Bayesian Method= Evaluation of Integration (Too much to say?)
e Numerical Integration
¢ Monte Carlo Integration

e Random Number Generation frofy,(6ly)

9.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a functiof(x).
Suppose that is a scalar.

Let X, X1, X2, - - -, X» DEN NOdes, which are sorted by order of size but not necessari

equal intervals betweex_; andx; fori =1,2,---,n.
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Rectangular Approximation:

ff(x)dx ~ Zn: () (X% — Xi_1),

i=1

or > F(x1)(X - %1),
i=1

or ) F(Z2) (%~ %0).
i=1

Trapezoid Approximation:

| fooaxs ) 5000 + 160 - -0
i=1

Bivariate Case: Consider integration of a functiof(x, y).

Suppose that botkandy are scalars.

203



Let X0, X1, X2, - -+, X, D€ N NOdes, which are sorted by order of size not necessaril
equal intervals betweex_; andx; fori =1,2,---,n.

Letvo, V1, Y2, - - -, Ym bEMNOdes.

Rectangular Approximation:

f f fey)ddy~ ) 3 F(EE Ji +2yj’1)(>q — %)Y} = Yj-a).

i=1 j=1

Trapezoid Approximation:

f f f(x.y)dxdy

~> D) %(f(m,y,-) 00 Yjo2) + T Yi) + T4 Vi) 6 = X)) = joa).

i=1 j=1

Applying to Bayes Method (Rectangular Approximation):

E(@ly) = [ otyey16)To(6)d6 _ 31, 6, f(416) Fo(6) (61 — 61-2)
(0O f@)ds Sy Tyo6) (660 — 6-1)
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_ ity 0 e (¥16:) To(61) B n o o
=5 WD) = ;H.w., for constan®, — 6,_4,

where
o = fyo(Y16) f(61)
LN fe(yI6) fa(6)

Problem of Numerical Integration:

1. Choice of initial and terminal values= Truncation errors
2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

= kdimension, ana nodes for each dimensioa= nk
9.5.2 Evaluation of Expectation: Monte Carlo Integration
Univariate Case: Consider integration of a functiof(x).
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Suppose that is a scalar.

Let X3, X, - - -, X, benrandom draws generated frag(x).

(R 00 15 0)
| tooex= a0 909 =E(g5) = 7 2 gy

— Importance Sampling @ mpY% > 71 v )
Multivariate Case:  Consider integration of a functiof(x).
Suppose that is a vector.

Let Xy, X, - - -, X, benrandom draws generated fragx).

_ (¥ g f0y 150 Fx)
| tooex= 00 999 = Elgiy) ~ 7 2 gy
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which is exacly the same as the univariate case.
Computational burden= Univariate casen, Multivariate case:n

Precision of integration ?7??

Especially, whemg(x) is not close tof (x), approximation is prror.

Applying to Bayes Method:

fy0(y16) f4(6)
Ely) = 10O Od f " 2O (s awe)
" TROtEw RO, AT
G)
where
w(6) = W

Choice of g() — One Solution: Definel(6) = fy(y16) f4(6).
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Thus,N(é, (—

al(6)

Iogl(9)~logl(9)+mw( 0 — 6)
1, ., 1 3l@)a@ 1 64®) ~
+20-9) (_|(é)2 96 o0 +@8969')(9_9)

= _-( — 8y (——az'(g))( - 8) whend is a mode of ()

- 1(8) 960" ’ '
1 &(0)\-1, . . .

@6969’) ) might be taken as the importance dengt).

9.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws @from the posterior distributiotyy(6ly).

Then, (¥n) X, 6, is taken as a consistent estimator of|i, whereg; indicates the

ith random draw generated frofg,(6ly).
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Note that (2n) >, 6 — E(0ly) under the condition (&) 3.7, 6 < .

Bayesian confidence interval, median, quntiles and so on are obtained by $grting

6,, ---, 8, in order of size.

— Sampling methods

9.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman an
Johnson (2000a, 2000b, 2000c, 2000d, 2000e).
The random draws discussed in this section are based on uniform random dr.

between zero and one.
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9.6.1 Uniform Distribution: U(0,1)

Properties of Uniform Distribution: ~ The most heuristic and simplest distribution
is uniform.

Theuniform distribution between zero and one is given by:

1, forO<x<1,
f(x) =

0, otherwise.

Mean, variance and the moment-generating function are given by:

EX) =5 V=5 60 eHT‘l.

Use L'Hospital's theorem to derive Ef and V(X) using(6).
In the next section, we introduce an idea of generating uniform random draws, wh
in turn yield the other random draws by the transformation of variables, the inver

transform algorithm and so on.
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Uniform Random Number Generators: It is no exaggeration to say that all the
random draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as e
nential, normal, logistic, Bernoulli and other distributions are obtained by transforr
ing the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.
However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appea
random is taken as a sequence of random numbers.

First, consider the following relation:
m =k — [k/n]n,

wherek, mandn are integers.

[k/n] denotes the largest integer less than or equal to the argument.
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In Fortran 77, it is written ag=k-int (k/n)*n, where O< m< n.
mindicates theemainder (R ¥) ) whenk is divided byn.
nis called themodulus ().

We define the right hand side in the equation above as:
k — [k/n]n = k modn.
Then, using the modular arithmetic we can rewrite the above equation as follows:
m = kmodn,

which is represented byt=mod (k,n) in Fortran 77 aneh=k%n in C language.
A basic idea of the uniform random draw is as follows.

Givenx_y, X is generated by:
X = (a%_1 + ¢) modn,
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where 0< X < n.

a andc are positive integers, called theultiplier and theincrement, respectively.
The generator above have to be started by an initial value, which is callsdé¢de

U = X/nis regarded as a uniform random number between zero and one.

This generator is called tHmear congruential generator {&F & RE).

Especially, whert = 0, the generator is called tmaultiplicative linear congruen-
tial generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, aandc are properly chosen, the period of the generatar is

However, when they are not chosen very carefully, there may be a lot of serial cor
lation among the generated values.

Therefore, the performance of the congruential generators depend heavily on

choice of g, ¢).
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There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980), L
and Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casella (199
Rubinstein and Melamed (1998), Thompson (2000) and so on for the other cong
ential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of thr
congruential generators for 16-bit computers.

The generator is given by:

x = 171%_1 mod 30269
yi = 172, mod 30307
z = 170z_, mod 30323
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and

X Y,
- d1
U = (35280 30307 30323> mo

We need to set three seeds, ixg,,Yo andz, for this random number generator.

u; is regarded as a uniform random draw within the interval between zero and one
The period is of the order of 3®(more precisely the period is® x 10'2).

The source code of this generator is givenuoyid16 (ix,iy,iz,rn), whereix, iy
andiz are seeds angn represents the uniform random number between zero ar

one.

—————{urnd16(ix,iy,iz,rn)%—————

1: subroutine urndl16(ix,iy,iz,rn)
2. C

3 ¢ Input: ]

4: C ix, iy, iz: Seeds

5. ¢ Output:

6: C

rn: Uniform Random Draw U(®,1)
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7.
8: 1 ix=mod( 171%*ix,30269 )

o: iy=mod( 172%iy,30307 )

10: iz=mod( 170%iz,30323 )

11: rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int(rn)

13: if( rn.1le.® ) go to 1

14: return

15: end

We exclude one in Line 12 and zero in Line 13 frem

That is, O< rn < 1 is generated inrnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier error:
programming, when the other random draws are derived based on the transforme
of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respe

to the higher order autocorrelations in sequences, and conclude that the Wichmz
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Hill generator performs well.

For 32-bit computers, L'Ecuyer (1988) proposed a combinatiok obngruential

generators that have prime modujj such that all values oh{ — 1)/2 are relatively

prime, and with multipliers that yield full periods.

Let the sequence frorjth generator b&; 1, X2, X3, - - -

Consider the case where each individual generjaga maximum-period multiplica-

tive linear congruential generator with modulysand multipliera;, i.e.,
Xji = @jXji-1 mod n;.

Assuming that the first generator is a relatively good one andnthigtfairly large,

we form theith integer in the sequence as:

k
% = ) (-1 mod (u - 1),
ji=1
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where the other modufij, j = 2,3,---,K, do not need to be large.
The normalization takes care of the possibility of zero occurring in this sequence

X .
—, if x>0,
Ny A=
U =
n—1 .
, if x, =0.
Ny %

As for each individual generatqgr note as follows.
Defineq = [n/a] andr = nmoda, i.e.,nis decomposed as= aqg+ r, wherer < a.

Therefore, for O< x < n, we have:

axmodn = (ax— [x/qJn) modn
= (ax—Dy/al(ag+1)) modn
= (a(x = [x/d]q) - [x/cr) modn
= (a(xmodaq) - [x/q]r) modn.
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Practically, LEcuyer (1988) suggested combining two multiplicative congruenti
generators, wherke = 2, (a;, ng, Q1, 1) = (40014, 2147483563, 53668, 12211) and
(az, Np, Op, r2) = (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown irnd(ix,iy,rn), whereix andiy are inputs, i.e.,

seeds, andn is an output, i.e., a uniform random number between zero and one.

H urnd(ix,iy,rn) %

subroutine urnd(ix,iy,rn)

1

2: C

3: ¢ Input:

4: C ix, iy: Seeds

5. ¢ Output:

6: C rn: Uniform Random Draw U(0,1)
7. C

8: 1 kx=ix/53668

9: ix=40014* (ix-kx*53668)-kx*12211
10: if(ix.1t.0) ix=ix+2147483563
11: C
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12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

The period of the generator proposed by L'Ecuyer (1988) is of the orderd{rhore
precisely 231 x 10'8), which is quite long and practically long enough.

L'Ecuyer (1988) presents the results of both theoretical and empirical tests, wh

ky=iy/52774
iy=40692* (iy-ky*52774) -ky*3791
if(iy.1t.0) iy=iy+2147483399

rn=ix-iy

if( rn.1t.1.) rn=rn+2147483562
rn=rn*4.656613e-10

if( rn.le.0.) go to 1

return
end

the above generator performs well.

Furthermore, LEcuyer (1988) gives an additional portable generator for 16-bit cor

puters.
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Also, see L'Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L'Ecuyer (1988
combined with the shling method suggested by Bays and Durham (1976), and it
introduced agan2 in Press, Teukolsky, Vetterling and Flannery (1992a, 1992b).
However, from relatively long period and simplicity of the source code, hereafter tl
subroutineurnd (ix, iy, rn) is utilized for the uniform random number generation
method, and we will obtain various random draws based on the uniform rand

draws.

9.6.2 TransformingU(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density fun

tions are derived from the uniform distributi@h0, 1) by transformation of variables.
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Normal Distribution: N(0,1): The normal distribution with mean zero and vari-
ance one, i.e, the standard normal distribution, is represented by:

1
f(X) = Ee

X2
s

for —oo < X < 0.

Mean, variance and the moment-generating function are given by:
1 2
EX)=0, V(X)=1  ¢()= exp(éa )-

The normal random variable is constructed using two independent uniform rand
variables.

This transformation is well known as the Box-Muller (1958) transformation and |
shown as follows.

Let U; andU; be uniform random variables between zero and one.

Suppose thdtl; is independent of),.
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Consider the following transformation:

X1 = y-2log(U,) cos(ZU>),
X = 4/=2logU4) sin(2rU,).

where we have-co < X; < 0o and—oo < X, < cowhen O< U; <1and 0< U, < 1.

Then, the inverse transformation is given by:

X+ %5 1 Xo
U; = exp|— s U, = — arctan—.
L p( 2 ) 2= o X

We perform transformation of variables in multivariate cases.

From this transformation, the Jacobian is obtained as:

Oy Oy 1., 1,
;- (9_)(1 0_)(2 ) —X1 EXF(—E(Xl + X2)) —X2 exr(—é(xl + X2))
RECRIN 1 % 1 x
0Xy 0% 21 X2 + %5 270X + X2
1 12, 2
= o exr(—é(xl + xz)).
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Let fy(x1, X2) be the joint density ok; and X, and f,(u, uy) be the joint density of
U, andUQ.

