
Bayesian Method= Evaluation of Integration (Too much to say?)

• Numerical Integration

• Monte Carlo Integration

• Random Number Generation fromfθ|y(θ|y)

9.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a functionf (x).

Suppose thatx is a scalar.

Let x0, x1, x2, · · ·, xn ben nodes, which are sorted by order of size but not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.
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Rectangular Approximation:∫
f (x)dx ≈

n∑
i=1

f (xi)(xi − xi−1),

or
n∑

i=1

f (xi−1)(xi − xi−1),

or
n∑

i=1

f (
xi + xi−1

2
)(xi − xi−1).

Trapezoid Approximation:∫
f (x)dx ≈

n∑
i=1

1
2

( f (xi) + f (xi−1))(xi − xi−1).

Bivariate Case: Consider integration of a functionf (x, y).

Suppose that bothx andy are scalars.
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Let x0, x1, x2, · · ·, xn be n nodes, which are sorted by order of size not necessarily

equal intervals betweenxi−1 andxi for i = 1,2, · · · ,n.

Let y0, y1, y2, · · ·, ym bem nodes.

Rectangular Approximation:∫ ∫
f (x, y)dxdy ≈

n∑
i=1

m∑
j=1

f (
xi + xi−1

2
,
yj + yj−1

2
)(xi − xi−1)(yj − yj−1).

Trapezoid Approximation:∫ ∫
f (x.y)dxdy

≈
n∑

i=1

m∑
j=1

1
4

( f (xi , y j) + f (xi , y j−1) + f (xi−1, y j) + f (xi−1, yj−1))(xi − xi−1)(y j − yj−1).

Applying to Bayes Method (Rectangular Approximation):

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)(θi − θi−1)∑n
i=1 fy|θ(y|θi) fθ(θi)(θi − θi−1)
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=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)∑n
i=1 fy|θ(y|θi) fθ(θi)

=

n∑
i=1

θiωi , for constantθi − θi−1,

where

ωi =
fy|θ(y|θi) fθ(θi)∑n

i=1 fy|θ(y|θi) fθ(θi)
.

Problem of Numerical Integration:

1. Choice of initial and terminal values=⇒ Truncation errors

2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

=⇒ k dimension, andn nodes for each dimension=⇒ nk

9.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a functionf (x).
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Suppose thatx is a scalar.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

.

=⇒ Importance Sampling (重点的サンプリング)

Multivariate Case: Consider integration of a functionf (x).

Suppose thatx is a vector.

Let x1, x2, · · ·, xn ben random draws generated fromg(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

,
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which is exacly the same as the univariate case.

Computational burden:=⇒ Univariate case:n, Multivariate case:n

Precision of integration ???

Especially, wheng(x) is not close tof (x), approximation is prror.

Applying to Bayes Method:

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∫
θ

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ∫

fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ

=
(1/n)

∑n
i=1 θiω(θi)

(1/n)
∑n

i=1ω(θi)
,

where

ω(θi) =
fy|θ(y|θi) fθ(θi)

g(θi)
.

Choice of g(θ) — One Solution: Definel(θ) ≡ fy|θ(y|θ) fθ(θ).
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log l(θ) ≈ log l(θ̃) +
1

l(θ̃)

∂l(θ̃)
∂θ

(θ − θ̃)

+
1
2

(θ − θ̃)′
(
− 1

l(θ̃)2

∂l(θ̃)
∂θ

∂l(θ̃)
∂θ′
+

1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃)

= −1
2

(θ − θ̃)′
(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃), whenθ̃ is a mode ofl(θ).

Thus,N
(
θ̃,

(
− 1

l(θ̃)

∂2l(θ̃)
∂θ∂θ′

)−1)
might be taken as the importance densityg(θ).

9.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws ofθ from the posterior distributionfθ|y(θ|y).

Then, (1/n)
∑n

i=1 θi is taken as a consistent estimator of E(θ|y), whereθi indicates the

ith random draw generated fromfθ|y(θ|y).
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Note that (1/n)
∑n

i=1 θi −→ E(θ|y) under the condition (1/n)
∑n

i=1 θi < ∞.

Bayesian confidence interval, median, quntiles and so on are obtained by sortingθ1,

θ2, · · ·, θn in order of size.

=⇒ Sampling methods

9.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and

Johnson (2000a, 2000b, 2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws

between zero and one.
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9.6.1 Uniform Distribution: U(0,1)

Properties of Uniform Distribution: The most heuristic and simplest distribution

is uniform.

Theuniform distribution between zero and one is given by:

f (x) =

1, for 0 < x < 1,

0, otherwise.

Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, φ(θ) =

eθ − 1
θ
.

Use L’Hospital’s theorem to derive E(X) and V(X) usingφ(θ).

In the next section, we introduce an idea of generating uniform random draws, which

in turn yield the other random draws by the transformation of variables, the inverse

transform algorithm and so on.
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Uniform Random Number Generators: It is no exaggeration to say that all the

random draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as expo-

nential, normal, logistic, Bernoulli and other distributions are obtained by transform-

ing the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.

However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears at

random is taken as a sequence of random numbers.

First, consider the following relation:

m= k− [k/n]n,

wherek, m andn are integers.

[k/n] denotes the largest integer less than or equal to the argument.
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In Fortran 77, it is written asm=k-int(k/n)*n, where 0≤ m< n.

m indicates theremainder (余り) whenk is divided byn.

n is called themodulus (商).

We define the right hand side in the equation above as:

k− [k/n]n ≡ k modn.

Then, using the modular arithmetic we can rewrite the above equation as follows:

m= k modn,

which is represented by:m=mod(k,n) in Fortran 77 andm=k%n in C language.

A basic idea of the uniform random draw is as follows.

Givenxi−1, xi is generated by:

xi = (axi−1 + c) modn,

212



where 0≤ xi < n.

a andc are positive integers, called themultiplier and theincrement, respectively.

The generator above have to be started by an initial value, which is called theseed.

ui = xi/n is regarded as a uniform random number between zero and one.

This generator is called thelinear congruential generator (線形合同法).

Especially, whenc = 0, the generator is called themultiplicative linear congruen-

tial generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a andc are properly chosen, the period of the generator isn.

However, when they are not chosen very carefully, there may be a lot of serial corre-

lation among the generated values.

Therefore, the performance of the congruential generators depend heavily on the

choice of (a, c).
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There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980), Law

and Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casella (1999),

Rubinstein and Melamed (1998), Thompson (2000) and so on for the other congru-

ential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three

congruential generators for 16-bit computers.

The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

zi = 170zi−1 mod 30323,
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and

ui =
( xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e.,x0, y0 andz0, for this random number generator.

ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95× 1012).

The source code of this generator is given byurnd16(ix,iy,iz,rn), whereix, iy

andiz are seeds andrn represents the uniform random number between zero and

one.

——— urnd16(ix,iy,iz,rn)———

1: subroutine urnd16(ix,iy,iz,rn)
2: c
3: c Input:
4: c ix, iy, iz: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
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7: c
8: 1 ix=mod( 171*ix,30269 )
9: iy=mod( 172*iy,30307 )

10: iz=mod( 170*iz,30323 )
11: rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int(rn)
13: if( rn.le.0 ) go to 1
14: return
15: end

We exclude one in Line 12 and zero in Line 13 fromrn.

That is, 0< rn < 1 is generated inurnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier errors in

programming, when the other random draws are derived based on the transformation

of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respect

to the higher order autocorrelations in sequences, and conclude that the Wichmann-
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Hill generator performs well.

For 32-bit computers, L’Ecuyer (1988) proposed a combination ofk congruential

generators that have prime modulinj, such that all values of (nj − 1)/2 are relatively

prime, and with multipliers that yield full periods.

Let the sequence fromjth generator bexj,1, xj,2, x j,3, · · ·.

Consider the case where each individual generatorj is a maximum-period multiplica-

tive linear congruential generator with modulusnj and multiplieraj, i.e.,

xj,i ≡ aj x j,i−1 modnj .

Assuming that the first generator is a relatively good one and thatn1 is fairly large,

we form theith integer in the sequence as:

xi =

k∑
j=1

(−1)j−1xj,i mod (n1 − 1),
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where the other modulinj, j = 2, 3, · · · , k, do not need to be large.

The normalization takes care of the possibility of zero occurring in this sequence:

ui =


xi

n1
, if xi > 0,

n1 − 1
n1
, if xi = 0.

As for each individual generatorj, note as follows.

Defineq = [n/a] andr ≡ n moda, i.e.,n is decomposed asn = aq+ r, wherer < a.

Therefore, for 0< x < n, we have:

ax modn = (ax− [x/q]n) modn

=
(
ax− [x/q](aq+ r)

)
modn

=
(
a(x− [x/q]q) − [x/q]r

)
modn

=
(
a(x modq) − [x/q]r

)
modn.
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Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential

generators, wherek = 2, (a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and

(a2, n2, q2, r2) = (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown inurnd(ix,iy,rn), whereix andiy are inputs, i.e.,

seeds, andrn is an output, i.e., a uniform random number between zero and one.

——— urnd(ix,iy,rn)———

1: subroutine urnd(ix,iy,rn)
2: c
3: c Input:
4: c ix, iy: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 kx=ix/53668
9: ix=40014*(ix-kx*53668)-kx*12211

10: if(ix.lt.0) ix=ix+2147483563
11: c
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12: ky=iy/52774
13: iy=40692*(iy-ky*52774)-ky*3791
14: if(iy.lt.0) iy=iy+2147483399
15: c
16: rn=ix-iy
17: if( rn.lt.1.) rn=rn+2147483562
18: rn=rn*4.656613e-10
19: if( rn.le.0.) go to 1
20: c
21: return
22: end

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018 (more

precisely 2.31× 1018), which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where

the above generator performs well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit com-

puters.

220



Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988) is

combined with the shuffling method suggested by Bays and Durham (1976), and it is

introduced asran2 in Press, Teukolsky, Vetterling and Flannery (1992a, 1992b).

However, from relatively long period and simplicity of the source code, hereafter the

subroutineurnd(ix,iy,rn) is utilized for the uniform random number generation

method, and we will obtain various random draws based on the uniform random

draws.

9.6.2 TransformingU(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density func-

tions are derived from the uniform distributionU(0,1) by transformation of variables.
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Normal Distribution: N(0,1): The normal distribution with mean zero and vari-

ance one, i.e, the standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.

Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, φ(θ) = exp
(1
2
θ2

)
.

The normal random variable is constructed using two independent uniform random

variables.

This transformation is well known as the Box-Muller (1958) transformation and is

shown as follows.

Let U1 andU2 be uniform random variables between zero and one.

Suppose thatU1 is independent ofU2.
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Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).

where we have−∞ < X1 < ∞ and−∞ < X2 < ∞ when 0< U1 < 1 and 0< U2 < 1.

Then, the inverse transformation is given by:

u1 = exp

(
−

x2
1 + x2

2

2

)
, u2 =

1
2π

arctan
x2

x1
.

We perform transformation of variables in multivariate cases.

From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp

(
−1

2
(x2

1 + x2
2)
)
.
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Let fx(x1, x2) be the joint density ofX1 andX2 and fu(u1,u2) be the joint density of

U1 andU2.

SinceU1 andU2 are assumed to be independent, we have the following:

fu(u1,u2) = f1(u1) f2(u2) = 1,

where f1(u1) and f2(u2) are the density functions ofU1 andU2, respectively.

Note that f1(u1) = f2(u2) = 1 becauseU1 and U2 are uniform random variables

between zero and one.

