
● However,βMM is inconsistent when E(x′u) , 0, i.e.,

βMM = (X′X)−1X′y = β + (X′X)−1X′u = β +
(1
n

X′X
)−1(1

n
X′u
)
−→\ β.

Note as follows:
1
n

X′u =
1
n

n∑
i=1

x′i ui −→ E(x′u) , 0.

In order to obtain a consistent estimator ofβ, we find the instrumental variablez

which satisfies E(z′u) = 0.

Let zi be theith realization ofz, wherezi is a 1× k vector.

Then, we have the following:

1
n

Z′u =
1
n

n∑
i=1

z′i ui −→ E(z′u) = 0.

Theβ which satisfies
1
n

n∑
i=1

z′i ui = 0 is denoted byβIV , i.e.,
1
n

n∑
i=1

z′i (yi − xiβIV) = 0.
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Thus,βIV is obtained as:

βIV =
(1
n

n∑
i=1

z′i xi

)−1(1
n

n∑
i=1

z′i yi

)
= (Z′X)−1Z′y.

Note thatZ′X is ak × k square matrix, where we assume that the inverse matrix of

Z′X exists.

Assume that asn goes to infinity there exist the following moment matrices:

1
n

n∑
i=1

z′i xi =
1
n

Z′X −→ Mzx,

1
n

n∑
i=1

z′i zi =
1
n

Z′Z −→ Mzz,

1
n

n∑
i=1

z′i ui =
1
n

Z′u −→ 0.
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As n goes to infinity,βIV is rewritten as:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u

= β + (
1
n

Z′X)−1(
1
n

Z′u) −→ β + Mzx× 0 = β,

Thus,βIV is a consistent estimator ofβ.

● We consider the asymptotic distribution ofβIV .

By the central limit theorem,

1
√

n
Z′u −→ N(0, σ2Mzz)

Note that V(
1
√

n
Z′u) =

1
n

V(Z′u) =
1
n

E(Z′uu′Z) =
1
n

E
(
E(Z′uu′Z|Z)

)
=

1
n

E
(
Z′E(uu′|Z)Z

)
=

1
n

E(σ2Z′Z) = E(σ21
n

Z′Z) −→ E(σ2Mzz) = σ
2Mzz.
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We obtain the following asymmptotic distribution:

√
n(βIV − β) = (

1
n

Z′X)−1(
1
√

n
Z′u) −→ N(0, σ2M−1

zx MzzM
−1
zx
′)

Practically, for largen we use the following distribution:

βIV ∼ N
(
β, s2(Z′X)−1Z′Z(Z′X)−1′

)
,

wheres2 =
1

n− k
(y− XβIV)′(y− XβIV).

● In the case wherezi is a 1× r vector forr > k, Z′X is ar × k matrix, which is not

a square matrix. =⇒ Generalized Method of Moments (GMM,一般化積率法)
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4.2 Generalized Method of Moments (GMM,一般化積率法)

Consider the following regression model:

Z′y = Z′Xβ + Z′u,

whereZ, y, X, β andu aren× r, n× 1, n× k, k× 1 andn× 1 matrices or vectors.

Note thatr ≥ k.

y∗ = Z′y, X∗ = Z′X andu∗ = Z′u denoter × 1, r × k andr × 1 matrices or vectors,

wherer ≥ k.

Rewrite as follows:

y∗ = X∗β + u∗,

=⇒ r is taken as sample size.
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Mean and variance ofu∗ are given by:

E(u∗) = 0 and V(u∗) = E(u∗u∗′) = σ2Z′Z = σ2Ω.

Using GLS, GMM is obtained as:

βGMM = (X∗′Ω−1X∗)−1X∗′Ω−1y∗ =
(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′y.

βGMM is rewritten as:

βGMM =
(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′y

=
(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′(Xβ + u)

= β +
(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′u.

Assume:

1
n

X′Z −→ Mxz,
1
n

Z′Z −→ Mzz,
1
n

Z′u −→ 0.
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Then,βGMM is a consistent estimator ofβ, which is shown as follows:

βGMM = β +
(
(
1
n

X′Z)(
1
n

Z′Z)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′Z)−1(
1
n

Z′u)

−→ β + (MxzM
−1
zz M′xz)

−1MxzM
−1
zz × 0 = β.

●We derive the asymptotic distribution ofβGMM.

From the central limit theorem,

1
√

n
Z′u −→ N(0, σ2Mzz).

Accordingly,βGMM is distributed as:

√
n(βGMM − β) =

(
(
1
n

X′Z)(
1
n

Z′Z)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′Z)−1(
1
√

n
Z′u)

−→ N
(
0, σ2(MxzM−1

zz M′xz)
−1
)
.
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Practically, for largen we use the following distribution:

βGMM ∼ N
(
β, s2(X′Z(Z′Z)−1Z′X)−1

)
,

wheres2 =
1

n− k
(y− XβGMM)′(y− XβGMM).

● The above GMM is equivalent to 2SLS.

X: n× k, Z: n× r, r > k.

Assume:
1
n

X′u =
1
n

n∑
i=1

x′i ui −→ E(x′u) , 0,

1
n

Z′u =
1
n

n∑
i=1

z′i ui −→ E(z′u) = 0.

RegressX on Z, i.e., X = ZΓ + V by OLS, whereΓ is a r × k unknown parameter

matrix andV is an error term,
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Denote the predicted value ofX by X̂ = ZΓ̂ = Z(Z′Z)−1Z′X, whereΓ̂ = (Z′Z)−1Z′X.

Note that 2SLS is equivalent to IV in the case ofZ = X̂, where thisZ is different

from the aboveZ.

This Z is an× k matrix, while the aboveZ is an× r matrix.

WhenZ is an× k instrumental variable, the IV estimator is given by:

βIV = (Z′X)−1Z′y,

Z is replaced bŷX. Then,

β2S LS = (X̂′X)−1X̂′y =
(
X′Z(Z′Z)−1Z′X

)−1
X′Z(Z′Z)−1Z′y = βGMM.

GMM is interpreted as the GLS applied to MM.
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