SinceU; andU, are assumed to be independent, we have the following:

fu(uy, Up) = f1(ur) fa(up) = 1,

wheref;(u;) and f,(u,) are the density functions &f, andU,, respectively.
Note thatf;(u;) = f(u) = 1 becausdJ; and U, are uniform random variables
between zero and one.
Accordingly, the joint density oK; andX; is:
2 2

1%
2

= % exr(—%(xf + x%))

1 1 1 1
-5 exp(—éxf) X e exp(—éxg),

X
(% X2) = 9] fu(exp )5 arctanx—i)
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which is a product of two standard normal distributions.

Thus, X; and X, are mutually independently distributed as normal random variable
with mean zero and variance one.

See Hogg and Craig (1995, pp.177 — 178).

The source code of the standard normal random number generator shown abo

given bysnrnd(ix,iy,rn).

4{ snrnd(ix,iy,rn) }7

1: subroutine snrnd(ix,iy,rn)
2: C

3 ¢ Use "snrnd(ix,iy,rn)"

4: ¢ together with "urnd(ix,iy,rn)".
5 C

6: ¢ Input:

7. C ix, iy: Seeds

8: ¢ Output:

9: C rn: Standard Normal Random Draw N(O0,1)
10: C

11 pi= 3.1415926535897932385
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12:
13:
14:
15:
16:

call urnd(ix,iy,rnl)

call urnd(ix,iy,rn2)
rn=sqrt(-2.0*log(rnl))*sin(2.0%pi*rn2)
return

end

snrnd(ix,iy,rn) should be used together with the uniform random number ger

eratorurnd(ix, iy, rn) shown in Section 9.6.1 (p.219).

rn in snrnd(ix,iy,rn) corresponds tX,.

Conventionally, one 0K; andX; is taken as the random number which we use.

Here, X; is excluded from consideration.

snrnd (ix, iy, rn) includes the sine, which takes a lot of time computationally.

Therefore, to avoid computation of the sine, various algorithms have been inven
(Ahrens and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLar
and Bray (1964) and so on).
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Standard Normal Probabilites WhenX ~ N(0, 1), we have the case where we
want to approximat@ such thafp = F(x) givenx, whereF(x) = f_xoo f(t)dt = P(X <
X).

Adams (1969) reports that

P(X>x)_f \/_ dt—\/—Z

for x > 0, where the form in the parenthesis is called the continued fraction, which

(11234 )

X+ X+ X+ X+ X+

defined as follows:

a a a3 a

Xi+ Xo+ Xg+ X, + La.
3

X2 +
X34 -

A lot of approximations on the continued fraction shown above have been propos
See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (19
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Here, we introduce the following approximation (see Takeuchi (1989)):

(= 1
T 1+apx

1
P(X > X) = \/—Ee_%xz(blt + bztz + b3t3 + b4t4 + b5t5),

ap = 0.2316419 b; = 0.319381530 b, = -0.356563782
by = 1781477937 b, = -1.821255978 bs = 1.330274429

In snprob (x,p) below,P(X < X) is shown.
That is,p up to Line 19 is equal t&(X > X) in snprob(x,p).
In Line 20,P(X < x) is obtained.

4{ snprob(x,p) }—

subroutine snprob(x,p)

Input:
x: N(0,1) Percent Point
Output:
p: Probability corresponding to x

kbR
nNNNNN
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7. C

8: pi= 3.1415926535897932385

9: a®= 0.2316419

10: bl= 0.319381530

11: b2=-0.356563782

12: b3= 1.781477937

13: b4=-1.821255978

14: b5= 1.330274429

15: C

16: z=abs (x)

17: t=1.0/(1.0+a0%z)

18: pr=exp(-.5*z*z) /sqrt(2.0%pi)
19: p=pr*t*(bl+t*(b2+t*(b3+t*(b4+b5%t))))
20: 1f(x.9t.0.0) p=1.0-p

21: C

22: return

23: end

The maximum error of approximation gfis 7.5 x 108, which practically gives us

enough precision.
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Standard Normal Percent Points WhenX ~ N(0, 1), we approximate such that

p = F(X) given p, whereF(X) indicates the standard normal cumulative distributior
function, i.e.,F(X) = P(X < x), andp denotes probability.

As shown in Odeh and Evans (1974), the approximation of a percent point is of 1

form:
Saly) _\, Pot Py + Py + Py’ + pay'
Ta(y) Qo + Q1Y + GoY? + Oz + Cay*

X=Yy+

wherey = /-2 log(p).

S4(y) andT,4(y) denote polynomials degree 4.
The source code is shownénperpt (p,x), wherex is obtained within 16%° < p <
1-102%.

H snperpt(p,x) }—

1: subroutine snperpt(p,x)
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nNnNnNnNnnNnNnN

Input:
p: Probability
(err<p<l-err, where err=1le-20)
Output:
x: N(O®,1) Percent Point corresponding to p

p0=-0.322232431088

pl=-1.0

p2=-0.342242088547

p3=-0.204231210245e-1

p4=-0.453642210148e-4

0= 0.993484626060e-1

ql= 0.588581570495

g2= 0.531103462366

q3= 0.103537752850

g4= 0.385607006340e-2

pS=p

1f( ps.gt.0.5 ) ps=1.0-ps

if( ps.eq.0.5 ) x=0.0

y=sqrt( -2.0%log(ps) )

x=y+((((y*p4+p3) *y+p2) *y+pl) *y+p0)
& /((((y*a4+a3)*y+q2) *y+ql) *y+q0)

if( p.1t.0.5 ) x=-x

return

end
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The maximum error of approximation afis 1.5 x 1078 if the function is evaluated
in double precision and.& x 107¢ if it is evaluated in single precision.

The approximation of the form =y + S,(y)/Ts(y) by Hastings (1955) gives a max-
imum error of 45 x 1074,

To improve accuracy of the approximation, Odeh and Evans (1974) proposed

algorithm above.

Normal Distribution: N(u,0?):  The normal distribution denoted by(u, o?) is
represented as follows:

1 1 2
f(X) = ——=e 220,
V2r02

for —co < X < 0.
u is called docation parameterando? is ascale parameter

Mean, variance and the moment-generating function of the normal distridugigir?)
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are given by:
EQ)=p  V(X)=0?  ¢(0) = exgud + %0292).

Whenu = 0 ando? = 1 are taken, the above density function reduces to the standz
normal distribution in Section 9.6.2.

X = oZ + u is normally distributed with meam and variancer?, whenZ ~ N(0, 1).
Therefore, the source code is representechhyd(ix,iy,ave,var,rn), where

ave andvar correspond tg ando?, respectively.

—{ nrnd(ix,iy,ave,var,rn) }—

subroutine nrnd(ix,iy,ave,var,rn)

Use "nrnd(ix,iy,ave,var,rn)"
together with "urnd(ix,iy,rn)"
and "snrnd(ix,iy,rn)".

ouhwnbR
e NeNaNaNe!
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7. ¢ Input:

8 C ix, iy: Seeds

9: C ave: Mean

10: C var: Variance

11: ¢ Output:

12: C rn: Normal Random Draw N(ave,var)
13: C

14: call snrnd(ix,iy,rnl)
15: rn=ave+sqrt(var)*rnl
16: return

17: end

nrnd(ix,iy,ave,var,rn) should be used together withrnd(ix,iy,rn) and
snrnd(ix,iy,rn). Itis possible toreplacenrnd(ix,iy,rn) by snrnd2(ix,iy,rn)

or snrnd3(ix,iy,rn).
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Exponential Distribution:  The exponential distribution with paramefis writ-

ten as:
X
er, for 0 < X < oo,

1
f=1"
0, otherwise,
for g > 0.
B indicates a scale parameter.
Mean, variance and the moment-generating function are obtained as follows:

1

EQ) =5 VX)=F. o0 =15

The relation between the exponential random variable the uniform random varia
is shown as follows:

WhenU ~ U(0, 1), consider the following transformation:

X = -Blog(U).
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Then,X is an exponential distribution with parameger

Because the transformation is giveniy: exp(x/B), the Jacobian is:

du 1 1
J= E( = _B eXF(-EX).

By transforming the variables, the density functionXos represented as:
1 1 1
f(X) = |J|fulexpE=X)) = = exg —=X),
(%) = 131 f( p(ﬁ)) 3 p(ﬁ)

wheref(-) andfy(-) denote the probability density functionsXfindU, respectively.
Note that O< X < oo because ok = —Blog(u) and O< u < 1.
Thus, the exponential distribution with paramegers obtained from the uniform

random draw between zero and one.
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—————{exprnd(ix,iy,beta,rn)%—————

1: subroutine exprnd(ix,iy,beta,rn)
2. C

3 ¢ Use "exprnd(ix,iy,beta,rn)"

4: ¢ together with "urnd(ix,iy,rn)".
5. C

6: ¢ Input:

7. C ix, iy: Seeds

8 C beta: Parameter

9: ¢ Output: )

10: C rn: Exponential Random Draw
11: C with Parameter beta

12: C

13: call urnd(ix,iy,rnl)

14: rn=-beta*log(rnl)

15: return

16: end

exprnd(ix,iy,beta,rn) should be used together witirnd (ix,iy,rn).

Wheng = 2, the exponential distribution reduces to the chi-square distribution wi
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2 degrees of freedom.

Gamma Distribution: G(e,8): The gamma distribution with parameterandg,

denoted byG(a, B), is represented as follows:
1
f(x) = pT(e)

0, otherwise,

x* g5, for0< X< oo,

for « > 0 andB > 0, wherea is called ashape parameterandg denotes a scale
parameter.

I'(:) is called thegamma function, which is the following function ofv:
I(a) = f x*le* dx.
0
The gamma function has the following features:

Ma+1)=al(e), T(1)=1 I(5)=2(5)= v
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Mean, variance and the moment-generating function are given by:
1
(1-po)*

The gamma distribution witle = 1 is equivalent to the exponential distribution

EX)=aB,  V(X)=ap, ¢ =

shown in Section 9.6.2.

This fact is easily checked by comparing both moment-generating functions.
Now, utilizing the uniform random variable, the gamma distribution with paramete
a andp are derived as follows.

The derivation shown in this section deals with the case wiaése positive integer,
e,a=123,---.

The random variablez,, Z,, - - -, Z, are assumed to be mutually independently dis
tributed as exponential random variables with paramg&temich are shown in Sec-
tion 9.6.2.

DefineX = Y\, Z.
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Then, X has distributed as a gamma distribution with parametesiad, wherea

should be an integer, which is proved as follows:

6x(6) = EE*) = E(€¥17) = 1_[ EE?) = 1_[¢.(e) 1_[ Ty
1
~@-poy”
wheregp,(6) andg;(0) represent the moment-generating functionX ahdz;, respec-
tively.
Thus, sum of ther exponential random variables yields the gamma random variab
with parameters andg.
Therefore, the source code which generates gamma random numbers is show

gammarnd(ix,iy,alpha,beta,rn).
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—————{gammarnd(ix,iy,alpha,beta,rn)%—————

1: subroutine gammarnd(ix,iy,alpha,beta,rn)
2: C

3 ¢ Use "gammarnd(ix,iy,alpha,beta,rn)"

4: ¢ together with "exprnd(ix,iy,beta,rn)"

5 C and "urnd(ix,iy,rn)".

6: C

7. ¢ Input:

8 C ix, iy: Seeds

9 C alpha: Shape Parameter (which should be an integer)
10: C beta: Scale Parameter

11: ¢ Output:

12: C rn: Gamma Random Draw with alpha and beta
13: C

14: rn=0.0

15: do 1 i=1,nint(alpha)

16: call exprnd(ix,iy,beta,rnl)

17: 1 rn=rn+rnl

18: return

19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together witlurnd (ix, iy, rn) and

exprnd(ix,iy,rn).
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As pointed out abovey should be an integer in the source code.

Whena is large, we have serious problems computationally in the above algorith
becauser exponential random draws have to be generated to obtain one gam
random draw with parametessandp.

Whena = k/2 andB = 2, the gamma distribution reduces to the chi-square distribt

tion with k degrees of freedom.

Chi-Square Distribution: y?(k):  The chi-square distribution witk degrees of

freedom, denoted by?(K), is written as follows:

1,

WXZ e_%x, forO<X<OO,
f(x) = 271G

0, otherwise,

wherek is a positive integer.
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The chi-square distribution is equivalent to the gamma distribution gvith2 and

a =k/2.

