

$$x'Ax \ge 0$$
.

If A is a **negative definite matrix** (負値定符号行列), for any x except for x = 0 we have:

$$x'Ax < 0$$
.

If A is a **negative semidefinite matrix** (非正値定符号行列), for any x except for x = 0 we have:

$$x'Ax \leq 0$$
.

Trace, Rank and etc.: $A: k \times k$, $B: n \times k$, $C: k \times n$.

1. The **trace**
$$(\vdash \lor \vdash Z)$$
 of A is: $tr(A) = \sum_{i=1}^{k} a_{ii}$, where $A = [a_{ij}]$.

2. The **rank** (ランク, 階数) of *A* is the maximum number of linearly independent column (or row) vectors of *A*, which is denoted by rank(*A*).

- 3. If A is an idempotent matrix (べき等行列), $A = A^2$.
- 4. If A is an idempotent and symmetric matrix, $A = A^2 = A'A$.
- 5. *A* is idempotent if and only if the eigen values of *A* consist of 1 and 0.
- 6. If A is idempotent, rank(A) = tr(A).
- 7. tr(BC) = tr(CB)

Distributions in Matrix Form:

1. Let X, μ and Σ be $k \times 1$, $k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$f(x) = \frac{1}{(2\pi)^{k/2}|\Sigma|} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right).$$

$$E(X) = \mu$$
 and $V(X) = E((X - \mu)(X - \mu)') = \Sigma$

The moment-generating function: $\phi(\theta) = E(\exp(\theta'X)) = \exp(\theta'\mu + \frac{1}{2}\theta'\Sigma\theta)$

(*) In the univariate case, when $X \sim N(\mu, \sigma^2)$, the density function of X is:

$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

2. If $X \sim N(\mu, \Sigma)$, then $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi^2(k)$.

Note that $X'X \sim \chi^2(k)$ when $X \sim N(0, I_k)$.

3.
$$X: n \times 1, \qquad Y: m \times 1, \qquad X \sim N(\mu_x, \Sigma_x), \qquad Y \sim N(\mu_y, \Sigma_y)$$

X is independent of Y, i.e., $E((X - \mu_x)(Y - \mu_y)') = 0$ in the case of normal random variables.

$$\frac{(X - \mu_x)' \Sigma_x^{-1} (X - \mu_x)/n}{(Y - \mu_y)' \Sigma_y^{-1} (Y - \mu_y)/m} \sim F(n, m)$$

4. If $X \sim N(0, \sigma^2 I_n)$ and A is a symmetric idempotent $n \times n$ matrix of rank G, then $X'AX/\sigma^2 \sim \chi^2(G)$.

Note that X'AX = (AX)'(AX) and rank(A) = tr(A) because A is idempotent.

5. If $X \sim N(0, \sigma^2 I_n)$, A and B are symmetric idempotent $n \times n$ matrices of rank G and K, and AB = 0, then

$$\frac{X'AX}{G\sigma^2}\Big|\frac{X'BX}{K\sigma^2} = \frac{X'AX/G}{X'BX/K} \sim F(G, K).$$

3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., x_i , is taken into the regression model. We extend it to more independent variables, which is called the **multiple regression model** (重回帰モデル).

We consider the following regression model:

$$y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_k x_{i,k} + u_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + u_i = x_i \beta + u_i,$$

for $i = 1, 2, \dots, n$, where x_i and β denote a $1 \times k$ vector of the independent variables

and a $k \times 1$ vector of the unknown parameters to be estimated, which are given by:

$$x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k}), \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}.$$

 $x_{i,j}$ denotes the *i*th observation of the *j*th independent variable.

The case of k = 2 and $x_{i,1} = 1$ for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).

Writing all the equations for $i = 1, 2, \dots, n$, we have:

$$y_{1} = \beta_{1}x_{1,1} + \beta_{2}x_{1,2} + \dots + \beta_{k}x_{1,k} + u_{1} = x_{1}\beta + u_{1},$$

$$y_{2} = \beta_{1}x_{2,1} + \beta_{2}x_{2,2} + \dots + \beta_{k}x_{2,k} + u_{2} = x_{2}\beta + u_{2},$$

$$\vdots$$

$$y_{n} = \beta_{1}x_{n,1} + \beta_{2}x_{n,2} + \dots + \beta_{k}x_{n,k} + u_{n} = x_{n}\beta + u_{n},$$

which is rewritten as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Again, the above equation is compactly rewritten as:

$$y = X\beta + u, (18)$$