Accordingly, the joint density ofX1 andX2 is:

fx(x1, x2) = |J| fu
(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp

(
−1

2
x2

1

)
× 1
√

2π
exp

(
−1

2
x2

2

)
,
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which is a product of two standard normal distributions.

Thus,X1 andX2 are mutually independently distributed as normal random variables

with mean zero and variance one.

See Hogg and Craig (1995, pp.177 – 178).

The source code of the standard normal random number generator shown above is

given bysnrnd(ix,iy,rn).

——— snrnd(ix,iy,rn)———

1: subroutine snrnd(ix,iy,rn)
2: c
3: c Use "snrnd(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Standard Normal Random Draw N(0,1)

10: c
11: pi= 3.1415926535897932385
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12: call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn=sqrt(-2.0*log(rn1))*sin(2.0*pi*rn2)
15: return
16: end

snrnd(ix,iy,rn) should be used together with the uniform random number gen-

eratorurnd(ix,iy,rn) shown in Section 9.6.1 (p.219).

rn in snrnd(ix,iy,rn) corresponds toX2.

Conventionally, one ofX1 andX2 is taken as the random number which we use.

Here,X1 is excluded from consideration.

snrnd(ix,iy,rn) includes the sine, which takes a lot of time computationally.

Therefore, to avoid computation of the sine, various algorithms have been invented

(Ahrens and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLaren

and Bray (1964) and so on).
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Standard Normal Probabilities WhenX ∼ N(0,1), we have the case where we

want to approximatep such thatp = F(x) givenx, whereF(x) =
∫ x

−∞ f (t) dt = P(X <

x).

Adams (1969) reports that

P(X > x) =
∫ ∞

x

1
√

2π
e−

1
2 t2 dt =

1
√

2π
e−

1
2 x2( 1

x+
1
x+

2
x+

3
x+

4
x+
· · ·

)
,

for x > 0, where the form in the parenthesis is called the continued fraction, which is

defined as follows:

a1

x1+

a2

x2+

a3

x3+
· · · = a1

x1 +
a2

x2 +
a3

x3 + · · ·

.

A lot of approximations on the continued fraction shown above have been proposed.

See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (1994).
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Here, we introduce the following approximation (see Takeuchi (1989)):

P(X > x) =
1
√

2π
e−

1
2 x2

(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5), t =
1

1+ a0x
,

a0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782,

b3 = 1.781477937, b4 = −1.821255978, b5 = 1.330274429.

In snprob(x,p) below,P(X < x) is shown.

That is,p up to Line 19 is equal toP(X > x) in snprob(x,p).

In Line 20,P(X < x) is obtained.

——— snprob(x,p)———

1: subroutine snprob(x,p)
2: c
3: c Input:
4: c x: N(0,1) Percent Point
5: c Output:
6: c p: Probability corresponding to x
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7: c
8: pi= 3.1415926535897932385
9: a0= 0.2316419

10: b1= 0.319381530
11: b2=-0.356563782
12: b3= 1.781477937
13: b4=-1.821255978
14: b5= 1.330274429
15: c
16: z=abs(x)
17: t=1.0/(1.0+a0*z)
18: pr=exp(-.5*z*z)/sqrt(2.0*pi)
19: p=pr*t*(b1+t*(b2+t*(b3+t*(b4+b5*t))))
20: if(x.gt.0.0) p=1.0-p
21: c
22: return
23: end

The maximum error of approximation ofp is 7.5× 10−8, which practically gives us

enough precision.
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Standard Normal Percent Points WhenX ∼ N(0,1), we approximatex such that

p = F(x) given p, whereF(x) indicates the standard normal cumulative distribution

function, i.e.,F(x) = P(X < x), andp denotes probability.

As shown in Odeh and Evans (1974), the approximation of a percent point is of the

form:

x = y+
S4(y)
T4(y)

= y+
p0 + p1y+ p2y2 + p3y3 + p4y4

q0 + q1y+ q2y2 + q3y3 + q4y4
,

wherey =
√
−2 log(p).

S4(y) andT4(y) denote polynomials degree 4.

The source code is shown insnperpt(p,x), wherex is obtained within 10−20 < p <

1− 10−20.

——— snperpt(p,x)———

1: subroutine snperpt(p,x)

230



2: c
3: c Input:
4: c p: Probability
5: c (err<p<1-err, where err=1e-20)
6: c Output:
7: c x: N(0,1) Percent Point corresponding to p
8: c
9: p0=-0.322232431088

10: p1=-1.0
11: p2=-0.342242088547
12: p3=-0.204231210245e-1
13: p4=-0.453642210148e-4
14: q0= 0.993484626060e-1
15: q1= 0.588581570495
16: q2= 0.531103462366
17: q3= 0.103537752850
18: q4= 0.385607006340e-2
19: ps=p
20: if( ps.gt.0.5 ) ps=1.0-ps
21: if( ps.eq.0.5 ) x=0.0
22: y=sqrt( -2.0*log(ps) )
23: x=y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)
24: & /((((y*q4+q3)*y+q2)*y+q1)*y+q0)
25: if( p.lt.0.5 ) x=-x
26: return
27: end
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The maximum error of approximation ofx is 1.5 × 10−8 if the function is evaluated

in double precision and 1.8× 10−6 if it is evaluated in single precision.

The approximation of the formx = y+ S2(y)/T3(y) by Hastings (1955) gives a max-

imum error of 4.5× 10−4.

To improve accuracy of the approximation, Odeh and Evans (1974) proposed the

algorithm above.

Normal Distribution: N(µ, σ2): The normal distribution denoted byN(µ, σ2) is

represented as follows:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2

,

for −∞ < x < ∞.

µ is called alocation parameterandσ2 is ascale parameter.

Mean, variance and the moment-generating function of the normal distributionN(µ, σ2)
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are given by:

E(X) = µ, V(X) = σ2, φ(θ) = exp
(
µθ +

1
2
σ2θ2

)
.

Whenµ = 0 andσ2 = 1 are taken, the above density function reduces to the standard

normal distribution in Section 9.6.2.

X = σZ + µ is normally distributed with meanµ and varianceσ2, whenZ ∼ N(0,1).

Therefore, the source code is represented bynrnd(ix,iy,ave,var,rn), where

ave andvar correspond toµ andσ2, respectively.

——— nrnd(ix,iy,ave,var,rn)———

1: subroutine nrnd(ix,iy,ave,var,rn)
2: c
3: c Use "nrnd(ix,iy,ave,var,rn)"
4: c together with "urnd(ix,iy,rn)"
5: c and "snrnd(ix,iy,rn)".
6: c
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7: c Input:
8: c ix, iy: Seeds
9: c ave: Mean

10: c var: Variance
11: c Output:
12: c rn: Normal Random Draw N(ave,var)
13: c
14: call snrnd(ix,iy,rn1)
15: rn=ave+sqrt(var)*rn1
16: return
17: end

nrnd(ix,iy,ave,var,rn) should be used together withurnd(ix,iy,rn) and

snrnd(ix,iy,rn). It is possible to replacesnrnd(ix,iy,rn) bysnrnd2(ix,iy,rn)

or snrnd3(ix,iy,rn).
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Exponential Distribution: The exponential distribution with parameterβ is writ-

ten as:

f (x) =


1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.

Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, φ(θ) =
1

1− βθ .

The relation between the exponential random variable the uniform random variable

is shown as follows:

WhenU ∼ U(0,1), consider the following transformation:

X = −β log(U).
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Then,X is an exponential distribution with parameterβ.

Because the transformation is given byu = exp(−x/β), the Jacobian is:

J =
du
dx
= −1
β

exp
(
−1
β

x
)
.

By transforming the variables, the density function ofX is represented as:

f (x) = |J| fu
(
exp(−1

β
x)

)
=

1
β

exp
(
−1
β

x
)
,

wheref (·) and fu(·) denote the probability density functions ofX andU, respectively.

Note that 0< x < ∞ because ofx = −β log(u) and 0< u < 1.

Thus, the exponential distribution with parameterβ is obtained from the uniform

random draw between zero and one.
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——— exprnd(ix,iy,beta,rn)———

1: subroutine exprnd(ix,iy,beta,rn)
2: c
3: c Use "exprnd(ix,iy,beta,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c beta: Parameter
9: c Output:

10: c rn: Exponential Random Draw
11: c with Parameter beta
12: c
13: call urnd(ix,iy,rn1)
14: rn=-beta*log(rn1)
15: return
16: end

exprnd(ix,iy,beta,rn) should be used together withurnd(ix,iy,rn).

Whenβ = 2, the exponential distribution reduces to the chi-square distribution with
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2 degrees of freedom.

Gamma Distribution: G(α, β): The gamma distribution with parametersα andβ,

denoted byG(α, β), is represented as follows:

f (x) =


1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,

for α > 0 andβ > 0, whereα is called ashape parameterandβ denotes a scale

parameter.

Γ(·) is called thegamma function, which is the following function ofα:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ
(1
2

)
= 2Γ

(3
2

)
=
√
π.
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Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, φ(θ) =
1

(1− βθ)α .

The gamma distribution withα = 1 is equivalent to the exponential distribution

shown in Section 9.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parameters

α andβ are derived as follows.

The derivation shown in this section deals with the case whereα is a positive integer,

i.e.,α = 1,2,3, · · ·.

The random variablesZ1, Z2, · · ·, Zα are assumed to be mutually independently dis-

tributed as exponential random variables with parameterβ, which are shown in Sec-

tion 9.6.2.

DefineX =
∑α

i=1 Zi.
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Then,X has distributed as a gamma distribution with parametersα andβ, whereα

should be an integer, which is proved as follows:

φx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi ) =
α∏

i=1

E(eθZi ) =
α∏

i=1

φi(θ) =
α∏

i=1

1
1− βθ

=
1

(1− βθ)α ,

whereφx(θ) andφi(θ) represent the moment-generating functions ofX andZi, respec-

tively.

Thus, sum of theα exponential random variables yields the gamma random variable

with parametersα andβ.

Therefore, the source code which generates gamma random numbers is shown in

gammarnd(ix,iy,alpha,beta,rn).
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——— gammarnd(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd(ix,iy,alpha,beta,rn)"
4: c together with "exprnd(ix,iy,beta,rn)"
5: c and "urnd(ix,iy,rn)".
6: c
7: c Input:
8: c ix, iy: Seeds
9: c alpha: Shape Parameter (which should be an integer)

10: c beta: Scale Parameter
11: c Output:
12: c rn: Gamma Random Draw with alpha and beta
13: c
14: rn=0.0
15: do 1 i=1,nint(alpha)
16: call exprnd(ix,iy,beta,rn1)
17: 1 rn=rn+rn1
18: return
19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together withurnd(ix,iy,rn) and

exprnd(ix,iy,rn).

241



As pointed out above,α should be an integer in the source code.

Whenα is large, we have serious problems computationally in the above algorithm,

becauseα exponential random draws have to be generated to obtain one gamma

random draw with parametersα andβ.

Whenα = k/2 andβ = 2, the gamma distribution reduces to the chi-square distribu-

tion with k degrees of freedom.

Chi-Square Distribution: χ2(k): The chi-square distribution withk degrees of

freedom, denoted byχ2(k), is written as follows:

f (x) =


1

2k/2Γ( k
2)

x
k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

wherek is a positive integer.
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The chi-square distribution is equivalent to the gamma distribution withβ = 2 and

α = k/2.

The chi-square distribution withk = 2 reduces to the exponential distribution with

β = 2, shown in Section 9.6.2.

Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, φ(θ) =
1

(1− 2θ)k/2
.