The chi-square distribution witk = 2 reduces to the exponential distribution with
B =2, shown in Section 9.6.2.

Mean, variance and the moment-generating function are given by:

1

F Distribution: F(m,n):  The F distribution withm andn degrees of freedom,
denoted byF(m, n), is represented as:
r(%2)
f(x) = | TOIG)

0, otherwise,

m mn
2

(?) X%“—l(1+ ?x)_ . for 0 < X < oo,

wheremandn are positive integers.
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Mean and variance are given by:

n
EX) = —, f 2,
(X) > orn>

2r’(m+n-—2)
m(n — 2)2(n - 4)’

The moment-generating function Bfdistribution does not exist.

V(X) = forn> 4.

OneF random variable is derived from two chi-square random variables.
Suppose thdt) andV are independently distributed as chi-square random variable
i.e.,,U ~ y2(m) andV ~ y?(n).

U/m

Then, it is shown thaX = Vn has aF distribution with (n, n) degrees of freedom.

t Distribution: t(k):  Thet distribution (or Student’s distribution) withk degrees
of freedom, denoted bigk), is given by:
(s 1 X2\ -kt
f(x) = —2>——(1+—) 7,
TORV=aY
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for —co < X < o0, wherek does not have to be an integer but conventionally it is
positive integer.
Whenk is small, thet distribution has fat tails.
Thet distribution withk = 1 is equivalent to the Cauchy distribution.
As k goes to infinity, thd distribution approaches the standard normal distributior
l.e.,t(e0) = N(0, 1), which is easily shown by using the definitionepf.e.,

2 kel _héi 1

) =) T @) T ) e

2

whereh = k/x? is set anch goes to infinity (equivalentlyk goes to infinity).

Thus, a kernel of thédistribution is equivalent to that of the standard normal distri-
bution.

Therefore, it is shown that dsis large thet distribution approaches the standard

normal distribution.
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Mean and variance of theadistribution withk degrees of freedom are obtained as:

E(X) =0, fork > 1,
Kk
V(X) = kTZ, fork > 2.

In the case of thé distribution, the moment-generating function does not exist, be
cause all the moments do not necessarily exist.

For thet random variableX, we have the fact that ) exists whemp is less thark.
Therefore, all the moments exist only whiers infinity.

Onet random variable is obtained from chi-square and standard normal random v:
ables.

Suppose thaf ~ N(0, 1) is independent df) ~ y?(K).

Then,X = Z//U/k has at distribution withk degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generatirapdom draws, which is
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based on a transformed acceptdrgjection method, which will be discussed later.
9.6.3 Inverse Transform Method

In Section 9.6.2, we have introduced the probability density functions which can
derived by transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transfor
method are presented and the corresponding random number generators are she
The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution fund&gh

WhenU ~ U(0, 1), F~1(U) is equal toX.

The proof is obtained from the following fact:
P(X < x) = P(F}(U) < X) = P(U < F(X)) = F(X).
In other words, leu be a random draw o/, whereU ~ U(0,1), andF(-) be a
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distribution function ofX.

When we perform the following inverse transformation:
x = F(u),

x implies the random draw generated fréih).

The inverse transform method shown above is useful whghcan be computed
easily and the inverse distribution function, i .€-}(:), has a closed form.

For example, recall thd(-) cannot be obtained explicitly in the case of the norma
distribution because the integration is included in the normal cumulative distributi
(conventionally we approximate the normal cumulative distribution when we want
evaluate it).

If no closed form ofF~1(-) is available buf(-) is still computed easily, an iterative
method such as the Newton-Raphson method can be applied.

Definek(x) = F(x) — u.
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The first order Taylor series expansion around X" is:
0 = k(X) ~ k(X") + K'(X)(X = X).

Then, we obtain:

ok

_ k(x) _ F(x)—u
k(x) f(x)
Replacingx andx* by x® andx(~%, we have the following iteration:
y FOY)-u
f(xD)

X =

X0 = -

fori=1,2,---.

The convergence value &f) is taken as a solution of equation= F(X).
Thus, based on, a random draw is derived fromF(-).

However, we should keep in mind that this procedure takes a lot of time computatic

ally, because we need to repeat the convergence computation shown above as 1
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times as we want to generate.
9.6.4 UsingU(0, 1): Discrete Type

In Sections 9.6.2 and 9.6.3, the random number generators from continuous dis
butions are discussed, i.e., the transformation of variables in Section 9.6.2 and
inverse transform method in Section 9.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we ¢
with some discrete distributions and consider generating their random numbers.
As a representative random number generation method, we can consider utilizing
inverse transform method in the case of discrete random variables.

Suppose that a discrete random variaklean takex;, X,, - - -, X, Where the proba-
bility which X takesx; is given by f(x), i.e.,P(X = %) = f(x).

Generate a uniform random drawwhich is between zero and one.
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Consider the case where we hdg_1) < u < F(X), whereF(x) = P(X < x) and
F(x%) = 0.

Then, the random draw of is given byx;.
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9.7 Sampling Method II: Random Number Generation
9.7.1 Rejection Sampling EH1%)

We want to generate random draws frdiix), called thetarget density (B HIZE),

but we consider the case where it is hard to sample ff{xn
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Now, suppose that it is easy to generate a random draw from another dg(s)jty
called thesampling density (4> 7°!) > 7 % &) or proposal density 2 REE).

In this case, random draws &f from f(x) are generated by utilizing the random
draws sampled fronf..(x).

Let x be the the random draw &f generated fronf (x).

Suppose thag(x) is equal to the ratio of the target density and the sampling densit

i.e.,

() (19)

909 = 145

Then, the target density is rewritten as:
fF(X) = a(x) f.(x).

Based om(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of s
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pling techniques, i.erejection sampling @E#1;%) in this sectionjmportance re-
sampling =Y H > 7Y >~ J5K) in Section 9.7.2 and thidetropolis-Hastings
algorithm (X hARY A=A F1 > 9 - 7)LTY X L) in Section 9.7.4.
See Liu (1996) for a comparison of the three sampling methods.
Thus, to generate random drawsxofrom f(x), the functional form ofg(x) should
be known and random draws have to be easily generatedfiroin
In order for rejection sampling to work well, the following condition has to be satis
fied:

f(x)

909 = 45 <

wherec is a fixed value.
That is,q(x) has an upper limit.
As discussed below,/t is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a
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of time.

Under the conditiom(x) < c for all x, we may minimizec.

That is, since we havg(x) < sup g(x) < c, we may take the supremum gx) for c.
Thus, in order for rejection sampling to workieiently, c should be the supremum
of g(x) with respect tog, i.e.,c = sup, q(x).

Let x* be the random draw generated frdpix), which is a candidate of the random
draw generated from(x).

Definew(X) as:

_aqx  _ax
w(¥) = supqg(® ¢
which is called theacceptance probability ¢FiR#ER).

’

Note that we have & w(X) < 1 when supg(z) = ¢ < co.
The supremum syp|(2) = ¢ has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejectic
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sampling.

A random draw ofX is generated fronf (x) in the following way:

(i) Generatex' from f.(x) and computev(x*).
(i) Setx = x* with probability w(x*) and go back to (i) otherwise.

In other words, generatingfrom a uniform distribution between zero and one,

takex = x* if u < w(Xx*) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.
Let U be the uniform random variable between zero and &nee the random vari-
able generated from the target dendify),

X* be the random variable generated from the sampling defgity, andx* be the

realization (i.e., the random draw) generated from the sampling defn&idy
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Consider the probabilit?(X < XU < w(x")), which should be the cumulative distri-
bution of X, F(x), from Step (ii).

The probabilityP(X < XU < w(Xx*)) is rewritten as follows:

P(X < x,U < w(X))

P(X < XU < w(X)) = PU < w(x?))

where the numerator is represented as:

HXS&USMMN:j:lfymwﬁdmﬂzﬁiﬁmnﬂmmﬂmm
zflﬁwﬁmm@uomzflﬁmd@unm

:jﬂmﬁnmm:ftmﬁmm_f‘w%mm_Fm

and the denominator is given by:

P(U < (X)) =P(X < 00,U < w(X)) = @ = %
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In the numeratorf, .(u, X) denotes the joint density of random variablésind X*.
Because the random drawslWdfandX* are independently generated in Steps (i) anc
(if) we havef,.(u, x) = fy(u) f.(x), wheref,(u) and f.(X) denote the marginal density
of U and that ofX*.

The density function ofJ is given by f,(u) = 1, because the distribution &f is
assumed to be uniform between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

() = 19 _ T

c cf(x)’
w(X)f.(x) = f(X)/cis obtained.

Finally, substituting the numerator and denominator shown above, we have the :
lowing equality:
P(X < XU < w(X")) = F(X).
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Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the mofiaent sampling method in the sense
of precision of the random draws, because using rejection sampling we can gene
mutually independently distributed random draws.

However, for rejection sampling we need to obtain thehich is greater than or
equal to the supremum qofXx).

If the supremum is infinite, i.e., i€ is infinite, w(X) is zero and accordingly the
candidatex' is never accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.

Let Nr be the average number of the rejected random draws.

We need (1+ Ng) random draws in average to generate one random number frc
f(x).

In other words, the acceptance rate is given L &+ Ng) in average, which is equal

266



to 1/cin average because B{U < w(x*)) = 1/c.

Therefore, to obtain one random draw frdifx), we have to generate{Ng) random
draws fromf,(X) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’'Hagan (1994) ar
Geweke (1996) for rejection sampling.

To examine the condition tha#(x) is greater than zero, i.e., the condition that the
supremum ofy(x) exists, consider the case whefrg) and f.(x) are distributed as
N(u, 0?) andN(u,, o?), respectively.

q(x) is given by:

(o @A Eex—s (x4

f.(x) (2nc2)-1/2 exp(—%(x - /1*)2)

)

a(x) =

== exp(——(x WP+
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= X exp _loi-o® x—’ugf_’u*gz)er}(”_'“*)z
o 2 0?02 02— o2 202-02)

If o2 < 02, g(X) goes to infinity asis large.
In the case ofr? > o2, the supremum ofj(x) exists, which condition implies that
f.(X) should be more broadly distributed th&¢x).

In this case, the supremum is obtained as:

c= stJDQ(x) = % exp(% (g*z__“ 0_)2)
Wheno? = o2 andu = u., we haveq(x) = 1, which impliesw(x) = 1.

That is, a random draw from the sampling dendit{x) is always accepted as a
random draw from the target densityx), wheref(x) is equivalent tof,(x) for all x.

If 02 = o andu # ., the supremum ofi(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

From the definition ofu(x), we have the inequalit§(x) < cf.(x).
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Figure 1: Rejection Sampling

X*

cf.(x) and f(x) are displayed in Figure 1.

The ratio of f(x*) andcf.(x*) corresponds to the acceptance probabilitxat.e.,
w(X*).

Thus, for rejection sampling:f.(x) has to be greater than or equalft(x) for all x,

which implies that the sampling densify(x) needs to be more widely distributed
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than the target densit(x).

Finally, note that the above discussion holds without any modification even thou
f(x) is a kernel of the target density, i.e., even thoudk) is proportional to the
target density, because the constant term is canceled out between the numerato

denominator (remember tha{(x) = q(x)/ sup q(2)).

Normal Distribution: N(0,1): First, denote the half-normal distribution by:
2 g
(0 - \/Ze , for0 < x < o0,
0, otherwise.
The half-normal distribution above corresponds to the positive part of the stand
normal probability density function.
Using rejection sampling, we consider generating standard normal random dre

based on the half-normal distribution.
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We take the sampling density as the exponential distribution:

e for 0 < x < o0,
f.(X) =
0, otherwise,

whered > 0. Sinceq(x) is defined agj(x) = f(x)/f.(X), the supremum of(x) is
given by:

1,2
ez,

¢ = supq(x) = :

x AN2n
which depends on parameter
Remember tha®(U < w(x")) = 1/c corresponds to the acceptance probability.
Since we need to increase the acceptance probability to reduce computational ti
we want to obtain tha which minimizes supq(x) with respect tol.

Solving the minimization problem?, = 1 is obtained.
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Substituting? = 1, the acceptance probabiligy(x) is derived as:
w(X) = e—%(x—]_)z’

for 0 < X < .
Remember that log U has an exponential distribution with= 1 whenU ~ U (0, 1).

