Another Interpretation: This maximization problem is equivalent to the nonlinear least squares estimation problem from the following regression model:

$$y_i = F(X_i \beta^*) + u_i,$$

where $u_i = y_i - F_i$ takes $u_i = 1 - F_i$ with probability $P(y_i = 1) = F(X_i\beta^*) = F_i$ and $u_i = -F_i$ with probability $P(y_i = 0) = 1 - F(X_i\beta^*) = 1 - F_i$.

Therefore, the mean and variance of u_i are:

$$E(u_i) = (1 - F_i)F_i + (-F_i)(1 - F_i) = 0,$$

$$\sigma_i^2 = V(u_i) = E(u_i^2) - (E(u_i))^2 = (1 - F_i)^2 F_i + (-F_i)^2 (1 - F_i) = F_i (1 - F_i).$$

The weighted least squares method solves the following minimization problem:

$$\min_{\beta^*} \sum_{i=1}^n \frac{(y_i - F(X_i\beta^*))^2}{\sigma_i^2}.$$

The first order condition is:

$$\sum_{i=1}^{n} \frac{X_{i}' f(X_{i} \beta^{*})(y_{i} - F(X_{i} \beta^{*}))}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{X_{i}' f_{i}(y_{i} - F_{i})}{F_{i}(1 - F_{i})} = 0,$$

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: $E(y_i) = 0 \times (1 - F_i) + 1 \times F_i = F_i \equiv F(X_i \beta^*).$

Example 2: Consider the two utility functions: $U_{1i} = X_i\beta_1 + \epsilon_{1i}$ and $U_{2i} = X_i\beta_2 + \epsilon_{2i}$.

A linear utility function is problematic, but we consider the linear function for simplicity of discussion.

We purchase a good when $U_{1i} > U_{2i}$ and do not purchase it when $U_{1i} < U_{2i}$.

We can observe $y_i = 1$ when we purchase the good, i.e., when $U_{1i} > U_{2i}$, and $y_i = 0$ otherwise.

$$P(y_i = 1) = P(U_{1i} > U_{2i}) = P(X_i(\beta_1 - \beta_2) > -\epsilon_{1i} + \epsilon_{2i})$$

$$= P(-X_i\beta^* > \epsilon_i^*) = P(-X_i\beta^{**} > \epsilon_i^{**}) = 1 - F(-X_i\beta^{**}) = F(X_i\beta^{**})$$

where
$$\beta^* = \beta_1 - \beta_2$$
, $\epsilon_i^* = \epsilon_{1i} - \epsilon_{2i}$, $\beta^{**} = \frac{\beta^*}{\sigma^*}$ and $\epsilon_i^{**} = \frac{\epsilon_i^*}{\sigma^*}$.

We can estimate β^{**} , but we cannot estimate ϵ_i^* and σ^* , separately.

Mean and variance of ϵ_i^{**} are normalized to be zero and one, respectively.

If the distribution of ϵ_i^{**} is symmetric, the last equality holds.

We can estimate β^{**} by MLE as in Example 1.

Example 3: Consider the questionnaire:

$$y_i = \begin{cases} 1, & \text{if the } i \text{th person answers YES,} \\ 0, & \text{if the } i \text{th person answers NO.} \end{cases}$$

Consider estimating the following linear regression model:

$$y_i = X_i \beta + u_i.$$

When $E(u_i) = 0$, the expectation of y_i is given by:

$$E(y_i) = X_i \beta.$$

Because of the linear function, $X_i\beta$ takes the value from $-\infty$ to ∞ .

However, $E(y_i)$ indicates the ratio of the people who answer YES out of all the people, because of $E(y_i) = 1 \times P(y_i = 1) + 0 \times P(y_i = 0) = P(y_i = 1)$.

That is, $E(y_i)$ has to be between zero and one.

Therefore, it is not appropriate that $E(y_i)$ is approximated as $X_i\beta$.

The model is written as:

$$y_i = P(y_i = 1) + u_i,$$

where u_i is a discrete type of random variable, i.e., u_i takes $1 - P(y_i = 1)$ with probability $P(y_i = 1)$ and $-P(y_i = 1)$ with probability $1 - P(y_i = 1) = P(y_i = 0)$.

Consider that $P(y_i)$ is connected with the distribution function $F(X_i\beta)$ as follows:

$$P(y_i = 1) = F(X_i\beta),$$

where $F(\cdot)$ denotes a distribution function such as normal dist., logistic dist., and so on. \longrightarrow probit model or logit model.