F Distribution: F(m,n): The F distribution withm andn degrees of freedom,

denoted byF(m, n), is represented as:

f (x) =


Γ(m+n

2 )

Γ(m
2 )Γ(n

2)

(m
n

)m
2 x

m
2 −1

(
1+

m
n

x
)−m+n

2
, for 0 < x < ∞,

0, otherwise,

wherem andn are positive integers.
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Mean and variance are given by:

E(X) =
n

n− 2
, for n > 2,

V(X) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, for n > 4.

The moment-generating function ofF distribution does not exist.

OneF random variable is derived from two chi-square random variables.

Suppose thatU andV are independently distributed as chi-square random variables,

i.e.,U ∼ χ2(m) andV ∼ χ2(n).

Then, it is shown thatX =
U/m
V/n

has aF distribution with (m, n) degrees of freedom.

t Distribution: t(k): The t distribution (or Student’st distribution) withk degrees

of freedom, denoted byt(k), is given by:

f (x) =
Γ( k+1

2 )

Γ( k
2)

1
√

kπ

(
1+

x2

k

)− k+1
2
,
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for −∞ < x < ∞, wherek does not have to be an integer but conventionally it is a

positive integer.

Whenk is small, thet distribution has fat tails.

Thet distribution withk = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, thet distribution approaches the standard normal distribution,

i.e., t(∞) = N(0,1), which is easily shown by using the definition ofe, i.e.,

(
1+

x2

k

)− k+1
2
=

(
1+

1
h

)− hx2+1
2
=

(
(1+

1
h

)h
)− 1

2 x2(
1+

1
h

)− 1
2 −→ e−

1
2 x2
,

whereh = k/x2 is set andh goes to infinity (equivalently,k goes to infinity).

Thus, a kernel of thet distribution is equivalent to that of the standard normal distri-

bution.

Therefore, it is shown that ask is large thet distribution approaches the standard

normal distribution.
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Mean and variance of thet distribution withk degrees of freedom are obtained as:

E(X) = 0, for k > 1,

V(X) =
k

k− 2
, for k > 2.

In the case of thet distribution, the moment-generating function does not exist, be-

cause all the moments do not necessarily exist.

For thet random variableX, we have the fact that E(Xp) exists whenp is less thank.

Therefore, all the moments exist only whenk is infinity.

Onet random variable is obtained from chi-square and standard normal random vari-

ables.

Suppose thatZ ∼ N(0,1) is independent ofU ∼ χ2(k).

Then,X = Z/
√

U/k has at distribution withk degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generatingt random draws, which is
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based on a transformed acceptance/rejection method, which will be discussed later.

9.6.3 Inverse Transform Method

In Section 9.6.2, we have introduced the probability density functions which can be

derived by transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transform

method are presented and the corresponding random number generators are shown.

The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution functionF(·).

WhenU ∼ U(0,1), F−1(U) is equal toX.

The proof is obtained from the following fact:

P(X < x) = P(F−1(U) < x) = P(U < F(x)) = F(x).

In other words, letu be a random draw ofU, whereU ∼ U(0,1), andF(·) be a
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distribution function ofX.

When we perform the following inverse transformation:

x = F−1(u),

x implies the random draw generated fromF(·).

The inverse transform method shown above is useful whenF(·) can be computed

easily and the inverse distribution function, i.e.,F−1(·), has a closed form.

For example, recall thatF(·) cannot be obtained explicitly in the case of the normal

distribution because the integration is included in the normal cumulative distribution

(conventionally we approximate the normal cumulative distribution when we want to

evaluate it).

If no closed form ofF−1(·) is available butF(·) is still computed easily, an iterative

method such as the Newton-Raphson method can be applied.

Definek(x) = F(x) − u.
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The first order Taylor series expansion aroundx = x∗ is:

0 = k(x) ≈ k(x∗) + k′(x∗)(x− x∗).

Then, we obtain:

x = x∗ − k(x∗)
k′(x∗)

= x∗ − F(x∗) − u
f (x∗)

.

Replacingx andx∗ by x(i) andx(i−1), we have the following iteration:

x(i) = x(i−1) − F(x(i−1)) − u
f (x(i−1))

,

for i = 1, 2, · · ·.

The convergence value ofx(i) is taken as a solution of equationu = F(x).

Thus, based onu, a random drawx is derived fromF(·).

However, we should keep in mind that this procedure takes a lot of time computation-

ally, because we need to repeat the convergence computation shown above as many
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times as we want to generate.

9.6.4 UsingU(0,1): Discrete Type

In Sections 9.6.2 and 9.6.3, the random number generators from continuous distri-

butions are discussed, i.e., the transformation of variables in Section 9.6.2 and the

inverse transform method in Section 9.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we deal

with some discrete distributions and consider generating their random numbers.

As a representative random number generation method, we can consider utilizing the

inverse transform method in the case of discrete random variables.

Suppose that a discrete random variableX can takex1, x2, · · ·, xn, where the proba-

bility which X takesxi is given by f (xi), i.e.,P(X = xi) = f (xi).

Generate a uniform random drawu, which is between zero and one.
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Consider the case where we haveF(xi−1) ≤ u < F(xi), whereF(xi) = P(X ≤ xi) and

F(x0) = 0.

Then, the random draw ofX is given byxi.
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9.7 Sampling Method II: Random Number Generation

9.7.1 Rejection Sampling (棄却法)

We want to generate random draws fromf (x), called thetarget density (目的密度),

but we consider the case where it is hard to sample fromf (x).
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Now, suppose that it is easy to generate a random draw from another densityf∗(x),

called thesampling density (サンプリング密度) or proposal density (提案密度).

In this case, random draws ofX from f (x) are generated by utilizing the random

draws sampled fromf∗(x).

Let x be the the random draw ofX generated fromf (x).

Suppose thatq(x) is equal to the ratio of the target density and the sampling density,

i.e.,

q(x) =
f (x)
f∗(x)
. (19)

Then, the target density is rewritten as:

f (x) = q(x) f∗(x).

Based onq(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of sam-
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pling techniques, i.e.,rejection sampling (棄却法) in this section,importance re-

sampling (重点的リサンプリング法) in Section 9.7.2 and theMetropolis-Hastings

algorithm (メトロポリス－ハスティング・アルゴリズム) in Section 9.7.4.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random draws ofx from f (x), the functional form ofq(x) should

be known and random draws have to be easily generated fromf∗(x).

In order for rejection sampling to work well, the following condition has to be satis-

fied:

q(x) =
f (x)
f∗(x)

< c,

wherec is a fixed value.

That is,q(x) has an upper limit.

As discussed below, 1/c is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a lot
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of time.

Under the conditionq(x) < c for all x, we may minimizec.

That is, since we haveq(x) < supx q(x) ≤ c, we may take the supremum ofq(x) for c.

Thus, in order for rejection sampling to work efficiently, c should be the supremum

of q(x) with respect tox, i.e.,c = supx q(x).

Let x∗ be the random draw generated fromf∗(x), which is a candidate of the random

draw generated fromf (x).

Defineω(x) as:

ω(x) =
q(x)

supz q(z)
=

q(x)
c
,

which is called theacceptance probability (採択確率).

Note that we have 0≤ ω(x) ≤ 1 when supz q(z) = c < ∞.

The supremum supz q(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection
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sampling.

A random draw ofX is generated fromf (x) in the following way:

(i) Generatex∗ from f∗(x) and computeω(x∗).

(ii) Setx = x∗ with probabilityω(x∗) and go back to (i) otherwise.

In other words, generatingu from a uniform distribution between zero and one,

takex = x∗ if u ≤ ω(x∗) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.

Let U be the uniform random variable between zero and one,X be the random vari-

able generated from the target densityf (x),

X∗ be the random variable generated from the sampling densityf∗(x), andx∗ be the

realization (i.e., the random draw) generated from the sampling densityf∗(x).
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Consider the probabilityP(X ≤ x|U ≤ ω(x∗)), which should be the cumulative distri-

bution ofX, F(x), from Step (ii).

The probabilityP(X ≤ x|U ≤ ω(x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(x∗)) =
P(X ≤ x,U ≤ ω(x∗))

P(U ≤ ω(x∗))
,

where the numerator is represented as:

P(X ≤ x,U ≤ ω(x∗)) =
∫ x

−∞

∫ ω(t)

0
fu,∗(u, t) du dt =

∫ x

−∞

∫ ω(t)

0
fu(u) f∗(t) du dt

=

∫ x

−∞

(∫ ω(t)

0
fu(u) du

)
f∗(t) dt =

∫ x

−∞

(∫ ω(t)

0
du

)
f∗(t) dt

=

∫ x

−∞

[
u
]ω(t)

0
f∗(t) dt =

∫ x

−∞
ω(t) f∗(t) dt =

∫ x

−∞

q(t)
c

f∗(t) dt =
F(x)

c
,

and the denominator is given by:

P(U ≤ ω(x∗)) = P(X ≤ ∞,U ≤ ω(x∗)) =
F(∞)

c
=

1
c
.
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In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU andX∗ are independently generated in Steps (i) and

(ii) we have fu,∗(u, x) = fu(u) f∗(x), wherefu(u) and f∗(x) denote the marginal density

of U and that ofX∗.

The density function ofU is given by fu(u) = 1, because the distribution ofU is

assumed to be uniform between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

ω(x) =
q(x)

c
=

f (x)
c f∗(x)

,

ω(x) f∗(x) = f (x)/c is obtained.

Finally, substituting the numerator and denominator shown above, we have the fol-

lowing equality:

P(X ≤ x|U ≤ ω(x∗)) = F(x).
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Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the most efficient sampling method in the sense

of precision of the random draws, because using rejection sampling we can generate

mutually independently distributed random draws.

However, for rejection sampling we need to obtain thec which is greater than or

equal to the supremum ofq(x).

If the supremum is infinite, i.e., ifc is infinite, ω(x) is zero and accordingly the

candidatex∗ is never accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.

Let NR be the average number of the rejected random draws.

We need (1+ NR) random draws in average to generate one random number from

f (x).

In other words, the acceptance rate is given by 1/(1+ NR) in average, which is equal
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to 1/c in average because ofP(U ≤ ω(x∗)) = 1/c.

Therefore, to obtain one random draw fromf (x), we have to generate (1+NR) random

draws fromf∗(x) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and

Geweke (1996) for rejection sampling.

To examine the condition thatω(x) is greater than zero, i.e., the condition that the

supremum ofq(x) exists, consider the case wheref (x) and f∗(x) are distributed as

N(µ, σ2) andN(µ∗, σ2
∗), respectively.

q(x) is given by:

q(x) =
f (x)
f∗(x)

=

(2πσ2)−1/2 exp
(
− 1

2σ2
(x− µ)2

)
(2πσ2

∗)−1/2 exp
(
− 1

2σ2
∗
(x− µ∗)2

)
=
σ∗
σ

exp
(
− 1

2σ2
(x− µ)2 +

1
2σ2
∗
(x− µ∗)2

)
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=
σ∗
σ

exp

(
− 1

2
σ2
∗ − σ2

σ2σ2
∗

(
x− µσ

2
∗ − µ∗σ2

σ2
∗ − σ2

)2
+

1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.

If σ2
∗ < σ

2, q(x) goes to infinity asx is large.

In the case ofσ2
∗ > σ

2, the supremum ofq(x) exists, which condition implies that

f∗(x) should be more broadly distributed thanf (x).

In this case, the supremum is obtained as:

c = sup
x

q(x) =
σ∗
σ

exp
(1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.

Whenσ2 = σ2
∗ andµ = µ∗, we haveq(x) = 1, which impliesω(x) = 1.

That is, a random draw from the sampling densityf∗(x) is always accepted as a

random draw from the target densityf (x), where f (x) is equivalent tof∗(x) for all x.