Therefore, the algorithm is represented as follows.
(i) Generate two independent uniform random drayandu, between zero and
one.

(i) Computex' = —logu,, which indicates the exponential random draw gener

ated from the target density(x).
(i) Setx = x"if uy < expE3(x* — 1)), i.e.,—2log(uy) > (x* — 1)?, and return to

(i) otherwise.
x in Step (iii) yields a random draw from the half-normal distribution.
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To generate a standard normal random draw utilizing the half-normal random dr
above, we may put the positive or negative sign randomly with

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random draw between zero and one, and get X if

Uz < 1/2 andz = —x otherwise.

zgives us a standard normal random draw.

Note that the number of iteration in Step (iii) is given by= v2e/n ~ 1.3155 in
average, or equivalently, the acceptance probability in Step (iii)ds10.7602.

The source code for this standard normal random number generator is showi

snrnd6(ix,iy,rn).
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—————{snrnd6(ix,iy,rn)%—————

1: subroutine snrnd6(ix,iy,rn)
2. C

3 ¢ Use "snrnd6(ix,iy,rn)"

4: ¢ together with "urnd(ix,iy,rn)".
5 C

6: ¢ Input:

7. C ix, iy: Seeds

8: ¢ Output:

9: C rn: Normal Random Draw N(0,1)
10: C

11: 1 call urnd(ix,iy,rnl)

12: call urnd(ix,iy,rn2)

13: y=-log(rn2)

14: if( -2.*log(rnl).1t.(y-1.)*%*2 ) go to 1
15: call urnd(ix,iy,rn3)

16: if(rn3.le.0.5) then

17: rn=y

18: else

19: rn=-y

20: endif

21: return

22: end
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Note thatsnrnd6 (ix, iy, rn) should be used together witlrnd(ix,iy,rn).
Thus, utilizing rejection sampling, we have the standard normal random number g

erator, which is based on the half-normal distribution.

Gamma Distribution: G(a,1)for O<a <landl1l<a: Inthis section, utilizing
rejection sampling we show an example of generating random draws from the garr
distribution with parameterg andg = 1, i.e.,G(a, 1).

WhenX ~ G(a, 1), the density function oKX is given by:

Fix”‘le‘x, for 0 < X < oo,
f(x) = 1@

0, otherwise.

Ahrens and Dieter (1974) consider the case ef® < 1, which is discussed in this

section.

The case ofr > 1 will be discussed later.
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Using the rejection sampling, the composition method and the inverse transfo
method, we consider generating random draws f&(m 1) for 0 < a < 1.

The sampling density is taken as:
e a
f* - _ - Xa—ll - —x+1| ,
(%) Trel 1(X) + o ee 2(X)
where both (x) andl,(x) denote the indicator functions defined as:

1, if0 < x<1, 1, if 1 <X,
11(X) = _ 12(X) = _
0, otherwise, 0, otherwise.

Random number generation from the sampling density above utilizes the composit
method and the inverse transform method.

The cumulative distribution related tQ(x) is given by:

e )
Tex", ifO < x< 1,
F.og=4¢
e @

— +

1-e*h, ifx>1.
a+e a+e
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Note that O< a < 1 is required because the sampling density foar & < 1 has to
satisfy the property that the integration is equal to one.

The acceptance probability(x) = q(x)/ sup q(2) for q(x) = f(x)/f.(x) is given by:
w(X) = €X11(X) + x* 7 ,(X).

Moreover, the mean number of trials until success, t.es,sup, q(2) is represented

as:
_a+e

C=—,
ael' (@)
which depends onr and is not greater than 1.39.

Note thatg(x) takes a maximum value at= 1.

The random number generation procedure is given by:

() Generate a uniform random drawfrom U(0, 1), and sek* = ((a/e+ 1)u)"*

if uy <e/(a+e€) andx =—log((l/e+ 1/a)(1—uy))if u; > e/(a + €).
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(i) Obtainw(x?) =e™ if uy < e/(a + €) andw(x’) = x* 71 if uy > e/(a + €).

(i) Generate a uniform random drawfrom U (0, 1), and sek = X" if U, < w(X")

and return to (i) otherwise.

In Step (i) a random draw* from f.(X) can be generated by the inverse transforn

method discussed in Section 9.6.3.

nonNnnNnnonNnnNonNNNN

—{ gammarnd2 (ix,iy,alpha,rn) }—

subroutine gammarnd2(ix,iy,alpha,rn)

Use "gammarnd2(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
alpha: Shape Parameter (O<alpha \le 1)
Output:
rn: Gamma Random Draw
with Parameters alpha and beta=1
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13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

e=2.71828182845905
call urnd(ix,iy,rn0®)
call urnd(ix,iy,rnl)
if( rn0®.le.e/(alpha+e) ) then
rn=( (alpha+e)*rn®/e )**(1./alpha)
if( rnl.gt.e**(-rn) ) go to 1
else
rn=-log((alpha+e)*(1l.-rn®)/(alpha*e))
if( rnl.gt.rn**(alpha-1.) ) go to 1
endif
return
end

Note thatgammarnd2 (ix,iy,alpha,rn) should be used withrnd(ix,iy,rn).

In gammarnd2(ix,iy,alpha,rn), the case of & « < 1 has been shown.

Now, using rejection sampling, the casenof 1 is discussed in Cheng (1977, 1998).
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The sampling density is chosen as the following cumulative distribution:
X/l
A’
F.(X) = 0+ X
0, otherwise,

for x > 0,

which is sometimes called theg-logistic distribution.
Then, the probability density functior,(x), is given by:

Aoxt1

—_— for x > 0,
f.0g = (@0

0, otherwise.

By the inverse transform method, the random draw frip(x), denoted by, is gen-

erated as follows:
ou \1/2
X=(——) .
(1 _ u)

whereu denotes the uniform random draw generated ftd(@, 1).
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For the two parameters, = V2a — 1 ands = o' are chosen, taking into account
minimizing ¢ = sup, q(x) = sup, f(x)/f.(X) with respect t@y andA (note thatl and
6 are approximately taken, since it is not possible to obtain the explicit solutién of
and.).
Then, the number of rejections in average is given by:
R
I'() V2a -1
which is computed as:
1.47 whem = 1, 1.25 wheny = 2, 1.17 wheny = 5,
1.15 whenw = 10, 1.13 whenr = .
Thus, the average number of rejections is quite small far.all

The random number generation procedure is given by:
() Seta=1/V2a-1,b=a-log4andc=a+ V2a - 1.
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(i) Generate two uniform random drawsandu, from U (0, 1).
Up
1-u;
(iv) Takex = x"if r > logzand return to (ii) otherwise.

(i) Sety = alog , X" = a€’,z= Uy, andr = b+ cy- x.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (ii

and (iv), which is as follows:
(i) Takex = x*if r > 4.5z— d and go to (iv) otherwise.

dis defined asl = 1 + log 4.5, which has to be computed in Step (i).

Note that we have the relatiodz — (1 + log6) > logzfor all z> 0 and any given
6 > 0, because logis a concave function af. According to Cheng (1977), the
choice off is not critical and the suggested valu@is 4.5, irrespective of.

The source code for Steps (i) — (iv) and (i) is givendymmarnd3 (ix,iy,alpha,rn).
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nNnonNnNnnonNnnNnNNNON

—————{gammarnd3(ix,iy,alpha,rn)%—————

subroutine gammarnd3(ix,iy,alpha,rn)

Use "gammarnd3(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:

ix, iy: Seeds

alpha:
Output:

Shape Parameter (l<alpha)

rn: Gamma Random Draw

with Parameters alpha and beta=1

e=2.71828182845905
a=1./sqrt(2.*alpha-1.)
b=alpha-log(4.)
c=alpha+sqrt(2.*alpha-1.)
d=1.+log(4.5)

1 call urnd(ix,iy,ul)
call urnd(ix,iy,u2)
y=a*log(ul/(l.-ul))
rn=alpha*(e**y)
z=ul*ul*u2
r=b+c*y-rn
if( r.ge.4.5%*z-d ) go to 2
if( r.1t.log(z) ) go to 1

2 return
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27: end

Note thatgammarnd3 (ix,iy,alpha,rn) requiresurnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Line
and 24 fromgammarnd3, because evaluating tHé (. . .) sentences in Lines 24 and
25 sometimes takes more time than computing the logarithm in Line 25.

Thus, using botlyammarnd2 andgammarnd3, we have the gamma random number

generator with parametesas> 0 andg = 1.

9.7.2 Importance Resampling &= 4> 71 > %)

Theimportance resamplingmethod also utilizes the sampling densit{x), where

we should choose the sampling density from which it is easy to generate rand

284



draws.
Let X" be theith random draw ok generated fronf,(x).

The acceptance probability is defined as:

a(x)
Yiaax)’

whereq(-) is represented as equation (19).

w(x) =

To obtain a random draws froifi{(x), we perform the following procedure:

() Generatex; from the sampling densitf.(x) for j = 1,2,---,n.
(if) Computew(x;) forall j =1,2,---,n.
(iif) Generate a uniform random dravbetween zero and one and take X; when
Q; 1 <u<Q, whereQ; = 3 w(x) andQ, = 0.

The x obtained in Step (iii) represents a random draw from the target defr(sity
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In Step (i), all the probability weighte(x;), j = 1,2,---,n, have to be computed
for importance resampling.

Thus, we need to generaterandom draws from the sampling densityx) in ad-
vance.

When we want to generate more random draws (Bayandom draws), we may
repeat Step (iiiN times.

In the importance resampling method, there mmealizations, i.e.x], X5, ---, X,
which are mutually independently generated from the sampling defédy

The cumulative distribution of (x) is approximated by the following empirical dis-

tribution:

_ [ _ () L amf o
P [ toa- [ fgroa- [ a0 o

@M EL AN X) St
S TS0 eI,
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wherel (x, x°) denotes the indicator function which satisfi¢s x) = 1 whenx > x*
andl(x, x°) = 0 otherwise.

P(X = x) is approximated as(X").

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importar
resampling procedure.

As mentioned in Section 9.7.1, for rejection samplifix) may be a kernel of the
target density, or equivalently(x) may be proportional to the target density.
Similarly, the same situation holds in the case of importance resampling.

That is, f(X) may be proportional to the target density for importance resamplin
too.

To obtain a random draws fror{x), importance resampling requiresandom draws
from the sampling densitf,(x), but rejection sampling needs-{INg) random draws

from the sampling density,(X).

287



For importance resampling, when we havdifferent random draws from the sam-
pling density, we pick up one of them with the corresponding probability weight.
The importance resampling procedure computationally takes a lot of time, beca
we have to compute all the probability weigléds, j = 1,2,---,n, in advance even
when we want only one random draw.

When we want to generaté random draws, importance resampling requirean-
dom draws from the sampling density(x), but rejection sampling need$l + Ng)
random draws from the sampling densftyx).

Thus, asN increases, importance resampling is relatively less computational th
rejection sampling.

Note thatN < nis recommended for the importance resampling method.

In addition, when we havil random draws from the target densftfx), some of the

random draws take the exactly same values for importance resampling, while all
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random draws take theftigrent values for rejection sampling.
Therefore, we can see that importance resampling is inferior to rejection sampling

the sense of precision of the random draws.

Normal Distribution: N(O,1): Again, we consider an example of generating stan

dard normal random draws based on the half-normal distribution:

2 1,2
—e 2", for0 < x < o0,

0, otherwise.

We take the sampling density as the following exponential distribution:
e, for0 < X < oo,
f.(x) =
0, otherwise,

which is exactly the same sampling density as in Section 9.7.1.
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Given the random draws’, i = 1,---,n, generated from the above exponential den:
sity f.(X), the acceptance probability(x’) is given by:
oy = 0 __TOO/R00 _expeix?tx)
Ziaakx) XL )/ R(x) X, expE3x? +x)
Therefore, a random draw from the half-normal distribution is generated as follow

(i) Generate uniform random draws, Uy, - - -, u, from U(0, 1).
(i) Obtainx’ = —log(u) fori=1,2,---,n.
(i) Computew(x’) fori=1,2,---,n.
(iv) Generate a uniform random drasvfrom U (0, 1).
(v) Setx=x: whenQ_; <v; < Q;for Q; = 3!, w(x) andQ, = 0.
x is taken as a random draw generated from the half-normal distrib@i(ign

In order to have a standard normal random draw, we additionally put the followir

step.
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(vi) Generate a uniform random dragfrom U(0, 1), and sek = xif v, < 1/2 and

z = —Xx otherwise.

zrepresents a standard normal random draw.
Note that Step (vi) above corresponds to Step (iv) in Section 9.7.1.

