Econometrics I

(Thu., 8:50-10:20)

Room # 4 (EiX:E&EE)

e The prerequisites of this class a&pecial Lectures in Economics (Statistical
Analysis), #FZ 55w (FR5tEEMT) (last semester) arficonometrics | (T3 / X

1w 2 X 1) (graduate level, last semester).

1



TA Session (by Yonekura and Miura):

From Oct. 7(?), 2015
Wed., 14:40 - 16:10
Room  #4 (5iREER)

Web site
https://sites.google.com/site/ougseeconometricsi/



Statistics Test &5 E) on Nov. 29 (Sun.)

e Exams: Level 1 (1%%) — Level 4 (4%%)
Note that Level 4 is Junior high school level,
Level 3 is High school level, and
Level 2 is the 1st or 2nd year statistics in undergraduate school.

Level 1 is the 3rd or 4th year statistics in undergraduate school (

the 1st year in graduate school).

See http: //www.toukei-kentei.jp/ in more detail.

e Qualification for Exam (ZEREg) :

Undergraduate and Graduate Students in Osaka University



e Application Period (ZEREIAHAR) :  September 9 (Wed.), AM10:00 —
October 14 (Wed.), PM15:00

Go tohttp: //gajss.orgjinse/kentei201511.htmifor application.

e Application Fee (25#l) : Free
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1k THEEFE0E] 10:30~12:00 6,000
1k TREEHSA) 13:30~15:00 6,000

2k 10:30~12:00 5,0004
3tk 13:30~14:30 4,0004
4% 10:30~11:30 3,0004
fataa L 13:00~14:30 5,0004

BMHiEtadAE L 10:30~12:00 10,0004
L%, U, Lk AEHEEE & TRGEHOH ] OmiGZRO%E, %
BRRHE 10,0000 & 72 5,

e Exam Date @%%H): Nov. 29 (Sun.)

e Exam Place ¢ZFr) :  ARIRIFEBASERE
AfE (4455%%) - G (303 4047H#E=)



Maximum Likelihood Estimation (MLE, = Ciﬁ) —

Review

. We have random variables;, X,, - - -, X,, which are assumed to be mutually

independently and identically distributed.

. The distribution function of X}, is f(x;6), wherex = (X1, X, -+, X;) and

0= ().

Note thatX is a vector of random variables ardbk a vector of their realizations

(i.e., observed data).

Likelihood functionL(-) is defined ad.(¢; X) = f(x; 6).

Note thatf(x;60) = [1i; f(x;60) whenXy, X,, ---, X, are mutually indepen-



dently and identically distributed.

The maximum likelihood estimator (MLE) @fis 6 such that:

max L(6; X). = max logL(g; X).
9 9

MLE satisfies the following two conditions:

dlogL(6; X)
€) 50 =0.

d%logL(8; X) . . - .
(b) 2000 is a negative definite matrix.

3. Fisher’s information matrix ( 7 1 v ¥ + —D1E#17%1) is defined as:

0% log L(6; X)
16) = & 5006 )

where we have the following equality:

#logL(8; X)\ _,dlogL(g; X) dlogL(#; X)\ ., dlogL(8;X)
- 9006/ )=&( 90 o6’ )=Vv( 90 )
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Proof of the above equality:

fL(H; xX)dx =1

Take a derivative with respect &

f&L(Q; X)dx 0
a0

(We assume that (i) the domainxtioes not depend anand (ii) the derivative
oL(0; X)
a0

Rewriting the above equation, we obtain:

dlogL(6;x), , B
f %0 L(6; X)dx = 0,

exists.)
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Again, differentiating the above with respectfowne obtain:

d%logL(6;x), , dlogL(#; X) OL(6; X)
f ST L(6; X)dx + f %9 54 dx

_ [ *logL(®;x), . dlogL(8;x)dlogL(b; %), ,
_ f T (6 + f ae (6 91l
_ (9logL(6; X) dlogL(6; X) 6log L(6; X)
- E( 3000’ ) i E( a0 00

)=0.