If σ2 = σ2
∗ andµ , µ∗, the supremum ofq(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

From the definition ofω(x), we have the inequalityf (x) ≤ c f∗(x).
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Figure 1: Rejection Sampling

X

f (x)

��	
c f∗(x)

x∗

 f (x∗)

c f∗(x∗)



c f∗(x) and f (x) are displayed in Figure 1.

The ratio of f (x∗) andc f∗(x∗) corresponds to the acceptance probability atx∗, i.e.,

ω(x∗).

Thus, for rejection sampling,c f∗(x) has to be greater than or equal tof (x) for all x,

which implies that the sampling densityf∗(x) needs to be more widely distributed
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than the target densityf (x).

Finally, note that the above discussion holds without any modification even though

f (x) is a kernel of the target density, i.e., even thoughf (x) is proportional to the

target density, because the constant term is canceled out between the numerator and

denominator (remember thatω(x) = q(x)/ supz q(z)).

Normal Distribution: N(0, 1): First, denote the half-normal distribution by:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

The half-normal distribution above corresponds to the positive part of the standard

normal probability density function.

Using rejection sampling, we consider generating standard normal random draws

based on the half-normal distribution.

270



We take the sampling density as the exponential distribution:

f∗(x) =


λe−λx, for 0 ≤ x < ∞,

0, otherwise,

whereλ > 0. Sinceq(x) is defined asq(x) = f (x)/ f∗(x), the supremum ofq(x) is

given by:

c = sup
x

q(x) =
2

λ
√

2π
e

1
2λ

2
.

which depends on parameterλ.

Remember thatP(U ≤ ω(x∗)) = 1/c corresponds to the acceptance probability.

Since we need to increase the acceptance probability to reduce computational time,

we want to obtain theλ which minimizes supx q(x) with respect toλ.

Solving the minimization problem,λ = 1 is obtained.
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Substitutingλ = 1, the acceptance probabilityω(x) is derived as:

ω(x) = e−
1
2 (x−1)2,

for 0 < x < ∞.

Remember that− logU has an exponential distribution withλ = 1 whenU ∼ U(0,1).

Therefore, the algorithm is represented as follows.

(i) Generate two independent uniform random drawsu1 andu2 between zero and

one.

(ii) Computex∗ = − logu2, which indicates the exponential random draw gener-

ated from the target densityf∗(x).

(iii) Setx = x∗ if u1 ≤ exp(−1
2(x∗ − 1)2), i.e.,−2 log(u1) ≥ (x∗ − 1)2, and return to

(i) otherwise.

x in Step (iii) yields a random draw from the half-normal distribution.
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To generate a standard normal random draw utilizing the half-normal random draw

above, we may put the positive or negative sign randomly withx.

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random drawu3 between zero and one, and setz = x if

u3 ≤ 1/2 andz= −x otherwise.

z gives us a standard normal random draw.

Note that the number of iteration in Step (iii) is given byc =
√

2e/π ≈ 1.3155 in

average, or equivalently, the acceptance probability in Step (iii) is 1/c ≈ 0.7602.

The source code for this standard normal random number generator is shown in

snrnd6(ix,iy,rn).
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——— snrnd6(ix,iy,rn)———

1: subroutine snrnd6(ix,iy,rn)
2: c
3: c Use "snrnd6(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: 1 call urnd(ix,iy,rn1)
12: call urnd(ix,iy,rn2)
13: y=-log(rn2)
14: if( -2.*log(rn1).lt.(y-1.)**2 ) go to 1
15: call urnd(ix,iy,rn3)
16: if(rn3.le.0.5) then
17: rn= y
18: else
19: rn=-y
20: endif
21: return
22: end
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Note thatsnrnd6(ix,iy,rn) should be used together withurnd(ix,iy,rn).

Thus, utilizing rejection sampling, we have the standard normal random number gen-

erator, which is based on the half-normal distribution.

Gamma Distribution: G(α,1) for 0 < α ≤ 1 and 1 < α: In this section, utilizing

rejection sampling we show an example of generating random draws from the gamma

distribution with parametersα andβ = 1, i.e.,G(α,1).

WhenX ∼ G(α,1), the density function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

Ahrens and Dieter (1974) consider the case of 0< α ≤ 1, which is discussed in this

section.

The case ofα > 1 will be discussed later.
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Using the rejection sampling, the composition method and the inverse transform

method, we consider generating random draws fromG(α,1) for 0< α ≤ 1.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined as:

I1(x) =

1, if 0 < x ≤ 1,

0, otherwise,
I2(x) =

1, if 1 < x,

0, otherwise.

Random number generation from the sampling density above utilizes the composition

method and the inverse transform method.

The cumulative distribution related tof∗(x) is given by:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.
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Note that 0< α ≤ 1 is required because the sampling density for 0< x ≤ 1 has to

satisfy the property that the integration is equal to one.

The acceptance probabilityω(x) = q(x)/ supz q(z) for q(x) = f (x)/ f∗(x) is given by:

ω(x) = e−xI1(x) + xα−1I2(x).

Moreover, the mean number of trials until success, i.e.,c = supz q(z) is represented

as:

c =
α + e
αeΓ(α)

,

which depends onα and is not greater than 1.39.

Note thatq(x) takes a maximum value atx = 1.

The random number generation procedure is given by:

(i) Generate a uniform random drawu1 from U(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).
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(ii) Obtainω(x∗) = e−x∗ if u1 ≤ e/(α + e) andω(x∗) = x∗α−1 if u1 > e/(α + e).

(iii) Generate a uniform random drawu2 from U(0,1), and setx = x∗ if u2 ≤ ω(x∗)

and return to (i) otherwise.

In Step (i) a random drawx∗ from f∗(x) can be generated by the inverse transform

method discussed in Section 9.6.3.

——— gammarnd2(ix,iy,alpha,rn)———

1: subroutine gammarnd2(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd2(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (0<alpha \le 1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
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13: e=2.71828182845905
14: 1 call urnd(ix,iy,rn0)
15: call urnd(ix,iy,rn1)
16: if( rn0.le.e/(alpha+e) ) then
17: rn=( (alpha+e)*rn0/e )**(1./alpha)
18: if( rn1.gt.e**(-rn) ) go to 1
19: else
20: rn=-log((alpha+e)*(1.-rn0)/(alpha*e))
21: if( rn1.gt.rn**(alpha-1.) ) go to 1
22: endif
23: return
24: end

Note thatgammarnd2(ix,iy,alpha,rn) should be used withurnd(ix,iy,rn).

In gammarnd2(ix,iy,alpha,rn), the case of 0< α ≤ 1 has been shown.

Now, using rejection sampling, the case ofα > 1 is discussed in Cheng (1977, 1998).
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The sampling density is chosen as the following cumulative distribution:

F∗(x) =


xλ

δ + xλ
, for x > 0,

0, otherwise,

which is sometimes called thelog-logistic distribution .

Then, the probability density function,f∗(x), is given by:

f∗(x) =


λδxλ−1

(α + xλ)2
, for x > 0,

0, otherwise.

By the inverse transform method, the random draw fromf∗(x), denoted byx, is gen-

erated as follows:

x =
( δu
1− u

)1/λ
,

whereu denotes the uniform random draw generated fromU(0,1).

280



For the two parameters,λ =
√

2α − 1 andδ = αλ are chosen, taking into account

minimizing c = supx q(x) = supx f (x)/ f∗(x) with respect toδ andλ (note thatλ and

δ are approximately taken, since it is not possible to obtain the explicit solution ofδ

andλ).

Then, the number of rejections in average is given by:

c =
4ααe−α

Γ(α)
√

2α − 1
,

which is computed as:

1.47 whenα = 1, 1.25 whenα = 2, 1.17 whenα = 5,

1.15 whenα = 10, 1.13 whenα = ∞.

Thus, the average number of rejections is quite small for allα.

The random number generation procedure is given by:

(i) Seta = 1/
√

2α − 1, b = α − log 4 andc = α +
√

2α − 1.
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(ii) Generate two uniform random drawsu1 andu2 from U(0, 1).

(iii) Sety = a log
u1

1− u1
, x∗ = αey, z= u2

1u2 andr = b+ cy− x.

(iv) Takex = x∗ if r ≥ logz and return to (ii) otherwise.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (iii)

and (iv), which is as follows:

(iii)’ Takex = x∗ if r ≥ 4.5z− d and go to (iv) otherwise.

d is defined asd = 1+ log 4.5, which has to be computed in Step (i).

Note that we have the relation:θz− (1 + logθ) ≥ logz for all z > 0 and any given

θ > 0, because logz is a concave function ofz. According to Cheng (1977), the

choice ofθ is not critical and the suggested value isθ = 4.5, irrespective ofα.

The source code for Steps (i) – (iv) and (iii)’ is given bygammarnd3(ix,iy,alpha,rn).
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——— gammarnd3(ix,iy,alpha,rn)———

1: subroutine gammarnd3(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd3(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (1<alpha)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: a=1./sqrt(2.*alpha-1.)
15: b=alpha-log(4.)
16: c=alpha+sqrt(2.*alpha-1.)
17: d=1.+log(4.5)
18: 1 call urnd(ix,iy,u1)
19: call urnd(ix,iy,u2)
20: y=a*log(u1/(1.-u1))
21: rn=alpha*(e**y)
22: z=u1*u1*u2
23: r=b+c*y-rn
24: if( r.ge.4.5*z-d ) go to 2
25: if( r.lt.log(z) ) go to 1
26: 2 return
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27: end

Note thatgammarnd3(ix,iy,alpha,rn) requiresurnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Lines 17

and 24 fromgammarnd3, because evaluating theif(...) sentences in Lines 24 and

25 sometimes takes more time than computing the logarithm in Line 25.

Thus, using bothgammarnd2 andgammarnd3, we have the gamma random number

generator with parametersα > 0 andβ = 1.

9.7.2 Importance Resampling (重点的リサンプリング)

The importance resamplingmethod also utilizes the sampling densityf∗(x), where

we should choose the sampling density from which it is easy to generate random
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draws.

Let x∗i be theith random draw ofx generated fromf∗(x).

The acceptance probability is defined as:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

,

whereq(·) is represented as equation (19).

To obtain a random draws fromf (x), we perform the following procedure:

(i) Generatex∗j from the sampling densityf∗(x) for j = 1,2, · · · ,n.

(ii) Computeω(x∗j ) for all j = 1,2, · · · ,n.

(iii) Generate a uniform random drawu between zero and one and takex = x∗j when

Ω j−1 ≤ u < Ω j, whereΩ j =
∑ j

i=1ω(x∗i ) andΩ0 ≡ 0.

Thex obtained in Step (iii) represents a random draw from the target densityf (x).
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In Step (ii), all the probability weightsω(x∗j ), j = 1,2, · · · , n, have to be computed

for importance resampling.

Thus, we need to generaten random draws from the sampling densityf∗(x) in ad-

vance.

When we want to generate more random draws (say,N random draws), we may

repeat Step (iii)N times.

In the importance resampling method, there aren realizations, i.e.,x∗1, x∗2, · · ·, x∗n,

which are mutually independently generated from the sampling densityf∗(x).

The cumulative distribution off (x) is approximated by the following empirical dis-

tribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x

−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt

≈
(1/n)

∑n
i=1 q(x∗i )I (x, x

∗
i )

(1/n)
∑n

j=1 q(x∗j )
=

n∑
i=1

ω(x∗i )I (x, x
∗
i ),
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whereI (x, x∗i ) denotes the indicator function which satisfiesI (x, x∗i ) = 1 whenx ≥ x∗i

andI (x, x∗i ) = 0 otherwise.