Steps (i) — (vi) shown above represent the generator which yields one standard nor

random draw.

When we waniN standard normal random draws, Steps (iv) — (vi) should be repeat

N times.

In Steps (iv) and (v), a random draw frofi{x) is generated based d®; for j =
12,---,n
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Gamma Distribution: G(a,1)for 0 < @ < 1.  WhenX ~ G(«a, 1), the density
function of X is given by:

Fix"‘le‘x, for 0 < X < oo,
f(x) = 1@

0, otherwise.

The sampling density is taken as:
e a
f.(X) = ——ax 1 ——e,(x),
() = ———ax 3 + ———e""15(%

which is the same function as gammarnd2 of Section 9.7.1, where both(x) and
I,(X) denote the indicator functions defined in Section 9.7.1.
The probability weights are given by:

ooy - 909 1O0/E60)
STLax) 2 F)/ ()
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X /(g (X)) + e 1x(X))

T X715/ (6 () + €7915(%))

fori=12,---,n.

The cumulative distribution function df(x) is represented as:

%xﬂ, ifO<x<1,
F.(X) = “e
= s @a—ee, ifx> 1

a+e a+e

Therefore,x’ can be generated by utilizing both the composition method and tt
inverse transform method.

Givenx', computew(x’) fori = 1,2,---,n, and takex = x* with probability w(x").
Summarizing above, the random number generation procedure for the gamma di

bution is given by:
(i) Generate uniform random drawisi =1,2,---,n, fromU(0, 1), and sei’ =
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((a/e+ 1)u)"™ andw(x’) = X if u; < e/(a + €) and takex' = —log((1/e +
1/@)(1 - u)) andw(x) = x*Lif u > e/(@+e fori=1,2---,n.

(i) ComputeQ; = ¥i_; w(x)) fori =1,2,---,n, whereQ, = 0.

(i) Generate a uniform random dravfrom U (0, 1), and takex = x* whenQ;_; <

V< Q.

As mentioned above, this algorithm yields one random draw.

If we wantN random draws, Step (iii) should be repeakétimes.

Beta Distribution:  The beta distribution with parametersandg is of the form:

1
f(x) = B(a,p)

0, otherwise.

xX*H1-xF?1,  forO<x<1,
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The sampling density is taken as:

1, forO< x< 1,
f.(X) =
0, otherwise,

which represents the uniform distribution between zero and one.

The probability weightsu(x"), i = 1,2,---,n, are given by:

(-U(XI*) — q(XI*) _ f(XI*)/ f*()(l*) _ Xi*a—l(l _ Xi*)ﬁ_l
I a(6) T X F)/R(6) T S x i1 — x P

Therefore, to generate a random draw fré(x), first generatex’, i = 1,2,---,n,
from U(0, 1), second compute(x’) fori = 1,2,---,n, and finally takex = x* with
probability w(x/).

We have shown three examples of the importance resampling procedure in this

tion.
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One of the advantages of importance resampling is that it is really easy to constt
a Fortran source code.

However, the disadvantages are that (i) importance resampling takes quite a long t
because we have to obtain all the probability weights in advance and (ii) importar

resampling requires a great amount of storagesfand<; fori =1,2,---,n.

9.7.3 Metropolis-Hastings Algorithm (X hORY R—N\RF4 VTR - 7))L 3

1) L)
This section is based on Geweke and Tanizaki (2003), where three sampling di:
butions are compared with respect to precision of the random draws from the tar
density f(x).
TheMetropolis-Hastings algorithm is also one of the sampling methods to generat:
random draws from any target densitx), utilizing sampling densityf.(x), even in

the case where it is not easy to generate random draws from the target density.
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Let us define the acceptance probability by:
q(x") o F(xX)/1(x)

,1) = min 1),
a(Xi-1) ) (f(xi—l)/f*(xi—l) )
whereq(-) is defined as equation (19).

w(Xi_1, X)) = min(

By the Metropolis-Hastings algorithm, a random draw fro(®) is generated in the
following way:
(i) Take the initial value ok asx_y.
(i) Generatex* from f.(xX) and computev(X_1, X*) givenx;_s.
(i) Setx = x* with probability w(X;_1, X*) andx = x;_; otherwise.
(iv) Repeat Steps (ii) and (iii) far=-M +1,-M + 2,---, 1.
In the above algorithn; is taken as a random draw froh{x).

When we want more random draws (siy, we replace Step (iv) by Step (iv)’, which

is represented as follows:
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(iv) Repeat Steps (ii) and (iii) fdr= —M + 1,-M + 2, - -, N.

When we implement Step (iv)’, we can obtain a series of random dxaywsx_ w1,

“+ ey Xoy X1, X2, -+ 4, XN, WhErexX_y, Xoms1, - -+, Xo are discarded from further consider-
ation.

The lastN random draws are taken as the random draws generated from the tal
densityf(x).

Thus,N denotes the number of random draws.

M is sometimes called thHgurn-in period.

We can justify the above algorithm given by Steps (i) — (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 9.7.1.

We show thal is the random draw generated from the target derfgity under the
assumptiorx_; is generated fronf (x).

Let U be the uniform random variable between zero and ¥nee the random vatri-

298



able which has the density functidrfx) and x* be the realization (i.e., the random
draw) generated from the sampling dendit{x).

Consider the probabilitP(X < XU < w(X_1, X*)), which should be the cumulative
distribution ofX, i.e., F(X).

The probabilityP(X < XU < w(X_1, X*)) is rewritten as follows:

P(X < x, U < w(X-1, X))

PX =AU < 006230 = =55 kX))

b

where the numerator is represented as:

X w(Xi-1.1)
P(X < x,U < w(X_1, X)) = f f fu.(u,t) du dt
—00 0

- ' f W dudt = [ | f 0 du) o o
f jMM)mnamtkf[]“”fmm

_ f.(x-)f(t) . f(Xia)
= Iw w(Xi_1, ) f.(t) dt = Iw ) %) dt = f(x) F(X)
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and the denominator is given by:

f.(Xi-1)
f(x-1)

The density function ob is given byf,(u) = 1forO<u< 1.

_ f.(Xi-1)
f(X-1)

P(U < w(X-1,X)) = P(X < 00,U < w(X-1,X)) = F (o)

Let X* be the random variable which has the density funcfigr).
In the numeratorf, .(u, X) denotes the joint density of random variablésind X*.
Because the random drawsldfandX* are independently generated, we hfygu, x) =
fu(u) f.(x) = f.(X).
Thus, the first four equalities are derived.
Substituting the numerator and denominator shown above, we have the follow
equality:

P(X < XU < w(Xi-1, X)) = F(X).

Thus, thex* which satisfiess < w(X_1, X*) indicates a random draw frori(x).
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We setx = xi_1 If U < w(X_1, X*) is not satisfied.x;_; is already assumed to be a
random draw fronf (X).

Therefore, it is shown thag is a random draw fronf(X).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, noté(tanay
be a kernel of the target density, or equivalenfiyx) may be proportional to the
target density.

The same algorithm as Steps (i) — (iv) can be applied to the case Wpgris pro-
portional to the target density, becauge”) is divided by f(X_1) in w(X_1, X*).

As a general formulation of the sampling density, instead.©f), we may take the
sampling density as the following fornf.(x|x_1), where a candidate random draw
x* depends on the ¢ 1)th random draw, i.e¥;_;.

For choice of the sampling densify(x|x_1), Chib and Greenberg (1995) pointed out
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as follows.

f.(X/%_1) should be chosen so that the chain travels over the suppd(xpfwhich
implies thatf,.(x|;_1) should not have too large variance and too small variance, cor
pared withf (x).

See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Ha
(1994), Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casella (1
and so on for the Metropolis-Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is form:

lated as follows:
f() = f (U fa(v) .

wheref*(ulv) denotes the transition distribution, which is characterized by Step (iii
Xi_1 is generated from;_,(-) andx; is from f*(-|x;_1).

X depends only om;_;, which is called thévlarkov property .
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The sequencg -, X_1, X, X1, - - -} is called theMarkov chain.

The Monte Carlo statistical methods with the sequéncex;_1, X, Xi;1, - - -} is called
the Markov chain Monte Carlo (MCMC) .

From Step (iii), f*(ulv) is given by:

F*(uv) = w(v, u) f.(ulv) + (1 - f w(v, u) f.(ulv) du)p(u), (20)
wherep(x) denotes the following probability function:
1, ifu=v,
p(u) = _
0, otherwise.

Thus,x is generated frond. (ulv) with probability w(v, u) and fromp(u) with proba-
bility 1 — [ w(v, u) f.(ulv) du.

Now, we want to showfi(u) = fi_1(u) = f(u) asi goes to infinity, which implies
that bothx, and x;_; are generated from the invariant distribution functidju) for

suficiently largei.
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To do so, we need to consider the condition satisfying the following equation:
f(u) = f f*(uv) f(v) dv. (22)
Equation (21) holds if we have the following equation:
f*(vju) f(u) = f*(ulv) f(v), (22)

which is called theeversibility condition .
By taking the integration with respect toon both sides of equation (22), equation
(21) is obtained.

Therefore, we have to check whether thgulv) shown in equation (20) satisfies
equation (22).
It is straightforward to verify that

w(v, W) f.(uV) f(v) = w(u, v) f.(vu) f (u),
(1- f w(v, U) f.(ulv) du)p(u) F(v) = (1- f w(u, V) f.(vu) dv)p(v) f (u).
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Thus, as goes to infinity,x; is a random draw from the target denstty).

If x; is generated fronf(-), thenx;,, is also generated frorfy(-).

Therefore, all theq, X1, Xi;2, - - - are taken as random draws from the target densit
f(-).

The requirement for uniform convergence of the Markov chain is that the cha
should barreducible andaperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(Xo) be the set of possible valuesxffrom starting pointxo.

If there exist two possible starting values, sagndx™, such thaC;(x*)NCi(x™*) = 0
(i.e., empty set) for all, then the same limiting distribution cannot be reached fron
both starting points.

Thus, in the case d;(x") N Ci(x**) = 0, the convergence may fail.

A Markov chain is said to bereducible if there exists amsuch thaP(x € C|xg) > 0
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for any starting poink, and any se€C such thatfc f(x) dx > 0.

The irreducible condition ensures that the chain can reach all possialees from
any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoint
C! andC? such thatx_; € C! impliesx; € C? andx;_; € C? impliesx, € C*, then the
chain oscillates betwedd! andC? and we again hav€;(x*) N Ci(x*) = 0 for all i
whenx* € Ct andx™ € C2.

Accordingly, we cannot have the same limiting distribution in this case, either.
It is calledaperiodic if the chain does not oscillate between two €tsandC? or
cycle around a partitio@?, C?, - - -, C" of r disjoint sets for > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithr, is taken as a random draw vffrom f(X)

for suficiently largeM.
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To obtainN random draws, we need to generiter N random draws.

Moreover, clearly we have Cox(,, X)) > 0, because; is generated based oqn; in
Step (iii).

Therefore, for precision of the random draws, the Metropolis-Hastings algorith
gives us the worst random number of the three sampling methods. i.e., rejection s
pling in Section 9.7.1, importance resampling in Section 9.7.2 and the Metropol
Hastings algorithm in this section.

Based on Steps (i) — (iii) and (iv)’, under some conditions the basic result of t

Metropolis-Hastings algorithm is as follows:

EZNZQ(XO — E(9(¥) = fg(X)f(X) dx asN — oo
N & ’ ’

whereg(-) is a function, which is representatively takengg{g) = x for mean and

g(x) = (x — X)? for variance.
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X denoteX = (1/N) 3N, x.

Thus, itis shown that (N) 3., g(x) is a consistent estimate ofdx)), even though
X1, X2, - -+, Xy @re mutually correlated.

As an alternative random number generation method to avoid the positive correlati
we can perform the case &f = 1 as in the above procedures (i) — (M)times in
parallel, taking diferent initial values fox_y.