The probability function of y_i is:

$$f(y_i) = F(X_i\beta)^{y_i} (1 - F(X_i\beta))^{1-y_i} \equiv F_i^{y_i} (1 - F_i)^{1-y_i}, \qquad y_i = 0, 1.$$

The joint distribution of y_1, y_2, \dots, y_n is:

$$f(y_1, y_2, \dots, y_n) = \prod_{i=1}^n f(y_i) = \prod_{i=1}^n F_i^{y_i} (1 - F_i)^{1-y_i} \equiv L(\beta),$$

which corresponds to the likelihood function. -- MLE

Example 4: Ordered probit or logit model:

Consider the regression model:

$$y_i^* = X_i \beta + u_i, \qquad u_i \sim (0, 1), \qquad i = 1, 2, \dots, n,$$

where y_i^* is unobserved, but y_i is observed as $1, 2, \dots, m$, i.e.,

$$y_{i} = \begin{cases} 1, & \text{if } -\infty < y_{i}^{*} \leq a_{1}, \\ 2, & \text{if } a_{1} < y_{i}^{*} \leq a_{2}, \\ \vdots, & \\ m, & \text{if } a_{m-1} < y_{i}^{*} < \infty, \end{cases}$$

where a_1, a_2, \dots, a_{m-1} are assumed to be known.

Consider the probability that y_i takes 1, 2, \cdots , m, i.e.,

$$P(y_{i} = 1) = P(y_{i}^{*} \leq a_{1}) = P(u_{i} \leq a_{1} - X_{i}\beta)$$

$$= F(a_{1} - X_{i}\beta),$$

$$P(y_{i} = 2) = P(a_{1} < y_{i}^{*} \leq a_{2}) = P(a_{1} - X_{i}\beta < u_{i} \leq a_{2} - X_{i}\beta)$$

$$= F(a_{2} - X_{i}\beta) - F(a_{1} - X_{i}\beta),$$

$$P(y_{i} = 3) = P(a_{2} < y_{i}^{*} \leq a_{3}) = P(a_{2} - X_{i}\beta < u_{i} \leq a_{3} - X_{i}\beta)$$

$$= F(a_{3} - X_{i}\beta) - F(a_{2} - X_{i}\beta),$$

$$\vdots$$

$$P(y_{i} = m) = P(a_{m-1} < y_{i}^{*}) = P(a_{m-1} - X_{i}\beta < u_{i})$$

$$= 1 - F(a_{m-1} - X_{i}\beta).$$

Define the following indicator functions:

$$I_{i1} = \begin{cases} 1, & \text{if } y_i = 1, \\ 0, & \text{otherwise.} \end{cases} \qquad I_{i2} = \begin{cases} 1, & \text{if } y_i = 2, \\ 0, & \text{otherwise.} \end{cases} \qquad \cdots \qquad I_{im} = \begin{cases} 1, & \text{if } y_i = m, \\ 0, & \text{otherwise.} \end{cases}$$

More compactly,

$$P(y_i = j) = F(a_j - X_i\beta) - F(a_{j-1} - X_i\beta),$$

for $j = 1, 2, \dots, m$, where $a_0 = -\infty$ and $a_m = \infty$.

$$I_{ij} = \begin{cases} 1, & \text{if } y_i = j, \\ 0, & \text{otherwise,} \end{cases}$$

for
$$j = 1, 2, \dots, m$$
.

Then, the likelihood function is:

$$L(\beta) = \prod_{i=1}^{n} \left(F(a_1 - X_i \beta) \right)^{l_{i1}} \left(F(a_2 - X_i \beta) - F(a_1 - X_i \beta) \right)^{l_{i2}} \cdots \left(1 - F(a_{m-1} - X_i \beta) \right)^{l_{im}}$$

$$= \prod_{i=1}^{n} \prod_{j=1}^{m} \left(F(a_j - X_i \beta) - F(a_{j-1} - X_i \beta) \right)^{l_{ij}},$$

where $a_0 = -\infty$ and $a_m = \infty$. Remember that $F(-\infty) = 0$ and $F(\infty) = 1$.

The log-likelihood function is:

$$\log L(\beta) = \sum_{i=1}^{n} \sum_{i=1}^{m} I_{ij} \log (F(a_j - X_i \beta) - F(a_{j-1} - X_i \beta)).$$

The first derivative of $\log L(\beta)$ with respect to β is:

$$\frac{\partial \log L(\beta)}{\partial \beta} = \sum_{i=1}^{n} \sum_{i=1}^{m} \frac{-I_{ij}X_{i}' \Big(f(a_{j} - X_{i}\beta) - f(a_{j-1} - X_{i}\beta) \Big)}{F(a_{j} - X_{i}\beta) - F(a_{j-1} - X_{i}\beta)} = 0.$$

Usually, normal distribution or logistic distribution is chosen for $F(\cdot)$.

Example 5: Multinomial logit model:

The *i*th individual has m + 1 choices, i.e., $j = 0, 1, \dots, m$.

$$P(y_i = j) = \frac{\exp(X_i \beta_j)}{\sum_{j=0}^m \exp(X_i \beta_j)} \equiv P_{ij},$$

for $\beta_0 = 0$. The case of m = 1 corresponds to the bivariate logit model (binary choice).

Note that

$$\log \frac{P_{ij}}{P_{i0}} = X_i \beta_j$$

The log-likelihood function is:

$$\log L(\beta_1, \dots, \beta_m) = \sum_{i=1}^n \sum_{j=0}^m d_{ij} \ln P_{ij},$$

where $d_{ij} = 1$ when the *i*th individual chooses *j*th choice, and $d_{ij} = 0$ otherwise.