P(X = x∗i ) is approximated asω(x∗i ).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance

resampling procedure.

As mentioned in Section 9.7.1, for rejection sampling,f (x) may be a kernel of the

target density, or equivalently,f (x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.

That is, f (x) may be proportional to the target density for importance resampling,

too.

To obtain a random draws fromf (x), importance resampling requiresn random draws

from the sampling densityf∗(x), but rejection sampling needs (1+NR) random draws

from the sampling densityf∗(x).
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For importance resampling, when we haven different random draws from the sam-

pling density, we pick up one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because

we have to compute all the probability weightsΩ j, j = 1,2, · · · ,n, in advance even

when we want only one random draw.

When we want to generateN random draws, importance resampling requiresn ran-

dom draws from the sampling densityf∗(x), but rejection sampling needsn(1+ NR)

random draws from the sampling densityf∗(x).

Thus, asN increases, importance resampling is relatively less computational than

rejection sampling.

Note thatN < n is recommended for the importance resampling method.

In addition, when we haveN random draws from the target densityf (x), some of the

random draws take the exactly same values for importance resampling, while all the
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random draws take the different values for rejection sampling.

Therefore, we can see that importance resampling is inferior to rejection sampling in

the sense of precision of the random draws.

Normal Distribution: N(0,1): Again, we consider an example of generating stan-

dard normal random draws based on the half-normal distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

We take the sampling density as the following exponential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,

which is exactly the same sampling density as in Section 9.7.1.
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Given the random drawsx∗i , i = 1, · · · ,n, generated from the above exponential den-

sity f∗(x), the acceptance probabilityω(x∗i ) is given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )
=

exp(−1
2x∗2i + x∗i )∑n

j=1 exp(−1
2x∗2j + x∗j )

.

Therefore, a random draw from the half-normal distribution is generated as follows.

(i) Generate uniform random drawsu1, u2, · · ·, un from U(0,1).

(ii) Obtainx∗i = − log(ui) for i = 1,2, · · · ,n.

(iii) Computeω(x∗i ) for i = 1, 2, · · · ,n.

(iv) Generate a uniform random drawv1 from U(0,1).

(v) Setx = x∗j whenΩ j−1 ≤ v1 < Ω j for Ω j =
∑ j

i=1ω(x∗i ) andΩ0 = 0.

x is taken as a random draw generated from the half-normal distributionf (x).

In order to have a standard normal random draw, we additionally put the following

step.
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(vi) Generate a uniform random drawv2 from U(0,1), and setz= x if v2 ≤ 1/2 and

z= −x otherwise.

z represents a standard normal random draw.

Note that Step (vi) above corresponds to Step (iv) in Section 9.7.1.

Steps (i) – (vi) shown above represent the generator which yields one standard normal

random draw.

When we wantN standard normal random draws, Steps (iv) – (vi) should be repeated

N times.

In Steps (iv) and (v), a random draw fromf (x) is generated based onΩ j for j =

1,2, · · · ,n.
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Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

which is the same function as ingammarnd2 of Section 9.7.1, where bothI1(x) and

I2(x) denote the indicator functions defined in Section 9.7.1.

The probability weights are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )
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=
x∗α−1

i e−x∗i /(x∗α−1
i I1(x∗i ) + e−x∗i I2(x∗i ))∑n

j=1 x∗α−1
j e−x∗j /(x∗α−1

j I1(x∗j ) + e−x∗j I2(x∗j ))
,

for i = 1, 2, · · · ,n.

The cumulative distribution function off∗(x) is represented as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.

Therefore,x∗i can be generated by utilizing both the composition method and the

inverse transform method.

Givenx∗i , computeω(x∗i ) for i = 1,2, · · · ,n, and takex = x∗i with probabilityω(x∗i ).

Summarizing above, the random number generation procedure for the gamma distri-

bution is given by:

(i) Generate uniform random drawsui, i = 1,2, · · · ,n, from U(0,1), and setx∗i =
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((α/e+ 1)ui)
1/α andω(x∗i ) = e−x∗i if ui ≤ e/(α + e) and takex∗i = − log((1/e+

1/α)(1− ui)) andω(x∗i ) = x∗α−1
i if ui > e/(α + e) for i = 1,2, · · · , n.

(ii) ComputeΩi =
∑i

j=1ω(x∗j ) for i = 1,2, · · · ,n, whereΩ0 = 0.

(iii) Generate a uniform random drawv from U(0,1), and takex = x∗i whenΩi−1 ≤

v < Ωi.

As mentioned above, this algorithm yields one random draw.

If we wantN random draws, Step (iii) should be repeatedN times.

Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.
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The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.

The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j )

=
f (x∗i )/ f∗(x

∗
i )∑n

j=1 f (x∗j )/ f∗(x
∗
j )
=

x∗α−1
i (1− x∗i )

β−1∑n
j=1 x∗α−1

j (1− x∗j )
β−1
.

Therefore, to generate a random draw fromf (x), first generatex∗i , i = 1,2, · · · ,n,

from U(0, 1), second computeω(x∗i ) for i = 1,2, · · ·,n, and finally takex = x∗i with

probabilityω(x∗i ).

We have shown three examples of the importance resampling procedure in this sec-

tion.
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One of the advantages of importance resampling is that it is really easy to construct

a Fortran source code.

However, the disadvantages are that (i) importance resampling takes quite a long time

because we have to obtain all the probability weights in advance and (ii) importance

resampling requires a great amount of storages forx∗i andΩi for i = 1,2, · · · ,n.

9.7.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アルゴ
リズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distri-

butions are compared with respect to precision of the random draws from the target

density f (x).

TheMetropolis-Hastings algorithm is also one of the sampling methods to generate

random draws from any target densityf (x), utilizing sampling densityf∗(x), even in

the case where it is not easy to generate random draws from the target density.
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Let us define the acceptance probability by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

,1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
,

whereq(·) is defined as equation (19).

By the Metropolis-Hastings algorithm, a random draw fromf (x) is generated in the

following way:

(i) Take the initial value ofx asx−M.

(ii) Generatex∗ from f∗(x) and computeω(xi−1, x∗) givenxi−1.

(iii) Setxi = x∗ with probabilityω(xi−1, x∗) andxi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

In the above algorithm,x1 is taken as a random draw fromf (x).

When we want more random draws (say,N), we replace Step (iv) by Step (iv)’, which

is represented as follows:
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(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random drawsx−M, x−M+1,

· · ·, x0, x1, x2, · · ·, xN, wherex−M, x−M+1, · · ·, x0 are discarded from further consider-

ation.

The lastN random draws are taken as the random draws generated from the target

density f (x).

Thus,N denotes the number of random draws.

M is sometimes called theburn-in period .

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 9.7.1.

We show thatxi is the random draw generated from the target densityf (x) under the

assumptionxi−1 is generated fromf (x).

Let U be the uniform random variable between zero and one,X be the random vari-
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able which has the density functionf (x) andx∗ be the realization (i.e., the random

draw) generated from the sampling densityf∗(x).

Consider the probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)), which should be the cumulative

distribution ofX, i.e.,F(x).

The probabilityP(X ≤ x|U ≤ ω(xi−1, x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) =

P(X ≤ x,U ≤ ω(xi−1, x∗))
P(U ≤ ω(xi−1, x∗))

,

where the numerator is represented as:

P(X ≤ x,U ≤ ω(xi−1, x
∗)) =

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du

)
f∗(t) dt =

∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)
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and the denominator is given by:

P(U ≤ ω(xi−1, x
∗)) = P(X ≤ ∞,U ≤ ω(xi−1, x

∗)) =
f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.

The density function ofU is given by fu(u) = 1 for 0< u < 1.

Let X∗ be the random variable which has the density functionf∗(x).

In the numerator,fu,∗(u, x) denotes the joint density of random variablesU andX∗.

Because the random draws ofU andX∗ are independently generated, we havefu,∗(u, x) =

fu(u) f∗(x) = f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following

equality:

P(X ≤ x|U ≤ ω(xi−1, x
∗)) = F(x).

Thus, thex∗ which satisfiesu ≤ ω(xi−1, x∗) indicates a random draw fromf (x).
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We setxi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied.xi−1 is already assumed to be a

random draw fromf (x).

Therefore, it is shown thatxi is a random draw fromf (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note thatf (x) may

be a kernel of the target density, or equivalently,f (x) may be proportional to the

target density.

The same algorithm as Steps (i) – (iv) can be applied to the case wheref (x) is pro-

portional to the target density, becausef (x∗) is divided by f (xi−1) in ω(xi−1, x∗).

As a general formulation of the sampling density, instead off∗(x), we may take the

sampling density as the following form:f∗(x|xi−1), where a candidate random draw

x∗ depends on the (i − 1)th random draw, i.e.,xi−1.

For choice of the sampling densityf∗(x|xi−1), Chib and Greenberg (1995) pointed out
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as follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support off (x), which

implies thatf∗(x|i−1) should not have too large variance and too small variance, com-

pared withf (x).

See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan

(1994), Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casella (1999)

and so on for the Metropolis-Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is formu-

lated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv,

where f ∗(u|v) denotes the transition distribution, which is characterized by Step (iii).

xi−1 is generated fromfi−1(·) andxi is from f ∗(·|xi−1).

xi depends only onxi−1, which is called theMarkov property .
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The sequence{· · ·, xi−1, xi, xi+1, · · ·} is called theMarkov chain .

The Monte Carlo statistical methods with the sequence{· · ·, xi−1, xi, xi+1, · · ·} is called

theMarkov chain Monte Carlo (MCMC) .

From Step (iii), f ∗(u|v) is given by:

f ∗(u|v) = ω(v,u) f∗(u|v) +
(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u), (20)

wherep(x) denotes the following probability function:

p(u) =

1, if u = v,

0, otherwise.

Thus,x is generated fromf∗(u|v) with probabilityω(v,u) and fromp(u) with proba-

bility 1 −
∫
ω(v, u) f∗(u|v) du.

Now, we want to showfi(u) = fi−1(u) = f (u) as i goes to infinity, which implies

that bothxi and xi−1 are generated from the invariant distribution functionf (u) for

sufficiently largei.
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To do so, we need to consider the condition satisfying the following equation:

f (u) =
∫

f ∗(u|v) f (v) dv. (21)

Equation (21) holds if we have the following equation:

f ∗(v|u) f (u) = f ∗(u|v) f (v), (22)

which is called thereversibility condition .

By taking the integration with respect tov on both sides of equation (22), equation

(21) is obtained.

Therefore, we have to check whether thef ∗(u|v) shown in equation (20) satisfies

equation (22).

It is straightforward to verify that

ω(v, u) f∗(u|v) f (v) = ω(u, v) f∗(v|u) f (u),(
1−

∫
ω(v,u) f∗(u|v) du

)
p(u) f (v) =

(
1−

∫
ω(u, v) f∗(v|u) dv

)
p(v) f (u).
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Thus, asi goes to infinity,xi is a random draw from the target densityf (·).

If xi is generated fromf (·), thenxi+1 is also generated fromf (·).

Therefore, all thexi, xi+1, xi+2, · · · are taken as random draws from the target density

f (·).

The requirement for uniform convergence of the Markov chain is that the chain

should beirreducible andaperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(x0) be the set of possible values ofxi from starting pointx0.

If there exist two possible starting values, sayx∗ andx∗∗, such thatCi(x∗)∩Ci(x∗∗) = ∅

(i.e., empty set) for alli, then the same limiting distribution cannot be reached from

both starting points.