In this case, we need to generdder+ 1 random numbers to obtain one random draw
from f(x).

That is, N random draws fromf(x) are based oiN(1 + M) random draws from
f.(XI%i_1).

Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorith

should be similar to rejection sampling.
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However, this alternative method is too computer-intensive, compared with the abt
procedures (i) — (iii) and (iv)’, which takes more time than rejection sampling in th
case ofM > Ng.
Furthermore, the sampling density has to satisfy the following conditions:

(i) we can quickly and easily generate random draws from the sampling dens
and

(ii) the sampling density should be distributed with the same range as the tar

density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jou
(1999) for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily dep
on choice of the sampling density, we can see that the Metropolis-Hastings algorit

has the problem of specifying the sampling density, which is the crucial criticism.
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Several generic choices of the sampling density are discussed by Tierney (1994)
Chib and Greenberg (1995).
We can consider several candidates for the sampling dehéuy_,), i.e., Sampling

Densities | —IlI.

3.4.1.1 Sampling Density | (Independence Chain) For the sampling density,
we have started with.(X) in this section.

Thus, one possibility of the sampling density is given byXx|x_1) = f.(x), where
f.(-) does not depend oxq_;.

This sampling density is called tivedependence chain

For example, it is possible to takg(x) = N(u., 02), whereu, ando? are the hyper-
parameters.

Or, whenxlies on a certain interval, sag,({), we can choose the uniform distribution
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f.(X) = 1/(b — &) for the sampling density.

3.4.1.2 Sampling Density Il (Random Walk Chain) We may take the sampling
density called theandom walk chain, i.e., f.(X|%i_1) = f.(X — Xi_1).

Representatively, we can take the sampling densitiy(as_1) = N(x;_1, 02), where

o denotes the hyper-parameter.

Based on the random walk chain, we have a series of the random draws which foll

the random walk process.

3.4.1.3 Sampling Density Il (Taylored Chain) The alternative sampling distri-
bution is based on approximation of the log-kernel (see Geweke and Tanizaki (19
2001, 2003)), which is a substantial extension of Taglored chain discussed in
Chib, Greenberg and Winkelmann (1998).
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Let p(x) = log(f(x)), where f(x) may denote the kernel which corresponds to the
target density.
Approximating the log-kernep(x) aroundx;_; by the second order Taylor series

expansionp(x) is represented as:

P(X) = p(Xi-1) + P'(X-1)(X — Xi_1) + ]é-p”(xi—l)(x — Xi_1), (23)

wherep/(-) andp”(-) denote the first- and second-derivatives.

Depending on the values @f(x) and p”(x), we have the four cases, i.e., Cases 1 -
4, which are classified by (§”’(x) < —e in Case 1 op”’(x) > —e in Cases 2 — 4 and
(i) pP'(X) < 0in Case 2p'(x) > 0in Case 3 0op'(X) = 0in Case 4.

Geweke and Tanizaki (2003) suggested introdueingto the Taylored chain dis-
cussed in Geweke and Tanizaki (1999, 2001).

Note thate = 0 is chosen in Geweke and Tanizaki (1999, 2001).
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To improve precision of random drawsshould be a positive value, which will be
discussed later in detail (see Remark 1dpr

Case 1: p’(xi—1) < —e: Equation (23) is rewritten by:

P(X) ~ p(Xi-1) - %(m

wherer(X;_1) is an appropriate function of_;.

P (Xi-1)
P (Xi-1)

)(x— (%1 - ) +r(x-a),

Sincep”’(x_1) is negative, the second term in the right-hand side is equivale

to the exponential part of the normal density.
Therefore,f,(x|x_1) is taken aN(u., o?), whereu, = X1 — p'(X-1)/p” (Xi—1)
ando? = -1/p”(%-1)-

Case 2: p’(xi—1) = —e and p'(xi_1) < 0: Perform linear approximation qf(x).

Let x* be the nearest mode witti < X;_;.
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Then, p(x) is approximated by a line passing betweenand x;_;, which is

written as:

P9 = poc) + LT B oy,

From the second term in the right-hand side, the sampling density is re
resented as the exponential distribution with> x* — d, i.e., f.(X|x_1) =
/lexp(—/l(x - (xt - d))) if x*—d < xandf,(Xx_1) = 0 otherwise, where

Ais defined as:

1 ‘p(x+) — P(Xi-1)
X" = X1
d is a positive value, which will be discussed later (see Remark &)for

Thus, a random draw® from the sampling density is generated Xy= w +
(x* — d), wherew represents the exponential random variable with paramet

A.
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Case 3: p’(Xi-1) = —€ and p'(xj—1) > 0: Similarly, perform linear approximation

of p(x) in this case.
Let x* be the nearest mode witt ; < x*.
Approximation ofp(x) is exactly equivalent to that of Case 2.

Taking into accounk < x* + d, the sampling density is written ag:(x|x_1) =

/lexp(—/l((x+ +d) - x)) if x<x"+dandf,(x|x_1) = 0 otherwise.

Thus, a random draw* from the sampling density is generated ky =
(x* + d) — w, wherew is distributed as the exponential random variable witf

parameten.

Case 4: p’(xi-1) = —e and p'(xji—-1) = 0: In this casep(x) is approximated as a

uniform distribution at the neighborhood xf ;.

As for the range of the uniform distribution, we utilize the two appropriate
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valuesx® andx*™, which satisfiestt < x < x™*.
When we have two modexg! andx** may be taken as the modes.

Thus, the sampling densitiy(x|X;_1) is obtained by the uniform distribution on
the interval betweer* andx*™, i.e., f.(X|xi_1) = 1/(X*" — x*) if x* < x < x**

and f.(x|x_1) = O otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases
4, depending on the values pf(:) andp”(-).

Moreover, in the case whereis a vector, applying the procedure above to eact
element ofx, Sampling Il is easily extended to multivariate cases.

Finally, we discuss aboutandd in the following remarks.

Remark 1: €in Cases 1 — 4 should be taken as an appropriate positive number.

It may seem more natural to take= O, rather thare > O.
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The reason why > 0 is taken is as follows.

Consider the case @f= 0.

Whenp”(x._1) is negative and it is very close to zero, varianédn Case 1 becomes
extremely large because of = —1/p”(X_1).

In this case, the obtained random draws are too broadly distributed and accordir
they become unrealistic, which implies that we have a lot of outliers.

To avoid this situatione should be positive.

It might be appropriate thatshould depend on variance of the target density, becau:
€ should be small if variance of the target density is large.

Thus, in order to reduce a number of outliers; 0 is recommended.

Remark 2: Fordin Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.
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Let x* be the mode.

We have Case 2 in the right-hand sidexbfand Case 3 in the left-hand sidexdf

In the case ofl = 0, we have the random draws generated from either Case 2 or 3
In this situation, the generated random draw does not move from one case to anoi
In the case ofl > 0, however, the distribution in Case 2 can generate a random drz
in Case 3.

That is, for positived, the generated random draw may move from one case to a
other, which implies that the irreducibility condition of the MH algorithm is guaran

teed.

Normal Distribution: N(0,1):  As in Sections 9.7.1 and 9.7.2, we consider ar

example of generating standard normal random draws based on the half-normal
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tribution: )
1,2
—e 2", for 0 < x < oo,
f(x) =1 V2r
0, otherwise.
As in Sections 9.7.1 and 9.7.2, we take the sampling density as the following exj

nential distribution:

e for0 < X < oo,
f.(X) =
0, otherwise,

which is the independence chain, i.&(X|X_1) = f.(X).

Then, the acceptance probabilityx;_1, X*) is given by:
f(x)/1.(x) 1)

f(Xi-1)/f. (%)’

= mln(exp(—éx 24X+ éx,-z_l — Xi-1), 1).

w(Xi_1, X") = min(
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Utilizing the Metropolis-Hastings algorithm, the standard normal random numb

generator is shown as follows:

(i) Take an appropriate initial value afasx_y (for examplex_y = 0).
(i) Setyi-1 = [Xi-al.
(i) Generate a uniform random drawy from U(0,1) and computau(y;_1, y*)

wherey* = —log(u,).

(iv) Generate a uniform random draw from U(0, 1), and sety; = y* if u, <

w(Yi_1, Y*) andy;, = yi_; otherwise.

(v) Generate a uniform random drawy from U(0, 1), and setx; = y; if u3 < 0.5

andx = -y; otherwise.

(vi) Repeat Steps (i) —(v) far=-M+1,-M +2,---, 1.
y; is taken as a random draw frofifx). M denotes the burn-in period.
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If a lot of random draws (sayy random draws) are required, we replace Step (vi) by

Step (vi)’ represented as follows:
(vi)’ Repeat Steps (i) — (v) far=-M+1,-M +2,---,N.

In Steps (ii) — (iv), a half-normal random draw is generated.
Note that the absolute value a&f ; is taken in Step (ii) because the half-normal
random draw is positive.

In Step (v), the positive or negative sign is randomly assigned to

Gamma Distribution: G(a,1) for 0 < @« < 1.  WhenX ~ G(«a, 1), the density
function of X is given by:

Fix“‘le‘x, for 0 < X < oo,
f(x) = (@)

0, otherwise.
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As in gammarnd?2 of Sections 9.7.1 angammarnd4 of 9.7.2, the sampling density is

taken as:

e a
f.(X) = ——ax* 1 — e ,
(X) o ea 1(X) + Tte 2(X)

where both 1(X) andl,(x) denote the indicator functions defined in Section 9.7.1.
Then, the acceptance probability is given by:
q(x") o F(x)/1.(x)
,1) =min 1
q(Xi-1) ) (f(Xi—l)/ f.(Xi-1) )

i X M) £ e ()
Xia_—lle—xi_l/(xiw:llh(xi_l) + e—xi_llz(xi_l)), .
As shown in Section 9.7.1, the cumulative distribution functiof, () is represented

(X1, X) = min(

as:

e )
Tex", ifO < x< 1,
F.og=4¢
e @

— +

1-e*h, ifx>1.
a+e a+e
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Therefore, a candidate of the random draw, i&.can be generated fror(x), by
utilizing both the composition method and the inverse transform method.
Then, using the Metropolis-Hastings algorithm, the gamma random number gene

tion method is shown as follows.

(i) Take an appropriate initial value asy.
(i) Generate a uniform random drawfrom U (0, 1), and sek* = ((a/e+ 1)u;)"®
if uy <e/(a+e€) andx = —log((1/e+ 1/a)(1 - uy)) if u; > e/(a + €).
(ii) Computew(X;_1, X*).
(iv) Generate a uniform random draw from U(0, 1), and setx, = X" if u, <
w(Xi_1, X*) andx; = X;_; otherwise.

(v) Repeat Steps (ii) — (iv) far=-M +1,-M +2,---, 1.
For suficiently largeM, x, is taken as a random draw frofi§x). u; andu, should be
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independently distributed.
M denotes the burn-in period. If we need a lot of random draws ($§ayndom

draws), replace Step (v) by Step (v)’, which is given by:

(v)" Repeat Steps (ii) — (iv) far=-M +1,-M +2,---,N.

Beta Distribution:  The beta distribution with parametersandg is of the form:

1
f(x) = B(a. )

0, otherwise.

x*11-xPt,  for0O<x<1,

The sampling density is taken as:
1, forO< x< 1,

f.(X) =
0, otherwise,

324



which represents the uniform distribution between zero and one.

The probability weightsu(x'), i = 1,2,---,n, are given by:

. . F(x)/f.(x) oy X ye-1, 1= X B
(X1, ') = min( T D) 1) = mln((xi_l) 1(l = Xi—l)ﬁ ' 1).

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generai

as follows.

(i) Take an appropriate initial value asy.
(i) Generate a uniform random dragfrom U(0, 1), and compute(X;_z, X*).

(i) Generate a uniform random drawfrom U(0, 1), which is independent of,
and set; = X" if u < w(X_1, X*) andx; = x_1 if U> w(X_1, X).

(iv) Repeat Steps (ii) and (iii) far= - M +1,-M + 2, -- -, 1.
For suficiently largeM, x; is taken as a random draw frofix).
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M denotes the burn-in period.
If we want a lot of random draws (sal, random draws), replace Step (iv) by Step

(iv)’, which is represented as follows:
(iv)’ Repeat Steps (ii) and (iii) far=-M +1,-M + 2,---,N.
9.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduce
ratio-of-uniforms method.

