
Censored Regression Model or Tobit Model:

yi =

Xiβ + ui , if yi > a,

a, otherwise.

The probability whichyi takesa is given by:

P(yi = a) = P(yi ≤ a) = F(a) ≡
∫ a

−∞
f (x)dx,

where f (·) andF(·) denote the density function and cumulative distribution function

of yi, respectively.

Therefore, the likelihood function is:

L(β, σ2) =
n∏

i=1

F(a)I (yi=a) × f (yi)
1−I (yi=a),

whereI (yi = a) denotes the indicator function which takes one whenyi = a or zero

otherwise.
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Whenui ∼ N(0, σ2), the likelihood function is:

L(β, σ2) =
n∏

i=1

(∫ a

−∞
(2πσ2)−1/2 exp(− 1

2σ2
(yi − Xiβ)

2)dyi

)I (yi=a)

×
(
(2πσ2)−1/2 exp(− 1

2σ2
(yi − Xiβ)

2)
)1−I (yi=a)

,

which is maximized with respect toβ andσ2.
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2.3 Count Data Model (計数データモデル)

Poisson distribution:

P(X = x) = f (x) =
e−λλx

x!
,

for x = 0,1,2, · · ·.

In the case of Poisson random variableX, the expectation ofX is:

E(X) =
∞∑

x=0

x
e−λλx

x!
=

∞∑
x=1

x
e−λλx

x!
=

∞∑
x=1

λ
e−λλx−1

(x− 1)!
= λ

∞∑
x′=0

e−λλx′

x′!
= λ.

Remember that
∑

x f (x) = 1, i.e.,
∑∞

x=0 e−λλx/x! = 1.

Therefore, the probability function of the count datayi is taken as the Poisson distri-

bution with parameterλi.

In the case where the explained variableyi takes 0, 1, 2,· · · (discrete numbers),

assuming that the distribution ofyi is Poisson, the logarithm ofλi is specified as a
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linear function, i.e.,

E(yi) = λi = exp(Xiβ).

Note thatλi should be positive.

Therefore, it is better to avoid the specification:λ = Xiβ.

The joint distribution ofy1, y2, · · ·, yn is:

f (y1, y2, · · · , yn) =
n∏

i=1

f (yi) =
n∏

i=1

e−λiλ
yi

i

yi!
= L(β),

whereλi = exp(Xiβ).

The log-likelihood function is:

logL(β) = −
n∑

i=1

λi +

n∑
i=1

yi logλi −
n∑

i=1

yi!

= −
n∑

i=1

exp(Xiβ) +
n∑

i=1

yiXiβ −
n∑

i=1

yi!.
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The first-order condition is:

∂ logL(β)
∂β

= −
n∑

i=1

X′i exp(Xiβ) +
n∑

i=1

X′i yi = 0.

=⇒ Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization proce-

dures) is:

β( j+1) = β( j) −
(
∂2 logL(β( j))
∂β∂β′

)−1
∂ logL(β( j))
∂β

,

which comes from the first-order Taylor series expansion aroundβ = β∗:

0 =
∂ logL(β)
∂β

≈ ∂ logL(β∗)
∂β

+
∂2 logL(β∗)
∂β∂β′

(β − β∗),

andβ andβ∗ are replaced byβ( j+1) andβ( j), respectively.
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An alternative nonlinear optimization procedure is known as the method of scoring,

which is shown as:

β( j+1) = β( j) −
(
E
(∂2 logL(β( j))
∂β∂β′

))−1
∂ logL(β( j))
∂β

,

where

(
∂2 logL(β( j))
∂β∂β′

)
is replaced by E

(
∂2 logL(β( j))
∂β∂β′

)
.

[End of Review]

In this case, we have the following iterative procedure:

β( j+1) = β( j) −
− n∑

i=1

X′i Xi exp(Xiβ
( j))

−1 − n∑
i=1

X′i exp(Xiβ
( j)) +

n∑
i=1

X′i yi

 .
The Newton-Raphson method is equivalent to the scoring method in this count model,

because any random variable is not included in the expectation.
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Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have

to modify the estimation procedure.

Suppose that the probability ofyi = j is decomposed of two regimes.

−→ We have the case ofyi = j and Regime 1, and that ofyi = j and Regime 2.

ConsiderP(yi = 0) andP(yi = j) separately as follows:

P(yi = 0) = P(yi = 0|Regime 1)P(Regime 1)+ P(yi = 0|Regime 2)P(Regime 2)

P(yi = j) = P(yi = j|Regime 1)P(Regime 1)+ P(yi = j|Regime 2)P(Regime 2),

for j = 1,2, · · ·.
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Assume:

• P(yi = 0|Regime 1)= 1 andP(yi = j|Regime 1)= 0 for j = 1,2, · · ·,

• P(Regime 1)= Fi andP(Regime 2)= 1− Fi,

• P(yi = j|Regime 2)=
e−λiλ

yi

i

yi!
for j = 0,1,2, · · ·,

whereFi = F(Ziα) andλi = exp(Xiβ). =⇒ wi andXi are exogenous variables.

Under the first assumption, we have the following equations:

P(yi = 0) = P(Regime 1)+ P(yi = 0|Regime 2)P(Regime 2)

P(yi = j) = P(yi = j|Regime 2)P(Regime 2),

for j = 1,2, · · ·.
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Combining the above two equations, we obtain the following:

P(yi = j) = P(Regime 1)I i + P(yi = j|Regime 2)P(Regime 2),

for j = 0,1,2, · · ·,

where the indicator functionI i is given byI i = 1 for yi = 0 andI i = 0 for yi , 0.

Fi denotes a cumulative distribution function ofZiα. =⇒We have to assumeFi.

Including the other two assumptions, we obtain the distribution ofyi as follows:

P(yi = j) = Fi I i +
e−λiλ

yi

i

yi!
(1− Fi), j = 0,1,2, · · ·

whereFi ≡ F(Ziα), λi = exp(Xiβ), and the indicator functionI i is given byI i = 1 for

yi = 0 andI i = 0 for yi , 0.
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Therefore, the log-likelihood function is:

logL(α, β) =
n∑

i=1

logP(yi = j) =
n∑

i=1

log

(
Fi I i +

e−λiλ
yi

i

yi!
(1− Fi)

)
,

whereFi ≡ F(Ziα) andλi = exp(Xiβ).

logL(α, β) is maximized with respect toα andβ.

=⇒ The Newton-Raphson method or the method of scoring is utilized for maximiza-

tion.
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3 Panel Data

3.1 GLS — Review

Regression model:

y = Xβ + u, u ∼ N(0,Ω),

wherey, X, β, u, 0 andΩ are n× 1, n× k, k× 1, n× 1, n× 1, andn× n, respectively.

We solve the following minimization problem:

min
β

(y− Xβ)′Ω−1(y− Xβ).

Let b be a solution of the above minimization problem.

GLS estimator ofβ is given by:

b = (X′Ω−1X)−1X′Ω−1y.
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3.2 Panel Model Basic

Model:

yit = Xitβ + vi + uit , i = 1,2, · · · ,n, t = 1,2, · · · ,T

wherei indicates individual andt denotes time.

There aren observations for eacht.

uit indicates the error term, assuming that E(uit) = 0, V(uit) = σ2
u and Cov(uit ,ujs) = 0

for i , j andt , s.

vi denotes the individual effect, which is fixed or random.
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