Thus, in the case ofCi(x∗) ∩Ci(x∗∗) = ∅, the convergence may fail.

A Markov chain is said to beirreducible if there exists ani such thatP(xi ∈ C|x0) > 0
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for any starting pointx0 and any setC such that
∫

C
f (x) dx > 0.

The irreducible condition ensures that the chain can reach all possiblex values from

any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoint set

C1 andC2 such thatxi−1 ∈ C1 impliesxi ∈ C2 andxi−1 ∈ C2 impliesxi ∈ C1, then the

chain oscillates betweenC1 andC2 and we again haveCi(x∗) ∩ Ci(x∗∗) = ∅ for all i

whenx∗ ∈ C1 andx∗∗ ∈ C2.

Accordingly, we cannot have the same limiting distribution in this case, either.

It is calledaperiodic if the chain does not oscillate between two setsC1 andC2 or

cycle around a partitionC1, C2, · · ·, Cr of r disjoint sets forr > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithm,x1 is taken as a random draw ofx from f (x)

for sufficiently largeM.
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To obtainN random draws, we need to generateM + N random draws.

Moreover, clearly we have Cov(xi−1, xi) > 0, becausexi is generated based onxi−1 in

Step (iii).

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm

gives us the worst random number of the three sampling methods. i.e., rejection sam-

pling in Section 9.7.1, importance resampling in Section 9.7.2 and the Metropolis-

Hastings algorithm in this section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the

Metropolis-Hastings algorithm is as follows:

1
N

N∑
i=1

g(xi) −→ E(g(x)) =
∫

g(x) f (x) dx, as N −→ ∞,

whereg(·) is a function, which is representatively taken asg(x) = x for mean and

g(x) = (x− x)2 for variance.
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x denotesx = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E(g(x)), even though

x1, x2, · · ·, xN are mutually correlated.

As an alternative random number generation method to avoid the positive correlation,

we can perform the case ofN = 1 as in the above procedures (i) – (iv)N times in

parallel, taking different initial values forx−M.

In this case, we need to generateM + 1 random numbers to obtain one random draw

from f (x).

That is, N random draws fromf (x) are based onN(1 + M) random draws from

f∗(x|xi−1).

Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorithm

should be similar to rejection sampling.
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However, this alternative method is too computer-intensive, compared with the above

procedures (i) – (iii) and (iv)’, which takes more time than rejection sampling in the

case ofM > NR.

Furthermore, the sampling density has to satisfy the following conditions:

(i) we can quickly and easily generate random draws from the sampling density

and

(ii) the sampling density should be distributed with the same range as the target

density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux

(1999) for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily depend

on choice of the sampling density, we can see that the Metropolis-Hastings algorithm

has the problem of specifying the sampling density, which is the crucial criticism.
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Several generic choices of the sampling density are discussed by Tierney (1994) and

Chib and Greenberg (1995).

We can consider several candidates for the sampling densityf∗(x|xi−1), i.e., Sampling

Densities I – III.

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density,

we have started withf∗(x) in this section.

Thus, one possibility of the sampling density is given by:f∗(x|xi−1) = f∗(x), where

f∗(·) does not depend onxi−1.

This sampling density is called theindependence chain.

For example, it is possible to takef∗(x) = N(µ∗, σ2
∗), whereµ∗ andσ2

∗ are the hyper-

parameters.

Or, whenx lies on a certain interval, say (a,b), we can choose the uniform distribution
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f∗(x) = 1/(b− a) for the sampling density.

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sampling

density called therandom walk chain, i.e., f∗(x|xi−1) = f∗(x− xi−1).

Representatively, we can take the sampling density asf∗(x|xi−1) = N(xi−1, σ2
∗), where

σ2
∗ denotes the hyper-parameter.

Based on the random walk chain, we have a series of the random draws which follow

the random walk process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling distri-

bution is based on approximation of the log-kernel (see Geweke and Tanizaki (1999,

2001, 2003)), which is a substantial extension of theTaylored chain discussed in

Chib, Greenberg and Winkelmann (1998).
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Let p(x) = log( f (x)), where f (x) may denote the kernel which corresponds to the

target density.

Approximating the log-kernelp(x) aroundxi−1 by the second order Taylor series

expansion,p(x) is represented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x− xi−1) +
1
2

p′′(xi−1)(x− xi−1)
2, (23)

wherep′(·) andp′′(·) denote the first- and second-derivatives.

Depending on the values ofp′(x) and p′′(x), we have the four cases, i.e., Cases 1 –

4, which are classified by (i)p′′(x) < −ε in Case 1 orp′′(x) ≥ −ε in Cases 2 – 4 and

(ii) p′(x) < 0 in Case 2,p′(x) > 0 in Case 3 orp′(x) = 0 in Case 4.

Geweke and Tanizaki (2003) suggested introducingε into the Taylored chain dis-

cussed in Geweke and Tanizaki (1999, 2001).

Note thatε = 0 is chosen in Geweke and Tanizaki (1999, 2001).
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To improve precision of random draws,ε should be a positive value, which will be

discussed later in detail (see Remark 1 forε).

Case 1: p′′(xi−1) < −ε: Equation (23) is rewritten by:

p(x) ≈ p(xi−1) −
1
2

( 1
−1/p′′(xi−1)

)(
x− (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

wherer(xi−1) is an appropriate function ofxi−1.

Sincep′′(xi−1) is negative, the second term in the right-hand side is equivalent

to the exponential part of the normal density.

Therefore,f∗(x|xi−1) is taken asN(µ∗, σ2
∗), whereµ∗ = xi−1 − p′(xi−1)/p′′(xi−1)

andσ2
∗ = −1/p′′(xi−1).

Case 2: p′′(xi−1) ≥ −ε and p′(xi−1) < 0: Perform linear approximation ofp(x).

Let x+ be the nearest mode withx+ < xi−1.
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Then, p(x) is approximated by a line passing betweenx+ and xi−1, which is

written as:

p(x) ≈ p(x+) +
p(x+) − p(xi−1)

x+ − xi−1
(x− x+).

From the second term in the right-hand side, the sampling density is rep-

resented as the exponential distribution withx > x+ − d, i.e., f∗(x|xi−1) =

λexp
(
−λ(x − (x+ − d))

)
if x+ − d < x and f∗(x|xi−1) = 0 otherwise, where

λ is defined as:

λ =

∣∣∣∣∣ p(x+) − p(xi−1)
x+ − xi−1

∣∣∣∣∣ .
d is a positive value, which will be discussed later (see Remark 2 ford).

Thus, a random drawx∗ from the sampling density is generated byx∗ = w +

(x+ − d), wherew represents the exponential random variable with parameter

λ.
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Case 3: p′′(xi−1) ≥ −ε and p′(xi−1) > 0: Similarly, perform linear approximation

of p(x) in this case.

Let x+ be the nearest mode withxi−1 < x+.

Approximation ofp(x) is exactly equivalent to that of Case 2.

Taking into accountx < x+ + d, the sampling density is written as:f∗(x|xi−1) =

λexp
(
−λ((x+ + d) − x)

)
if x < x+ + d and f∗(x|xi−1) = 0 otherwise.

Thus, a random drawx∗ from the sampling density is generated byx∗ =

(x+ + d) − w, wherew is distributed as the exponential random variable with

parameterλ.

Case 4: p′′(xi−1) ≥ −ε and p′(xi−1) = 0: In this case,p(x) is approximated as a

uniform distribution at the neighborhood ofxi−1.

As for the range of the uniform distribution, we utilize the two appropriate
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valuesx+ andx++, which satisfiesx+ < x < x++.

When we have two modes,x+ andx++ may be taken as the modes.

Thus, the sampling densityf∗(x|xi−1) is obtained by the uniform distribution on

the interval betweenx+ andx++, i.e., f∗(x|xi−1) = 1/(x++ − x+) if x+ < x < x++

and f∗(x|xi−1) = 0 otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases 1 –

4, depending on the values ofp′(·) andp′′(·).

Moreover, in the case wherex is a vector, applying the procedure above to each

element ofx, Sampling III is easily extended to multivariate cases.

Finally, we discuss aboutε andd in the following remarks.

Remark 1: ε in Cases 1 – 4 should be taken as an appropriate positive number.

It may seem more natural to takeε = 0, rather thanε > 0.
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The reason whyε > 0 is taken is as follows.

Consider the case ofε = 0.

Whenp′′(xi−1) is negative and it is very close to zero, varianceσ2
∗ in Case 1 becomes

extremely large because ofσ2
∗ = −1/p′′(xi−1).

In this case, the obtained random draws are too broadly distributed and accordingly

they become unrealistic, which implies that we have a lot of outliers.

To avoid this situation,ε should be positive.

It might be appropriate thatε should depend on variance of the target density, because

ε should be small if variance of the target density is large.

Thus, in order to reduce a number of outliers,ε > 0 is recommended.

Remark 2: Ford in Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.
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Let x+ be the mode.

We have Case 2 in the right-hand side ofx+ and Case 3 in the left-hand side ofx+.

In the case ofd = 0, we have the random draws generated from either Case 2 or 3.

In this situation, the generated random draw does not move from one case to another.

In the case ofd > 0, however, the distribution in Case 2 can generate a random draw

in Case 3.

That is, for positived, the generated random draw may move from one case to an-

other, which implies that the irreducibility condition of the MH algorithm is guaran-

teed.

Normal Distribution: N(0,1): As in Sections 9.7.1 and 9.7.2, we consider an

example of generating standard normal random draws based on the half-normal dis-
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tribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

As in Sections 9.7.1 and 9.7.2, we take the sampling density as the following expo-

nential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,

which is the independence chain, i.e.,f∗(x|xi−1) = f∗(x).

Then, the acceptance probabilityω(xi−1, x∗) is given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
(
exp(−1

2
x∗2 + x∗ +

1
2

x2
i−1 − xi−1),1

)
.
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Utilizing the Metropolis-Hastings algorithm, the standard normal random number

generator is shown as follows:

(i) Take an appropriate initial value ofx asx−M (for example,x−M = 0).

(ii) Setyi−1 = |xi−1|.

(iii) Generate a uniform random drawu1 from U(0, 1) and computeω(yi−1, y∗)

wherey∗ = − log(u1).

(iv) Generate a uniform random drawu2 from U(0,1), and setyi = y∗ if u2 ≤

ω(yi−1, y∗) andyi = yi−1 otherwise.

(v) Generate a uniform random drawu3 from U(0,1), and setxi = yi if u3 ≤ 0.5

andxi = −yi otherwise.

(vi) Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,1.

y1 is taken as a random draw fromf (x). M denotes the burn-in period.
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If a lot of random draws (say,N random draws) are required, we replace Step (vi) by

Step (vi)’ represented as follows:

(vi)’ Repeat Steps (ii) – (v) fori = −M + 1,−M + 2, · · · ,N.

In Steps (ii) – (iv), a half-normal random draw is generated.

Note that the absolute value ofxi−1 is taken in Step (ii) because the half-normal

random draw is positive.

In Step (v), the positive or negative sign is randomly assigned toyi.

Gamma Distribution: G(α,1) for 0 < α ≤ 1: WhenX ∼ G(α,1), the density

function ofX is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.
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As in gammarnd2 of Sections 9.7.1 andgammarnd4 of 9.7.2, the sampling density is

taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

where bothI1(x) andI2(x) denote the indicator functions defined in Section 9.7.1.

Then, the acceptance probability is given by:

ω(xi−1, x
∗) = min

( q(x∗)
q(xi−1)

, 1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)

= min
( x∗α−1e−x∗/(x∗α−1I1(x∗) + e−x∗ I2(x∗))

xα−1
i−1 e−xi−1/(xα−1

i−1 I1(xi−1) + e−xi−1I2(xi−1))
,1

)
.