This generation method does not require the sampling density utilized in reject
sampling (Section 9.7.1), importance resampling (Section 9.7.2) and the Metropo
Hastings algorithm (Section 9.7.3).

Suppose that a bivariate random variallh,U,) is uniformly distributed, which
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satisfies the following inequality:

0< Ul < Vh(UZ/Ul)’

for any nonnegative functioh(x). Then,X = U,/U; has a density functiofi(x) =
h(X)/ [ h(x) dx.
Note that the domain ot{;, U,) will be discussed below.
The above random number generation method is justified in the following way.
The joint density otJ; andU,, denoted byf,,(uy, uy), is given by:

K, if 0 < u; < vh(up/uy),

fro(ug, Up) =
0, otherwise,

wherek is a constant value, because the bivariate random varibgleJg) is uni-

formly distributed.
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Consider the following transformation froms( uy) to (x, y):

V)
X=—

- ’ = ul9
Uy y

up =Y, U = XY.

The Jacobian for the transformation is:

ou;  oug

ox a—yHO .,

y X

J= 8u2 6u2 -

X ay
Therefore, the joint density of andY, denoted byf,, (X, y), is written as:

fry(X, ¥) = [3I 12y, Xy) = Ky,

for0 <y < vh(x).
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The marginal density oK, denoted byf,(X), is obtained as follows:

Vh(x) Vh(x)
= [ tdy= [ kyay- 1= Kneo = 10,

wherek is taken ask = 2/ [ h(x) dx.

Thus, it is shown that,(-) is equivalent tof (-).

This result is due to Kinderman and Monahan (1977).

Also see Ripley (1987), O’'Hagan (1994), Fishman (1996) and Gentle (1998).
Now, we take an example of choosing the domainbf, U,).

In practice, for the domain ofJ;, U,), we may choose the rectangle which enclose:
the area & U; < vh(U,/U,), generate a uniform point in the rectangle, and rejec
the point which does not satisfyQu; < vh(uy/uy).

That is, generate two independent uniform random dravesdu, from U (0O, b) and

U(c, d), respectively.
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The rectangle is given by:

whereb, c andd are given by:

b=supvh(x), c=-supxyh(X),  d=supx+yh(x),

because the rectangle has to enclose 0, < vh(u,/uy), which is verified as fol-

lows:

0 < ug < vh(uz/uy) < sup+/h(x),
—supx+/h(x) < —x+/h(X) < u, < xv/h(X) < supx+/h(x).

The second line also comes fronxQu; < vh(ux/u;) andx = up/uy.
We can replace = —sup, xvh(x) by ¢ = inf, x+h(X), taking into account the case
of —sup, xVh(x) < infy xVh(x).
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The discussion above is shown in Ripley (1987).

Thus, in order to apply the ratio-of-uniforms method with the dom@irc u,

A

b, ¢ < u, < d}, we need to have the condition th#k) andx?h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:
(i) Generatel; andu, independently frond (0, b) andU (c, d).

(i) Setx = uy/uy if U < h(up/uy) and return to (i) otherwise.

As shown above, thg accepted in Step (ii) is taken as a random draw fridx)
h(x)/ [ h(x) dx.

The acceptance probability in Step (ii) fsh(x) dx/(2b(d - ¢)).

We have shown the rectangular domaindf,(U,).

It may be possible that the domain &f U,) is a parallelogram.

In Sections 9.7.4 and 9.7.4, we show two examples as applications of the ratio-

uniforms method.
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Especially, in Section 9.7.4, the parallelogram domainlf, U,) is taken as an

example.

Normal Distribution: N(0,1): The kernel of the standard normal distribution is
given by:h(x) = exp(-3x?).
In this caseb, c andd are obtained as follows:
b =sup+vh(x) =1,
c = inf xy/h(X) = — V2e1?,
X
d = supx+/h(x) = vV2e .
X

Accordingly, the standard normal random number based on the ratio-of-unifori

method is represented as follows.
(i) Generate two independent uniform random drayandv, from U(0, 1) and
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defineu2 = (2V2 - 1) V2e 1l
(i) Setx = up/uy if U3 < exp(-3u3/u3), i.e., —4uslog(uy) > u3, and return to (i)

otherwise.

The acceptance probability is given by:

[ h(x) dx _ yme

d—0 4 ~ 0.7306

which is slightly smaller than the acceptance probability in the case of rejection sa

pling, i.e., ¥ v2e/n ~ 0.7602.
The Fortran source code for the standard normal random number generator base

the ratio-of-uniforms method is shown simrnd9(ix,iy,rn).
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CRNDTRARWNE

eNeNeNeNeNaNeNeNe!

—————{snrnd9(ix,iy,rn)%—————

subroutine snrnd9(ix,iy,rn)

Use "snrnd9(ix,iy,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
Output:
rn: Normal Random Draw N(0,1)

el=1./2.71828182845905

1 call urnd(ix,iy,rnl)
call urnd(ix,iy,rn2)
rn2=(2.*rn2-1.)*sqrt(2.%*el)
if(-4.*rnl*rnl1*log(rnl) .1lt.rn2*rn2 ) go to 1
rn=rn2/rnl
return
end
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Gamma Distribution: G(a,8): When random variablX has a gamma distribu-
tion with parameterg andp, i.e., X ~ G(a, 8), the density function oK is written

as follows:

1

f(x) _ﬁ“l“( ) X tes
for 0 < X < 0.
WhenX ~ G(a, 1), we haveY = X ~ G(a, B).
Therefore, first we consider generating a random dra¥ ofG(«, 1).
Since we have discussed the case af @ < 1 in Sections 9.7.1 — 9.7.3, now we
consider the case of > 1.
Using the ratio-of-uniforms method, the gamma random number generator is int

duced.

h(x), b, c andd are set to be:
h(x) = x* e,
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o — 1\@Dr2
b =sup+vh(x) = (T) ,
c= inf x+y/h(x) =

= supx\/h(x = (a 1

Note thate > 1 guarantees the existence of the supremurn(®f, which implies
b> 0.
See Fishman (1996, pp.194 — 195) and Ripley (1987, pp.88 — 89).

By the ratio-of-uniforms method, the gamma random number with parametet

)((l+1)/2

andg = 1 is represented as follows:

(i) Generate two independent uniform random draywandu, from U (0, b) and

U(c, d), respectively.

(i) Setx = Up/uy if Uy < +/(Up/up)e-le%/u and go back to (i) otherwise.
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Thus, thex obtained in Steps (i) and (ii) is taken as a random draw &(m 1) for
a>1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 g
gram for the gamma random number generator with parameterd andg = 1 is

shown ingammarnd6 (ix,iy,alpha,rn).

—{ gammarnd6(ix,iy,alpha,rn) }7

subroutine gammarnd6(ix,iy,alpha,rn)

Use "gammarnd6(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
alpha: Shape Parameter (alpha>1)
Output:
rn: Gamma Random Draw
with Parameters alpha and beta=1

NPT ARLNE

nNnnonNnNDnNnnNnnNnNNNN

13: e=2.71828182845905
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14; b=( (alpha-1.)/e )**(0.5*alpha-0.5)

15: d=(C (alpha+l.)/e )**(0.5*alpha+0.5)

16: 1 call urnd(ix,iy,rn@®)

17: call urnd(ix,iy,rnl)

18: u=rn®*b

19: v=rnl*d

20: rn=v/u

21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return

23: end

gammarnd6 (ix, iy, alpha,rn) should be used together witlrnd(ix,iy,rn).

b andd are obtained in Lines 14 and 15.

Lines 16 —19 gives us two uniform random drawandv, which correspond to;
andu,.

rn in Line 20 indicates a candidate of the gamma random draw.

Line 21 represents Step (ii).

To see #iciency or indficiency of the generator above, we compute the acceptan
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probability in Step (i) as follows:

Jhx)dx eT(a)

2bd—-c)  2(@ - 1)e-D2(q + 1)e+l)/2’ (24)

It is known that the acceptance probability decreases by the ordefact’?), i.e.,

in other words, computational time for random number generation increases by
order ofO(a*?).

Therefore, a® is larger, the generator is lesSieient.

See Fishman (1996) and Gentle (1998).

To improve indficiency for larger, various methods have been proposed, for exarn
ple, Cheng and Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) an
on.

As mentioned above, the algorithyammarnd6 takes a long time computationally by

the order ofO(a'/?) as shape parameteris large.
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Chen and Feast (1979) suggested the algorithm which does not depend too muc
shape parameter.

As a increases the acceptance region shrinks towakel u,.

Therefore, Chen and Feast (1979) suggested generating two uniform random dr
within the parallelogram aroung = u,, rather than the rectangle.

The source code is showngammarnd7 (ix,iy,alpha,rn).

4{ gammarnd?7 (ix,iy,alpha,rn) }7

subroutine gammarnd7(ix,iy,alpha,rn)

Use "gammarnd7(ix,iy,alpha,rn)"
together with "urnd(ix,iy,rn)".

Input:
ix, iy: Seeds
alpha: Shape Parameter (alpha>1)
Output:
rn: Gamma Random Draw
with Parameters alpha and beta=1

RPOOONOORWNE
nNNNNNNNONN

e
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12: C

13: e =2.71828182845905

14 c0=1.857764

15: cl=alpha-1.

16: c2=( alpha-1./(6.*alpha) )/cl

17: c3=2./cl

18: c4=c3+2.

19: c5=1./sqrt(alpha)

20: 1 call urnd(ix,iy,ul)

21: call urnd(ix,iy,u2)

22: if(alpha.gt.2.5) ul=u2+c5*(1.-cO*ul)
23: if(0.ge.ul.or.ul.ge.1.) go to 1

24; w=c2*u2/ul

25: if(c3*ul+w+l./w.le.c4) go to 2

26: if(c3*log(ul)-log(w)+w.ge.1l.) go to 1
27: 2 rn=cl*w

28: return

29: end

See Fishman (1996, p.200) and Ripley (1987, p.90).
In Line 22, we use the rectangle fola < 2.5 and the parallelogram far > 2.5 to

give a fairly constant speed ads varied.
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Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computationalféiciency,gammarnd7 (ix,iy,alpha,rn) is better.

Gamma Distribution: G(«,B) for @ > 0and 8 > 0: Combininggammarnd2 on
p.278 andgammarnd7 on p.340, we introduce the gamma random number generat
in the case o& > 0.

In addition, utilizingY = X ~ G(a, 8) whenX ~ G(«, 1), the random number gener-

ator forG(a, B) is introduced as in the source caglermarnd8(ix, iy, alpha,beta,rn)

—{ gammarnd8(ix,iy,alpha,beta,rn) }—

subroutine gammarnd8(ix,iy,alpha,beta,rn)

Use "gammarnd8(ix,iy,alpha,beta,rn)"
together with "gammarnd2(ix,iy,alpha,rn)",
"gammarnd7 (ix,iy,alpha,rn)"
and "urnd(ix,iy,rn)".

NoaRONE
nNNNNNnN
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Input:

C

9: C ix, iy: Seeds

10: C alpha: Shape Parameter

11: C beta: Scale Parameter

12. ¢ Output:

13: C rn: Gamma Random Draw

14: C with Parameters alpha and beta
15: C

16: if( alpha.le.1. ) then

17: call gammarnd2(ix,iy,alpha,rnl)
18: else

19: call gammarnd7(ix,iy,alpha,rnl)
20: endif

21: rn=beta*rnl

22: return

23: end

Lines 16 — 20 show that we ugammarnd2 for @ < 1 andgammarnd? for @ > 1.
In Line 21, X ~ G(a, 1) is transformed int&Y ~ G(a,8) by Y = X, whereX andY

indicatesrn1 andrn, respectively.

343



Chi-Square Distribution: y?(k): The gamma distribution with = k/2 andg = 2

reduces to the chi-square distribution witdegrees of freedom.

9.7.5 Gibbs Sampling

The sampling methods introduced in Sections 9.7.1 — 9.7.3 can be applied to
cases of both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in
multivariate cases.

The Gibbs sampler shows how to generate random draws from the unconditio
densities under the situation that we can generate random draws from two conditic
densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-P«
and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger &
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Karim (1991), Casella and George (1992), Gamerman (1997) and so on develo
the Gibbs sampling theory.

