3.3 Hausman's Specification Error (特定化誤差) Test

Regression model:

 $y = X\beta + u$, $y : n \times 1$, $X : n \times k$, $\beta : k \times 1$, $u : n \times 1$.

Suppose that *X* is stochastic.

If E(u|X) = 0, OLSE $\hat{\beta}$ is unbiased because of $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$ and $E((X'X)^{-1}X'u) = 0.$

However, If $E(u|X) \neq 0$, OLSE $\hat{\beta}$ is biased and inconsistent.

Therefore, we need to check if X is correlated with u or not.

 \implies Hausman's Specification Error Test

The null and alternative hypotheses are:

- H_0 : X and u are independent, i.e., Cov(X, u) = 0,
- H_1 : X and u are not independent.

Suppose that we have two estimators $\hat{\beta}_0$ and $\hat{\beta}_1$, which have the following properties:

- $\hat{\beta}_0$ is consistent and efficient under H_0 , but is not consistent under H_1 ,
- $\hat{\beta}_1$ is consistent under both H_0 and H_1 , but is not efficient under H_0 .

Under the conditions above, we have the following test statistic:

$$(\hat{\beta}_1 - \hat{\beta}_0)' \Big(\mathbf{V}(\hat{\beta}_1) - \mathbf{V}(\hat{\beta}_0) \Big)^{-1} (\hat{\beta}_1 - \hat{\beta}_0) \longrightarrow \chi^2(k).$$

Example: $\hat{\beta}_0$ is OLS, while $\hat{\beta}_1$ is IV such as 2SLS.

Hausman, J.A. (1978) "Specification Tests in Econometrics," *Econometrica*, Vol.46, No.6, pp.1251–1271.

3.4 Choice of Fixed Effect Model or Random Effect Model

3.4.1 The Case where *X* is Correlated with *u* — Review

The standard regression model is given by:

$$y = X\beta + u, \qquad u \sim N(0, \sigma^2 I_n)$$

OLS is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

If *X* is not correlated with *u*, i.e., E(X'u) = 0, we have the result: $E(\hat{\beta}) = \beta$.

However, if X is correlated with u, i.e., $E(X'u) \neq 0$, we have the result: $E(\hat{\beta}) \neq \beta$. $\implies \hat{\beta}$ is biased. Assume that in the limit we have the followings:

$$(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1},$$

$$\frac{1}{n}X'u \longrightarrow M_{xu} \neq 0 \text{ when } X \text{ is correlated with } u.$$

Therefore, even in the limit,

$$\operatorname{plim}\hat{\beta} = \beta + M_{xx}^{-1}M_{xu} \neq \beta,$$

which implies that $\hat{\beta}$ is not a consistent estimator of β .

Thus, in the case where X is correlated with u, OLSE $\hat{\beta}$ is neither unbiased nor consistent.

3.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v_i is correlated with X_{it} .

[Reason:]

 v_i includes the unobserved variables in the *i*th individual, i.e., ability, intelligence, and so on.

 X_{it} represents the observed variables in the *i*th individual, i.e., income, assets, and so on.

The unobserved variables v_i are related to the observed variables X_{it} .

Therefore, we consider that v_i is correlated with X_{it} .

Thus, in the case of the random effect model, usually we cannot use OLS or GLS. In order to use the random effect model, we need to test whether v_i is uncorrelated with X_{it} . Apply Hausman's test.

- H_0 : X_{it} and e_{it} are independent (\longrightarrow Use the random effect model),
- H_1 : X_{it} and e_{it} are not independent (\longrightarrow Use the fixed effect model),

where $e_{it} = v_i + u_{it}$.

Note that:

- We can use the random effect model under H_0 , but not under H_1 .
- We can use the fixed effect model under both H_0 and H_1 .
- The random effect model is more efficient than the fixed effect model under H_0 . Therefore, under H_0 we should use the random effect model, rather than the fixed effect model.

4 Generalized Method of Moments (GMM, 一般化積 率法)

4.1 Method of Moments (MM, 積率法)

As $n \to \infty$, we have the result: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow E(X) = \mu$. ⇒ Law of Large Number (大数の法則)

 X_1, X_2, \dots, X_n are *n* realizations of *X*.

[Review] Chebyshev's inequality (チェビシェフの不等式) is given by:

$$P(|X - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$
 or $P(|X - \mu| \le \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$,

where $\mu = E(X)$, $\sigma^2 = V(X)$ and any $\epsilon > 0$.

Note that $P(|X - \mu| > \epsilon) + P(|X - \mu| \le \epsilon) = 1$.

Replace X, E(X) and V(X) by \overline{X} , E(\overline{X}) = μ and V(\overline{X}) = $\frac{\sigma^2}{n}$.

As $n \to \infty$, $P(|\overline{X} - \mu| \le \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \longrightarrow 1.$

That is, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$.

[End of Review]

 \overline{X} is an approximation of $E(X) = \mu$. Therefore, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is taken as an estimator of μ . $\implies \overline{X}$ is MM estimator of $E(X) = \mu$. MM is applied to the regression model as follows:

Regression model: $y_i = x_i\beta + u_i$, where x_i and u_i are assumed to be stochastic.

Familiar Assumption: E(x'u) = 0, called the **orthogonality condition** (直交条件), where *x* is a 1 × *k* vector and *u* is a scalar.

We consider that (x_1, x_2, \dots, x_n) and (u_1, u_2, \dots, u_n) are realizations generated from random variables *x* and *u*, respectively.

From the law of large number, we have the following:

$$\frac{1}{n}\sum_{i=1}^n x_i'u_i = \frac{1}{n}\sum_{i=1}^n x_i'(y_i - x_i\beta) \longrightarrow \operatorname{E}(x'u) = 0.$$

Thus, the MM estimator of β , denoted by β_{MM} , satisfies:

$$\frac{1}{n}\sum_{i=1}^n x_i'(y_i-x_i\beta_{MM})=0.$$

Therefore, β_{MM} is given by:

$$\beta_{MM} = \left(\frac{1}{n} \sum_{i=1}^{n} x'_i x_i\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} x'_i y_i\right) = (X'X)^{-1} X' y,$$

which is equivalent to OLS and MLE.

Note that *X* and *y* are:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$