Therefore, we can derive the following equality:

£ #logL(; X)\ _ £ dlogL(e; X) dlog L(e; X)) _V((')Iog L(0; X))
- ( 9000 )_ ( 90 o0 B 90 :

; X
where the second equality utiIizez( Iog(;.e(e, )) =0.



4. Cramer-Rao Lower Bound (7 2 X —JL - 27 D TFER): (1(9)?
Suppose that an unbiased estimatof ©&f given bys(X).

Then, we have the following:
V(s(X)) = (1)
Proof:
The expectation of(X) is:
(S0 = [ s09L(6: 9
Differentiating the above with respect#o

aE(s(X)) fs( )aL(e x)d _ fs( )alog L(6; X) L(6; X)dx

dlogL(g; X)
)

= Cov(s(X),
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For simplicity, lets(X) andé be scalars.

Then,
IE(X) ) dlogL(6; X)\\* _ dlogL(6; X)
(- (omf. 2 v 542)
<V (s (Z220),
wherep denotes the correlation cheient betweers(X) an GK)%H(QX)
ologL(g; X)
. Cov(s(X), T)
W\/ dlog L(e X))

Note thatlp| < 1.

11



Therefore, we have the following inequality:

AE(S(X))\? dlogL(6; X)
( o ) sV(s(X))V(—ae )
i.e.,
(aE(s(X»)Z
V(s(X)) >

dlogL(6; X)
e

Especially, when E{(X)) = 6,

V(s(X)) = = ()™

0% logL(6; X)
=5

Even in the case wher€X) is a vector, the following inequality holds.

V(s(X)) > (1(6) ™
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wherel () is defined as:

10 - -£( 28]
_E dlogL(6; X) dlog L(6; X) _v dlogL(; X))
B ( 90 00 )‘ ( 90 '

The variance of any unbiased estimatog s larger than or equal td (©)) .
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5. Asymptotic Normality of MLE:
Letd be MLE of6.

As n goes to infinity, we have the following result:

Vn(@ - 6) — N(O, lim (@)_1),

n—oo n

. (]
where it is assumed that |I6§?) converges.

N—oo

That is, whem is large @ is approximately distributed as follows:

6~N(6.(16)™).

Suppose thas(X) = 6.

Whennis large, (s(X)) is approximately equal td (6)) .
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Practically, we utilize the following approximated distribution:
6~N(0.(10)™).
Then, we can obtain the significance test and the confidence intenal for

. Central Limit Theorem: Let Xy, X;, - -+, X, be mutually independently dis-
tributed random variables with meanX) = x and variance V¥;) = 02 < o

fori=12---,n.

DefineX = (1/n) X, X;.

Then, the central limit theorem is given by:
X-EX) X-u

e o/

Note that EK) = x and V(X) = o2/n.

— N(O, 1).
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That is,
— i n P N 0—2
Vn(X = p) = NG iél (X —p) N(O, o).

Note that EK) = x andnV(X) = 0.

In the case wher; is a vector of random variable with mearand variance

¥ < oo, the central limit theorem is given by:
_ 1 <&
VA(X =) = —= > (K —p) — N(O.%).
\Ok=

Note that EK) = z andnV(X) = X.
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7. Central Limit Theorem Il:  Let X;, Xy, - -+, X, be mutually independently
distributed random variables with mearng(= u and variance ;) = o for

1=212---,n.

Assume:
n

DefineX = (1/n) X1, X;.

The central limit theorem is given by:
_ 1 &
VA(X =) = == > (% —1) — N(O.0).
Vi

Note that EK) = x andnV(X) — 2.
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In the case wher; is a vector of random variable with mearand variance

%, the central limit theorem is given by:

_ 1 <&
V(X — ) = 7 ;(xi — 1) — N(0,3),

1 n
whereX = lim — Y < o0,

n—oo £
i=1

Note that EK) = x andnV(X) — X.
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