Censored Regression Model or Tobit Model:

$$
y_{i}= \begin{cases}X_{i} \beta+u_{i}, & \text { if } y_{i}>a \\ a, & \text { otherwise }\end{cases}
$$

The probability which y_{i} takes a is given by:

$$
P\left(y_{i}=a\right)=P\left(y_{i} \leq a\right)=F(a) \equiv \int_{-\infty}^{a} f(x) \mathrm{d} x
$$

where $f(\cdot)$ and $F(\cdot)$ denote the density function and cumulative distribution function of y_{i}, respectively.

Therefore, the likelihood function is:

$$
L\left(\beta, \sigma^{2}\right)=\prod_{i=1}^{n} F(a)^{I\left(y_{i}=a\right)} \times f\left(y_{i}\right)^{1-I\left(y_{i}=a\right)}
$$

where $I\left(y_{i}=a\right)$ denotes the indicator function which takes one when $y_{i}=a$ or zero otherwise.

When $u_{i} \sim N\left(0, \sigma^{2}\right)$, the likelihood function is:

$$
\begin{aligned}
L\left(\beta, \sigma^{2}\right)=\prod_{i=1}^{n} & \left(\int_{-\infty}^{a}\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-X_{i} \beta\right)^{2}\right) \mathrm{d} y_{i}\right)^{I\left(y_{i}=a\right)} \\
& \times\left(\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-X_{i} \beta\right)^{2}\right)\right)^{1-I\left(y_{i}=a\right)},
\end{aligned}
$$

which is maximized with respect to β and σ^{2}.

2．3 Count Data Model（計数データモデル）

Poisson distribution：

$$
\mathrm{P}(X=x)=f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!},
$$

for $x=0,1,2, \cdots$ ．
In the case of Poisson random variable X ，the expectation of X is：

$$
\mathrm{E}(X)=\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=1}^{\infty} \lambda \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}=\lambda \sum_{x^{\prime}=0}^{\infty} \frac{e^{-\lambda} \lambda^{x^{\prime}}}{x^{\prime}!}=\lambda .
$$

Remember that $\sum_{x} f(x)=1$ ，i．e．，$\sum_{x=0}^{\infty} e^{-\lambda} \lambda^{x} / x!=1$ ．
Therefore，the probability function of the count data y_{i} is taken as the Poisson distri－ bution with parameter λ_{i} ．

In the case where the explained variable y_{i} takes $0,1,2, \cdots$（discrete numbers）， assuming that the distribution of y_{i} is Poisson，the logarithm of λ_{i} is specified as a
linear function, i.e.,

$$
\mathrm{E}\left(y_{i}\right)=\lambda_{i}=\exp \left(X_{i} \beta\right)
$$

Note that λ_{i} should be positive.
Therefore, it is better to avoid the specification: $\lambda=X_{i} \beta$.

The joint distribution of $y_{1}, y_{2}, \cdots, y_{n}$ is:

$$
f\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i}\right)=\prod_{i=1}^{n} \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}=L(\beta)
$$

where $\lambda_{i}=\exp \left(X_{i} \beta\right)$.
The log-likelihood function is:

$$
\begin{aligned}
\log L(\beta) & =-\sum_{i=1}^{n} \lambda_{i}+\sum_{i=1}^{n} y_{i} \log \lambda_{i}-\sum_{i=1}^{n} y_{i}! \\
& =-\sum_{i=1}^{n} \exp \left(X_{i} \beta\right)+\sum_{i=1}^{n} y_{i} X_{i} \beta-\sum_{i=1}^{n} y_{i}!
\end{aligned}
$$

The first-order condition is:

$$
\frac{\partial \log L(\beta)}{\partial \beta}=-\sum_{i=1}^{n} X_{i}^{\prime} \exp \left(X_{i} \beta\right)+\sum_{i=1}^{n} X_{i}^{\prime} y_{i}=0
$$

\Longrightarrow Nonlinear optimization procedure
[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization procedures) is:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\beta^{(j)}\right)}{\partial \beta}
$$

which comes from the first-order Taylor series expansion around $\beta=\beta^{*}$:

$$
0=\frac{\partial \log L(\beta)}{\partial \beta} \approx \frac{\partial \log L\left(\beta^{*}\right)}{\partial \beta}+\frac{\partial^{2} \log L\left(\beta^{*}\right)}{\partial \beta \partial \beta^{\prime}}\left(\beta-\beta^{*}\right)
$$

and β and β^{*} are replaced by $\beta^{(j+1)}$ and $\beta^{(j)}$, respectively.

An alternative nonlinear optimization procedure is known as the method of scoring, which is shown as:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\beta^{(j)}\right)}{\partial \beta},
$$

where $\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)$ is replaced by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)$.

[End of Review]

In this case, we have the following iterative procedure:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(-\sum_{i=1}^{n} X_{i}^{\prime} X_{i} \exp \left(X_{i} \beta^{(j)}\right)\right)^{-1}\left(-\sum_{i=1}^{n} X_{i}^{\prime} \exp \left(X_{i} \beta^{(j)}\right)+\sum_{i=1}^{n} X_{i}^{\prime} y_{i}\right) .
$$

The Newton-Raphson method is equivalent to the scoring method in this count model, because any random variable is not included in the expectation.

Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have to modify the estimation procedure.

Suppose that the probability of $y_{i}=j$ is decomposed of two regimes.
\longrightarrow We have the case of $y_{i}=j$ and Regime 1, and that of $y_{i}=j$ and Regime 2.

Consider $P\left(y_{i}=0\right)$ and $P\left(y_{i}=j\right)$ separately as follows:

$$
\begin{aligned}
& P\left(y_{i}=0\right)=P\left(y_{i}=0 \mid \text { Regime } 1\right) P(\text { Regime } 1)+P\left(y_{i}=0 \mid \text { Regime } 2\right) P(\text { Regime 2) } \\
& P\left(y_{i}=j\right)=P\left(y_{i}=j \mid \text { Regime 1) } P(\text { Regime } 1)+P\left(y_{i}=j \mid \text { Regime 2) } P(\text { Regime 2 }),\right.\right.
\end{aligned}
$$

for $j=1,2, \cdots$.

Assume:

- $P\left(y_{i}=0 \mid\right.$ Regime 1$)=1$ and $P\left(y_{i}=j \mid\right.$ Regime 1$)=0$ for $j=1,2, \cdots$,
- $P($ Regime 1$)=F_{i}$ and $P($ Regime 2$)=1-F_{i}$,
- $P\left(y_{i}=j \mid\right.$ Regime 2$)=\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}$ for $j=0,1,2, \cdots$,
where $F_{i}=F\left(Z_{i} \alpha\right)$ and $\lambda_{i}=\exp \left(X_{i} \beta\right) . \Longrightarrow w_{i}$ and X_{i} are exogenous variables.

Under the first assumption, we have the following equations:

$$
\begin{aligned}
& P\left(y_{i}=0\right)=P(\text { Regime } 1)+P\left(y_{i}=0 \mid \text { Regime } 2\right) P(\text { Regime } 2) \\
& P\left(y_{i}=j\right)=P\left(y_{i}=j \mid \text { Regime } 2\right) P(\text { Regime } 2)
\end{aligned}
$$

for $j=1,2, \cdots$.

Combining the above two equations, we obtain the following:

$$
P\left(y_{i}=j\right)=P(\text { Regime } 1) I_{i}+P\left(y_{i}=j \mid \text { Regime } 2\right) P(\text { Regime } 2),
$$

for $j=0,1,2, \cdots$,
where the indicator function I_{i} is given by $I_{i}=1$ for $y_{i}=0$ and $I_{i}=0$ for $y_{i} \neq 0$.
F_{i} denotes a cumulative distribution function of $Z_{i} \alpha . \Longrightarrow$ We have to assume F_{i}.

Including the other two assumptions, we obtain the distribution of y_{i} as follows:

$$
P\left(y_{i}=j\right)=F_{i} I_{i}+\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\left(1-F_{i}\right), \quad j=0,1,2, \cdots
$$

where $F_{i} \equiv F\left(Z_{i} \alpha\right), \lambda_{i}=\exp \left(X_{i} \beta\right)$, and the indicator function I_{i} is given by $I_{i}=1$ for $y_{i}=0$ and $I_{i}=0$ for $y_{i} \neq 0$.

Therefore, the log-likelihood function is:

$$
\log L(\alpha, \beta)=\sum_{i=1}^{n} \log P\left(y_{i}=j\right)=\sum_{i=1}^{n} \log \left(F_{i} I_{i}+\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\left(1-F_{i}\right)\right),
$$

where $F_{i} \equiv F\left(Z_{i} \alpha\right)$ and $\lambda_{i}=\exp \left(X_{i} \beta\right)$.
$\log L(\alpha, \beta)$ is maximized with respect to α and β.
\Longrightarrow The Newton-Raphson method or the method of scoring is utilized for maximization.

3 Panel Data

3.1 GLS - Review

Regression model:

$$
y=X \beta+u, \quad u \sim N(0, \Omega)
$$

where $y, X, \beta, u, 0$ and Ω are $n \times 1, n \times k, k \times 1, n \times 1, n \times 1$, and $n \times n$, respectively.

We solve the following minimization problem:

$$
\min _{\beta}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

Let b be a solution of the above minimization problem.
GLS estimator of β is given by:

$$
b=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

3.2 Panel Model Basic

Model:

$$
y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T
$$

where i indicates individual and t denotes time.

There are n observations for each t.
$u_{i t}$ indicates the error term, assuming that $\mathrm{E}\left(u_{i t}\right)=0, \mathrm{~V}\left(u_{i t}\right)=\sigma_{u}^{2}$ and $\operatorname{Cov}\left(u_{i t}, u_{j s}\right)=0$ for $i \neq j$ and $t \neq s$.
v_{i} denotes the individual effect, which is fixed or random.