Carlin, Polson and Sfter (1992), Carter and Kohn (1994, 1996) and Geweke an
Tanizaki (1999, 2001) applied the Gibbs sampler to the nonlinegoandn-Gaussian
state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two randc
variablesX andY in order to make things easier.

Two conditional density functionds,y(xly) and fyx(yX), are assumed to be known,
which denote the conditional distribution functionXfgivenY and that ofY given

X, respectively.

Suppose that we can easily generate random drawdmim f,y(x]y) and those o¥
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from fy,(YIX).

However, consider the case where it is not easy to generate random draws from
joint density ofX andY, denoted byf,y(X, y).

In order to have the random draws & {Y) from the joint densityf,,(x, y), we take

the following procedure:

(i) Take the initial value oK asx_y.
(i) Givenx_1, generate a random draw ¥fi.e.,y;, from f(y|Xi_1).
(i) Giveny;, generate a random draw Xf i.e., x;, from f(x]y;).

(iv) Repeatthe procedure foE - M +1,-M +2,---,1.

From the convergence theory of the Gibbs sampleiMagoes to infinity, we can
regardx; andy, as random draws frorfiy(X, y), which is a joint density function of

X andy.
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M denotes thdurn-in period, and the firstM random draws,X, y;) fori = -M +
1,-M+2,---,0, are excluded from further consideration.
When we wantN random draws fronf,,(X, y), Step (iv) should be replaced by Step

(iv)’, which is as follows.
(iv)’ Repeatthe procedure foe -M +1,-M +2,---,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) — (iii) an

(iv)' is formulated as follows:
1@ = [ £ a0) dv

For convergence of the Gibbs sampler, we need to have the invariant distrib(ujon
which satisfied;(u) = fi_1(u) = f(u). If we have the reversibility condition shown in
equation (22), i.e.,

Frvu) f(u) = £ (uv) £(v),
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the random draws based on the Gibbs sampler converge to those from the invat
distribution, which implies that there exists the invariant distributi¢um).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distrib
tion, i.e., f*(u|v).

Here, we consider that bothandv are bivariate vectors.

That is, f*(ulv) and fi(u) denote the bivariate distributions; andy; are generated
from fi(u) throughf*(ulv), given fi_1(v).

Note thatu = (uy, Up) = (X, Y;) is taken whilev = (vi, V) = (Xi_1, Yi-1) IS Set.

The transition distribution in the Gibbs sampler is taken as:

f*(U|V) = fylx(uZ|Ul) fx|y(U1|V2)

Thus, we can choosE (ulv) as shown above.
Then, as goes to infinity, &, y;) tends in distribution to a random vector whose joint

density isf,y(X, ).
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See, for example, Geman and Geman (1984) and Smith and Roberts (1993).
Furthermore, under the condition that there exists the invariant distribution, the ba

result of the Gibbs sampler is as follows:

%Zg(m,yi) — E(g(x.y)) = f g% Y) fry(x,y) dxdy, asN — oo,
i=1

whereg(-, -) is a function.
The Gibbs sampler is a powerful tool in a Bayesian framework.
Based on the conditional densities, we can generate random draws from the ji

density.

Remark 1: We have considered the bivariate case, but it is easily extended to t
multivariate cases.

That is, it is possible to take multi-dimensional vectorsXandy.
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Taking an example, as for the tri-variate random vec¥i(Z), if we generate the
ith random draws fronfyy(Xlyi-1, Zi-1), fyxAYIXi, z-1) and f4(Z;, yi), sequentially,

we can obtain the random draws frdig(X, y, 2).

Remark 2: LetX, Y andZ be the random variables.

Take an example of the case whetés highly correlated withy.

If we generate random draws frofgy(Xly, 2), fyxAyIX, 2) and f,x,(ZX, y), it is known
that convergence of the Gibbs sampler is slow.

In this case, without separatigandY, random number generation froffx, y|z)

and f(Zx,y) yields better random draws from the joint dendify, y, 2).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-
gorithm:  We compare rejection sampling, importance resampling and the Metro

Hastings algorithm from precision of the estimated moments and CPU time.
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All the three sampling methods utilize the sampling density and they are useful wr
it is not easy to generate random draws directly from the target density.

When the sampling density is too far from the target density, it is known that rejectis
sampling takes a lot of time computationally while importance resampling and t
Metropolis-Hastings algorithm yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on
three sampling methods.

For simplicity of discussion, consider the case where both the target and sampl
densities are normal.

That is, the target densiti/(x) is given byN(0, 1) and the sampling densitiy(x) is
N(tt., 072).

u.=0,1,2 3andr, =05, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three momen¥)E(| = 1, 2, 3, are estimated, gener-
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ating 10 random draws.

For importance resamplingy = 10* is taken, which is the number of candidate
random draws.

The Metropolis-Hastings algorithm takés = 1000 as the burn-in period and the
initial value isx_y = u..

As for the Metropolis-Hastings algorithm, note that is the independence chain

taken forf.(x) because of.(x|2) = f.(X).
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\O 0.5 1.0 1.5 2.0 3.0 4.0
s
RS — — 0.000 0.000 0.000 0.000
0 IR 0.060 0.005 0.000 0.005 0.014 0.014
MH | -0.004 0.000 0.000 0.000 0.000 0.000
(59.25)  (100.00) (74.89) (59.04) (40.99) (31.21)
E(X) RS — — 0.000 0.000 0.000 0.000
=0 || 1 IR 0.327 0.032 0.025 0.016 0.011 o0.011
MH 0.137 0.000 0.001 0.000 0.000 0.000
(36.28) (47.98) (55.75) (51.19) (38.68) (30.23)
RS — — 0.000 0.000 0.000 0.000
2 IR 0.851 0.080 0.031 0.030 0.003 0.005
MH 0.317 0.005 0.001 0.001 0.000 0.001
(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)
RS — — 0.000 0.000 0.000 -0.001
3 IR 1.590 0.337 0.009 0.029 0.021-0.007
MH 0.936 0.073 -0.002 0.000 0.001 -0.001
(1.68) (3.53) (9.60) (17.47) (24.31) (23.40)
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Comparison of Three Sampling Methods

\0'* 0.5 1.0 15 2.0 3.0 4.0
M

RS — — 1.000 1.000 1.000 0.999
0 IR 0.822 0.972 0.969 0.978 0.994 1.003
MH 0.958 1.000 1.000 1.000 1.001 1.001

E(X?) RS — — 1.000 1.000 1.000 1.000
=1 1 IR 0.719 0.980 0.983 0.993 1.010 1.004
MH 0.803 1.002 0.999 0.999 1.001 1.002

RS — — 1.000 1.000 1.001 1.001
2 IR 1.076 0.892 1.014 0.984 1.000 1.012
MH 0.677 0.992 1.001 0.999 1.001 1.002

RS — — 1.000 1.000 1.000 1.000
3 IR 2.716 0.696 1.013 1.025 0.969 1.002
MH 1.165 0.892 1.005 1.001 0.999 0.999
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Comparison of Three Sampling Methods

\0'* 0.5 1.0 15 2.0 3.0 4.0
M
RS — — 0.000 0.000 0.000 -0.001
0 IR 0.217 0.034 -0.003 -0.018 0.018 0.036
MH | —0.027 0.001 0.001 -0.001 -0.002 -0.004
E(X%) RS — — 0.002 -0.001 0.000 0.001
=0 1 IR 0.916 0.092 0.059 0.058 0.027 0.032
MH 0.577 -0.003 0.003 0.000 0.002-0.001
RS — — -0.001 0.002 0.001 0.001
2 IR 1.732 0.434 0.052 0.075 0.040 0.001
MH 0.920 0.035 0.003 0.004 0.004 0.004
RS — — 0.000 0.001 0.001 -0.001
3 IR 5.030 0.956 0.094 0.043 0.068 0.020
MH 1.835 0.348 -0.002 0.003 0.001 -0.001
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Comparison of Three Sampling Methods: CPU Time (Seconds)

\Tx 0.5 1.0 15 2.0 3.0 4.0
M
RS — — 15.96 20.50 30.69 39.62
0 IR | 431.89 431.40 43153 43258 435.37 437.16

MH 9.70 9.24 9.75 9.74 9.82 9.77

RS — — 2351 2409 3277 41.03
1 IR | 433.22 427.96 426.41 426.36 427.80 430.39
MH 9.73 9.54 9.81 9.75 9.83 9.76
RS — — 7408 38.75 39.18 45.18
2 IR | 435.90 43223 425.06 423.78 421.46 422.35

MH 9.71 9.52 9.83 9.77 9.82 9.77

RS — — 535,55 87.00 5291 53.09
3 IR | 437.32 439.31 429.97 42445 42291 418.38
MH 9.72 9.48 9.79 9.75 9.81 9.76

RS, IR and MH denotes rejection sampling, importance resampling and the Metrog
Hastings algorithm, respectively.
In each table, “—”in RS implies the case where rejection sampling cannot be appl

because the supremumagix), sup, q(x), does not exist.
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As for MH in the case of EX) = 0, the values in the parentheses represent th
acceptance rate (percent) in the Metropolis-Hastings algorithm.

The results obtained from each table are as follows.

E(X) should be close to zero because we have) E( 0 from X ~ N(O, 1).

Whenu, = 0.0, all of RS, IR and MH are very close to zero and show a goo
performance.

Whenu, = 1, 2, 3, foro, = 1.5, 20, 30, 4.0, all of RS, IR and MH perform well,
but IR and MH in the case of, = 0.5, 10 have the case where the estimated mea
is too diferent from zero.

For IR and MH, we can see that given the estimated mean is far from the true
mean ag.. is far from mean of the target density.

Also, it might be concluded that given the estimated mean approaches the tru

value asr, is large.

357



E(X?) should be close to one because we haw’E€ V(X) = 1 from X ~ N(0, 1).
The cases of, = 1.5, 20, 30, 40 and the cases @f. = 0,1 ando-, = 1.0 are very
close to one, but the other cases afedent from one.

These are the same results as the caseXy. E(

E(X®) should be close to zero becaus&B(represents skewness.

For skewness, we obtain the similar results, i.e., the cases ef1.5, 20, 30, 40
and the cases ¢f, = 0,1 ando, = 0.5, 1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performanc:
the three, and IR and MH is quite good whenis relatively large.

We can conclude that IR is slightly worse than RS and MH.

As for the acceptance rates of MH inX@§(= 0, from the table a higher acceptance
rate generally shows a better performance.

The high acceptance rate implies high randomness of the generated random dra
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For variance of the sampling density, both too small variance and too large variat
give us the relatively low acceptance rate, which result is consistent with the disc
sion in Chib and Greenberg (1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be compute
advance (see Section 9.7.2 for IR).

That is, 18 candidate random draws are generated from the sampling de(sity
and therefore 10acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depeng.cando-,.

However, for RS, giveinr, computational time increasesasis large.

In other words, as the sampling density is far from the target density the number
rejections increases.

Wheno., increases given., the acceptance rate does not necessarily increase.
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However, from the table a large. is better than a smadt. in general.
Accordingly, as for RS, under the condition that mearf ©f) is unknown, we can
conclude that relatively large variance x) should be taken.

Finally, the results are summarized as follows.

(1) For IR and MH, depending on choice of the sampling denkity), we have

the cases where the estimates of mean, variance and skewness are biased

For RS, we can always obtain the unbiased estimates without depending

choice of the sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose t

sampling density with relatively large variance.

Furthermore, for RS we should take the sampling density with relatively larg

variance to reduce computational burden.
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3)

(4)

But, note that too large variance leads to an increase in computational dis.

vantages.

MH is the least computational sampling method of the three.

For IR, all the acceptance probabilities have to be computed in advance ¢

therefore
IR takes a lot of time to generate random draws.

In the case of RS, the amount of computation increases(akis far from
f(x).
For the sampling density in MH, it is known that both too large variance an

too small variance yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have tc

generated from the sampling density for evaluation of the expectations suct
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E(X) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS s
times has the case where the supremurg(gf does not exist and in this case it is
impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferrec

IR and RS in a sense of less risk.

However, we should keep in mind that MH also has the problem which choice of t

sampling density is very important.
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