As shown in Section 9.7.1, the cumulative distribution function off∗(x) is represented

as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1− e−x+1), if x > 1.
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Therefore, a candidate of the random draw, i.e.,x∗, can be generated fromf∗(x), by

utilizing both the composition method and the inverse transform method.

Then, using the Metropolis-Hastings algorithm, the gamma random number genera-

tion method is shown as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawu1 from U(0,1), and setx∗ = ((α/e+1)u1)
1/α

if u1 ≤ e/(α + e) andx∗ = − log((1/e+ 1/α)(1− u1)) if u1 > e/(α + e).

(iii) Computeω(xi−1, x∗).

(iv) Generate a uniform random drawu2 from U(0,1), and setxi = x∗ if u2 ≤

ω(xi−1, x∗) andxi = xi−1 otherwise.

(v) Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x). u1 andu2 should be
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independently distributed.

M denotes the burn-in period. If we need a lot of random draws (say,N random

draws), replace Step (v) by Step (v)’, which is given by:

(v)’ Repeat Steps (ii) – (iv) fori = −M + 1,−M + 2, · · · ,N.

Beta Distribution: The beta distribution with parametersα andβ is of the form:

f (x) =


1

B(α, β)
xα−1(1− x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,
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which represents the uniform distribution between zero and one.

The probability weightsω(x∗i ), i = 1,2, · · · ,n, are given by:

ω(xi−1, x
∗) = min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

,1
)
= min

(( x∗

xi−1

)α−1( 1− x∗

1− xi−1

)β−1
,1

)
.

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generated

as follows.

(i) Take an appropriate initial value asx−M.

(ii) Generate a uniform random drawx∗ from U(0,1), and computeω(xi−1, x∗).

(iii) Generate a uniform random drawu from U(0,1), which is independent ofx∗,

and setxi = x∗ if u ≤ ω(xi−1, x∗) andxi = xi−1 if u > ω(xi−1, x∗).

(iv) Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,1.

For sufficiently largeM, x1 is taken as a random draw fromf (x).

325



M denotes the burn-in period.

If we want a lot of random draws (say,N random draws), replace Step (iv) by Step

(iv)’, which is represented as follows:

(iv)’ Repeat Steps (ii) and (iii) fori = −M + 1,−M + 2, · · · ,N.

9.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduce the

ratio-of-uniforms method.

This generation method does not require the sampling density utilized in rejection

sampling (Section 9.7.1), importance resampling (Section 9.7.2) and the Metropolis-

Hastings algorithm (Section 9.7.3).

Suppose that a bivariate random variable (U1,U2) is uniformly distributed, which
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satisfies the following inequality:

0 ≤ U1 ≤
√

h(U2/U1),

for any nonnegative functionh(x). Then,X = U2/U1 has a density functionf (x) =

h(x)/
∫

h(x) dx.

Note that the domain of (U1, U2) will be discussed below.

The above random number generation method is justified in the following way.

The joint density ofU1 andU2, denoted byf12(u1, u2), is given by:

f12(u1,u2) =


k, if 0 ≤ u1 ≤

√
h(u2/u1),

0, otherwise,

wherek is a constant value, because the bivariate random variable (U1,U2) is uni-

formly distributed.
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Consider the following transformation from (u1,u2) to (x, y):

x =
u2

u1
, y = u1,

i.e.,

u1 = y, u2 = xy.

The Jacobian for the transformation is:

J =

∣∣∣∣∣∣∣
∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ 0 1

y x

∣∣∣∣∣∣ = −y.

Therefore, the joint density ofX andY, denoted byfxy(x, y), is written as:

fxy(x, y) = |J| f12(y, xy) = ky,

for 0 ≤ y ≤
√

h(x).
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The marginal density ofX, denoted byfx(x), is obtained as follows:

fx(x) =
∫ √

h(x)

0
fxy(x, y) dy =

∫ √
h(x)

0
kydy = k

[y2

2

]√h(x)

0
=

k
2

h(x) = f (x),

wherek is taken as:k = 2/
∫

h(x) dx.

Thus, it is shown thatfx(·) is equivalent tof (·).

This result is due to Kinderman and Monahan (1977).

Also see Ripley (1987), O’Hagan (1994), Fishman (1996) and Gentle (1998).

Now, we take an example of choosing the domain of (U1,U2).

In practice, for the domain of (U1,U2), we may choose the rectangle which encloses

the area 0≤ U1 ≤
√

h(U2/U1), generate a uniform point in the rectangle, and reject

the point which does not satisfy 0≤ u1 ≤
√

h(u2/u1).

That is, generate two independent uniform random drawsu1 andu2 from U(0,b) and

U(c, d), respectively.
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The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,

whereb, c andd are given by:

b = sup
x

√
h(x), c = − sup

x
x
√

h(x), d = sup
x

x
√

h(x),

because the rectangle has to enclose 0≤ u1 ≤
√

h(u2/u1), which is verified as fol-

lows:

0 ≤ u1 ≤
√

h(u2/u1) ≤ sup
x

√
h(x),

− sup
x

x
√

h(x) ≤ −x
√

h(x) ≤ u2 ≤ x
√

h(x) ≤ sup
x

x
√

h(x).

The second line also comes from 0≤ u1 ≤
√

h(u2/u1) andx = u2/u1.

We can replacec = − supx x
√

h(x) by c = inf x x
√

h(x), taking into account the case

of − supx x
√

h(x) ≤ inf x x
√

h(x).
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The discussion above is shown in Ripley (1987).

Thus, in order to apply the ratio-of-uniforms method with the domain{0 ≤ u1 ≤

b, c ≤ u2 ≤ d}, we need to have the condition thath(x) andx2h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:

(i) Generateu1 andu2 independently fromU(0,b) andU(c,d).

(ii) Setx = u2/u1 if u2
1 ≤ h(u2/u1) and return to (i) otherwise.

As shown above, thex accepted in Step (ii) is taken as a random draw fromf (x) =

h(x)/
∫

h(x) dx.

The acceptance probability in Step (ii) is
∫

h(x) dx/(2b(d − c)).

We have shown the rectangular domain of (U1,U2).

It may be possible that the domain of (U1,U2) is a parallelogram.

In Sections 9.7.4 and 9.7.4, we show two examples as applications of the ratio-of-

uniforms method.
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Especially, in Section 9.7.4, the parallelogram domain of (U1,U2) is taken as an

example.

Normal Distribution: N(0,1): The kernel of the standard normal distribution is

given by:h(x) = exp(−1
2x2).

In this case,b, c andd are obtained as follows:

b = sup
x

√
h(x) = 1,

c = inf
x

x
√

h(x) = −
√

2e−1,

d = sup
x

x
√

h(x) =
√

2e−1.

Accordingly, the standard normal random number based on the ratio-of-uniforms

method is represented as follows.

(i) Generate two independent uniform random drawsu1 andv2 from U(0,1) and
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defineu2 = (2v2 − 1)
√

2e−1.

(ii) Setx = u2/u1 if u2
1 ≤ exp(−1

2u2
2/u

2
1), i.e.,−4u2

1 log(u1) ≥ u2
2, and return to (i)

otherwise.

The acceptance probability is given by:∫
h(x) dx

2b(d − c)
=

√
πe
4
≈ 0.7306,

which is slightly smaller than the acceptance probability in the case of rejection sam-

pling, i.e., 1/
√

2e/π ≈ 0.7602.

The Fortran source code for the standard normal random number generator based on

the ratio-of-uniforms method is shown insnrnd9(ix,iy,rn).
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——— snrnd9(ix,iy,rn)———

1: subroutine snrnd9(ix,iy,rn)
2: c
3: c Use "snrnd9(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: e1=1./2.71828182845905
12: 1 call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn2=(2.*rn2-1.)*sqrt(2.*e1)
15: if(-4.*rn1*rn1*log(rn1).lt.rn2*rn2 ) go to 1
16: rn=rn2/rn1
17: return
18: end
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Gamma Distribution: G(α, β): When random variableX has a gamma distribu-

tion with parametersα andβ, i.e., X ∼ G(α, β), the density function ofX is written

as follows:

f (x) =
1

βαΓ(α)
xα−1e−

x
β ,

for 0 < x < ∞.

WhenX ∼ G(α,1), we haveY = βX ∼ G(α, β).

Therefore, first we consider generating a random draw ofX ∼ G(α,1).

Since we have discussed the case of 0< α ≤ 1 in Sections 9.7.1 – 9.7.3, now we

consider the case ofα > 1.

Using the ratio-of-uniforms method, the gamma random number generator is intro-

duced.

h(x), b, c andd are set to be:

h(x) = xα−1e−x,
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b = sup
x

√
h(x) =

(
α − 1

e

)(α−1)/2

,

c = inf
x

x
√

h(x) = 0,

d = sup
x

x
√

h(x) =

(
α + 1

e

)(α+1)/2

.

Note thatα > 1 guarantees the existence of the supremum ofh(x), which implies

b > 0.

See Fishman (1996, pp.194 – 195) and Ripley (1987, pp.88 – 89).

By the ratio-of-uniforms method, the gamma random number with parameterα > 1

andβ = 1 is represented as follows:

(i) Generate two independent uniform random drawsu1 andu2 from U(0, b) and

U(c,d), respectively.

(ii) Setx = u2/u1 if u1 ≤
√

(u2/u1)α−1e−u2/u1 and go back to (i) otherwise.
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Thus, thex obtained in Steps (i) and (ii) is taken as a random draw fromG(α,1) for

α > 1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 pro-

gram for the gamma random number generator with parametersα > 1 andβ = 1 is

shown ingammarnd6(ix,iy,alpha,rn).

——— gammarnd6(ix,iy,alpha,rn)———

1: subroutine gammarnd6(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd6(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
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14: b=( (alpha-1.)/e )**(0.5*alpha-0.5)
15: d=( (alpha+1.)/e )**(0.5*alpha+0.5)
16: 1 call urnd(ix,iy,rn0)
17: call urnd(ix,iy,rn1)
18: u=rn0*b
19: v=rn1*d
20: rn=v/u
21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return
23: end

gammarnd6(ix,iy,alpha,rn) should be used together withurnd(ix,iy,rn).

b andd are obtained in Lines 14 and 15.

Lines 16 –19 gives us two uniform random drawsu andv, which correspond tou1

andu2.

rn in Line 20 indicates a candidate of the gamma random draw.

Line 21 represents Step (ii).

To see efficiency or inefficiency of the generator above, we compute the acceptance

338



probability in Step (ii) as follows:∫
h(x) dx

2b(d − c)
=

eαΓ(α)
2(α − 1)(α−1)/2(α + 1)(α+1)/2

. (24)

It is known that the acceptance probability decreases by the order ofO(α−1/2), i.e.,

in other words, computational time for random number generation increases by the

order ofO(α1/2).

Therefore, asα is larger, the generator is less efficient.

See Fishman (1996) and Gentle (1998).

To improve inefficiency for largeα, various methods have been proposed, for exam-

ple, Cheng and Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) and so

on.

As mentioned above, the algorithmgammarnd6 takes a long time computationally by

the order ofO(α1/2) as shape parameterα is large.
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Chen and Feast (1979) suggested the algorithm which does not depend too much on

shape parameterα.

As α increases the acceptance region shrinks towardu1 = u2.

Therefore, Chen and Feast (1979) suggested generating two uniform random draws

within the parallelogram aroundu1 = u2, rather than the rectangle.

The source code is shown ingammarnd7(ix,iy,alpha,rn).

