Econometrics II

(Thu., 8:50-10:20)

Room # 4 (法経講義棟)

• The prerequisites of this class are **Special Lectures in Economics (Statistical Analysis)**, 経済学特論(統計解析) (last semester) and **Econometrics I** (エコノメトリックス **I**) (graduate level, last semester).

TA Session (by Yonekura and Miura):

From Oct. 7(?), 2015

Wed., 14:40 - 16:10

Room #4(法経講義棟)

Web site

https://sites.google.com/site/ougseeconometricsi/

Statistics Test (統計検定) on Nov. 29 (Sun.)

• **Exams**: Level 1 (1 級) – Level 4 (4 級)

Note that Level 4 is Junior high school level,

Level 3 is High school level, and

Level 2 is the 1st or 2nd year statistics in undergraduate school.

Level 1 is the 3rd or 4th year statistics in undergraduate school (or the 1st year in graduate school).

See http://www.toukei-kentei.jp/ in more detail.

• Qualification for Exam (受験資格):

Undergraduate and Graduate Students in Osaka University

• Application Period (受験申込期間): September 9 (Wed.), AM10:00 — October 14 (Wed.), PM15:00

Go to http://qajss.org/jinse/kentei201511.html for application.

• Application Fee (受験料): Free

受験料は、平成24年度に採択された文部科学省の大学間連携共同推進事業「データに基づく課題解決型人材育成に資する統計教育質保証」から支払われる。

連携校: 東京大学, 大阪大学, 総合研究大学院大学, 青山学院大学(代表校), 多摩大学, 立教大学, 早稲田大学, 同志社大学 ちなみに、連携大学以外の人の受験料は,

1級「統計数理」	10:30~12:00	6,000 円
1級「統計応用」	13:30~15:00	6,000 円
2級	10:30~12:00	5,000 円
3級	13:30~14:30	4,000 円
4級	10:30~11:30	3,000 円
統計調査士	13:00~14:30	5,000 円
専門統計調査士	10:30~12:00	10,000 円

となる。 ただし、1級「統計数理」と「統計応用」 の両方受験の場合、受験料は 10,000 円となる。

• Exam Date (試験日): Nov. 29 (Sun.)

• Exam Place (場所): 人間科学研究科

本館(44講義室)・東館(303,404講義室)

1 Maximum Likelihood Estimation (MLE, 最党法)—

Review

- 1. We have random variables X_1, X_2, \dots, X_n , which are assumed to be mutually independently and identically distributed.
- 2. The distribution function of $\{X_i\}_{i=1}^n$ is $f(x;\theta)$, where $x=(x_1,x_2,\cdots,x_n)$ and $\theta=(\mu,\Sigma)$.

Note that *X* is a vector of random variables and *x* is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

Note that $f(x;\theta) = \prod_{i=1}^n f(x_i;\theta)$ when X_1, X_2, \dots, X_n are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$\max_{\theta} \ L(\theta; X). \qquad \Longleftrightarrow \qquad \max_{\theta} \ \log L(\theta; X).$$

MLE satisfies the following two conditions:

(a)
$$\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.$$

(b)
$$\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$$
 is a negative definite matrix.

3. **Fisher's information matrix** (フィッシャーの情報行列) is defined as:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),\,$$

where we have the following equality:

$$-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\Big) = \mathrm{E}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\Big) = \mathrm{V}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta}\Big)$$

Proof of the above equality:

$$\int L(\theta; x) \mathrm{d}x = 1$$

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} \mathrm{d}x = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) \mathrm{d}x = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

Again, differentiating the above with respect to θ , we obtain:

$$\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial '\theta} dx$$

$$= \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$

$$= E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0.$$

Therefore, we can derive the following equality:

$$-\mathrm{E}\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

4. Cramer-Rao Lower Bound (クラメール・ラオの下限): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

$$V(s(X)) \ge (I(\theta))^{-1}$$

Proof:

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\frac{\partial E(s(X))}{\partial \theta} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx$$
$$= \text{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} = \left(\mathrm{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^{2} = \rho^{2} \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

$$\leq \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)} \sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \le \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$,

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1}$$

where $I(\theta)$ is defined as:

$$\begin{split} I(\theta) &= -\mathrm{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \\ &= \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right). \end{split}$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right)$ converges.

That is, when *n* is large, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$\tilde{\theta} \sim N(\theta, (I(\tilde{\theta}))^{-1}).$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

The central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.