——— gammarnd7(ix,iy,alpha,rn)———

1: subroutine gammarnd7(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd7(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
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12: c
13: e =2.71828182845905
14: c0=1.857764
15: c1=alpha-1.
16: c2=( alpha-1./(6.*alpha) )/c1
17: c3=2./c1
18: c4=c3+2.
19: c5=1./sqrt(alpha)
20: 1 call urnd(ix,iy,u1)
21: call urnd(ix,iy,u2)
22: if(alpha.gt.2.5) u1=u2+c5*(1.-c0*u1)
23: if(0.ge.u1.or.u1.ge.1.) go to 1
24: w=c2*u2/u1
25: if(c3*u1+w+1./w.le.c4) go to 2
26: if(c3*log(u1)-log(w)+w.ge.1.) go to 1
27: 2 rn=c1*w
28: return
29: end

See Fishman (1996, p.200) and Ripley (1987, p.90).

In Line 22, we use the rectangle for 1< α ≤ 2.5 and the parallelogram forα > 2.5 to

give a fairly constant speed asα is varied.

341



Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computational efficiency,gammarnd7(ix,iy,alpha,rn) is better.

Gamma Distribution: G(α, β) for α > 0 and β > 0: Combininggammarnd2 on

p.278 andgammarnd7 on p.340, we introduce the gamma random number generator

in the case ofα > 0.

In addition, utilizingY = βX ∼ G(α, β) whenX ∼ G(α, 1), the random number gener-

ator forG(α, β) is introduced as in the source codegammarnd8(ix,iy,alpha,beta,rn).

——— gammarnd8(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd8(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd8(ix,iy,alpha,beta,rn)"
4: c together with "gammarnd2(ix,iy,alpha,rn)",
5: c "gammarnd7(ix,iy,alpha,rn)"
6: c and "urnd(ix,iy,rn)".
7: c
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8: c Input:
9: c ix, iy: Seeds

10: c alpha: Shape Parameter
11: c beta: Scale Parameter
12: c Output:
13: c rn: Gamma Random Draw
14: c with Parameters alpha and beta
15: c
16: if( alpha.le.1. ) then
17: call gammarnd2(ix,iy,alpha,rn1)
18: else
19: call gammarnd7(ix,iy,alpha,rn1)
20: endif
21: rn=beta*rn1
22: return
23: end

Lines 16 – 20 show that we usegammarnd2 for α ≤ 1 andgammarnd7 for α > 1.

In Line 21,X ∼ G(α, 1) is transformed intoY ∼ G(α, β) by Y = βX, whereX andY

indicatesrn1 andrn, respectively.
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Chi-Square Distribution: χ2(k): The gamma distribution withα = k/2 andβ = 2

reduces to the chi-square distribution withk degrees of freedom.

9.7.5 Gibbs Sampling

The sampling methods introduced in Sections 9.7.1 – 9.7.3 can be applied to the

cases of both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the

multivariate cases.

The Gibbs sampler shows how to generate random draws from the unconditional

densities under the situation that we can generate random draws from two conditional

densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon

and Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and
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Karim (1991), Casella and George (1992), Gamerman (1997) and so on developed

the Gibbs sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and

Tanizaki (1999, 2001) applied the Gibbs sampler to the nonlinear and/or non-Gaussian

state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random

variablesX andY in order to make things easier.

Two conditional density functions,fx|y(x|y) and fy|x(y|x), are assumed to be known,

which denote the conditional distribution function ofX givenY and that ofY given

X, respectively.

Suppose that we can easily generate random draws ofX from fx|y(x|y) and those ofY
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from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the

joint density ofX andY, denoted byfxy(x, y).

In order to have the random draws of (X,Y) from the joint densityfxy(x, y), we take

the following procedure:

(i) Take the initial value ofX asx−M.

(ii) Givenxi−1, generate a random draw ofY, i.e.,yi, from f (y|xi−1).

(iii) Givenyi, generate a random draw ofX, i.e.,xi, from f (x|yi).

(iv) Repeat the procedure fori = −M + 1,−M + 2, · · · ,1.

From the convergence theory of the Gibbs sampler, asM goes to infinity, we can

regardx1 andy1 as random draws fromfxy(x, y), which is a joint density function of

X andY.
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M denotes theburn-in period , and the firstM random draws, (xi , yi) for i = −M +

1,−M + 2, · · · ,0, are excluded from further consideration.

When we wantN random draws fromfxy(x, y), Step (iv) should be replaced by Step

(iv)’, which is as follows.

(iv)’ Repeat the procedure fori = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and

(iv)’ is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distributionf (u)

which satisfiesfi(u) = fi−1(u) = f (u). If we have the reversibility condition shown in

equation (22), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),
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the random draws based on the Gibbs sampler converge to those from the invariant

distribution, which implies that there exists the invariant distributionf (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribu-

tion, i.e., f ∗(u|v).

Here, we consider that bothu andv are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions.xi andyi are generated

from fi(u) through f ∗(u|v), given fi−1(v).

Note thatu = (u1,u2) = (xi , yi) is taken whilev = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)

Thus, we can choosef ∗(u|v) as shown above.

Then, asi goes to infinity, (xi , yi) tends in distribution to a random vector whose joint

density isfxy(x, y).
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See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the basic

result of the Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi , yi) −→ E(g(x, y)) =
∫∫

g(x, y) fxy(x, y) dx dy, as N −→ ∞,

whereg(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.

Based on the conditional densities, we can generate random draws from the joint

density.

Remark 1: We have considered the bivariate case, but it is easily extended to the

multivariate cases.

That is, it is possible to take multi-dimensional vectors forx andy.
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Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the

ith random draws fromfx|yz(x|yi−1, zi−1), fy|xz(y|xi , zi−1) and fz|xy(z|xi , yi), sequentially,

we can obtain the random draws fromfxyz(x, y, z).

Remark 2: Let X, Y andZ be the random variables.

Take an example of the case whereX is highly correlated withY.

If we generate random draws fromfx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known

that convergence of the Gibbs sampler is slow.

In this case, without separatingX andY, random number generation fromf (x, y|z)

and f (z|x, y) yields better random draws from the joint densityf (x, y, z).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-

gorithm: We compare rejection sampling, importance resampling and the Metropolis-

Hastings algorithm from precision of the estimated moments and CPU time.
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All the three sampling methods utilize the sampling density and they are useful when

it is not easy to generate random draws directly from the target density.

When the sampling density is too far from the target density, it is known that rejection

sampling takes a lot of time computationally while importance resampling and the

Metropolis-Hastings algorithm yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on the

three sampling methods.

For simplicity of discussion, consider the case where both the target and sampling

densities are normal.

That is, the target densityf (x) is given byN(0,1) and the sampling densityf∗(x) is

N(µ∗, σ2
∗).

µ∗ = 0, 1, 2, 3 andσ∗ = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three moments E(X j), j = 1,2,3, are estimated, gener-
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ating 107 random draws.

For importance resampling,n = 104 is taken, which is the number of candidate

random draws.

The Metropolis-Hastings algorithm takesM = 1000 as the burn-in period and the

initial value isx−M = µ∗.

As for the Metropolis-Hastings algorithm, note that is the independence chain is

taken for f∗(x) because off∗(x|z) = f∗(x).
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 0.000
0 IR 0.060 0.005 0.000 0.005 0.014 0.014

MH −0.004 0.000 0.000 0.000 0.000 0.000
(59.25) (100.00) (74.89) (59.04) (40.99) (31.21)

E(X) RS — — 0.000 0.000 0.000 0.000
= 0 1 IR 0.327 0.032 0.025 0.016 0.011 0.011

MH 0.137 0.000 0.001 0.000 0.000 0.000
(36.28) (47.98) (55.75) (51.19) (38.68) (30.23)

RS — — 0.000 0.000 0.000 0.000
2 IR 0.851 0.080 0.031 0.030 0.003 0.005

MH 0.317 0.005 0.001 0.001 0.000 0.001
(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)

RS — — 0.000 0.000 0.000 −0.001
3 IR 1.590 0.337 0.009 0.029 0.021−0.007

MH 0.936 0.073 −0.002 0.000 0.001 −0.001
(1.68) (3.53) (9.60) (17.47) (24.31) (23.40)
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 1.000 1.000 1.000 0.999
0 IR 0.822 0.972 0.969 0.978 0.994 1.003

MH 0.958 1.000 1.000 1.000 1.001 1.001
E(X2) RS — — 1.000 1.000 1.000 1.000
= 1 1 IR 0.719 0.980 0.983 0.993 1.010 1.004

MH 0.803 1.002 0.999 0.999 1.001 1.002
RS — — 1.000 1.000 1.001 1.001

2 IR 1.076 0.892 1.014 0.984 1.000 1.012
MH 0.677 0.992 1.001 0.999 1.001 1.002
RS — — 1.000 1.000 1.000 1.000

3 IR 2.716 0.696 1.013 1.025 0.969 1.002
MH 1.165 0.892 1.005 1.001 0.999 0.999
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Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 −0.001
0 IR 0.217 0.034 −0.003 −0.018 0.018 0.036

MH −0.027 0.001 0.001 −0.001 −0.002 −0.004
E(X3) RS — — 0.002 −0.001 0.000 0.001
= 0 1 IR 0.916 0.092 0.059 0.058 0.027 0.032

MH 0.577 −0.003 0.003 0.000 0.002−0.001
RS — — −0.001 0.002 0.001 0.001

2 IR 1.732 0.434 0.052 0.075 0.040 0.001
MH 0.920 0.035 0.003 0.004 0.004 0.004
RS — — 0.000 0.001 0.001 −0.001

3 IR 5.030 0.956 0.094 0.043 0.068 0.020
MH 1.835 0.348 −0.002 0.003 0.001 −0.001
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Comparison of Three Sampling Methods: CPU Time (Seconds)

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 15.96 20.50 30.69 39.62
0 IR 431.89 431.40 431.53 432.58 435.37 437.16

MH 9.70 9.24 9.75 9.74 9.82 9.77
RS — — 23.51 24.09 32.77 41.03

1 IR 433.22 427.96 426.41 426.36 427.80 430.39
MH 9.73 9.54 9.81 9.75 9.83 9.76
RS — — 74.08 38.75 39.18 45.18

2 IR 435.90 432.23 425.06 423.78 421.46 422.35
MH 9.71 9.52 9.83 9.77 9.82 9.77
RS — — 535.55 87.00 52.91 53.09

3 IR 437.32 439.31 429.97 424.45 422.91 418.38
MH 9.72 9.48 9.79 9.75 9.81 9.76

RS, IR and MH denotes rejection sampling, importance resampling and the Metropolis-

Hastings algorithm, respectively.

In each table, “—” in RS implies the case where rejection sampling cannot be applied

because the supremum ofq(x), supx q(x), does not exist.

356



As for MH in the case of E(X) = 0, the values in the parentheses represent the

acceptance rate (percent) in the Metropolis-Hastings algorithm.

The results obtained from each table are as follows.

E(X) should be close to zero because we have E(X) = 0 from X ∼ N(0,1).

When µ∗ = 0.0, all of RS, IR and MH are very close to zero and show a good

performance.

Whenµ∗ = 1, 2, 3, forσ∗ = 1.5, 2.0, 3.0, 4.0, all of RS, IR and MH perform well,

but IR and MH in the case ofσ∗ = 0.5, 1.0 have the case where the estimated mean

is too different from zero.

For IR and MH, we can see that givenσ∗ the estimated mean is far from the true

mean asµ∗ is far from mean of the target density.

Also, it might be concluded that givenµ∗ the estimated mean approaches the true

value asσ∗ is large.
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E(X2) should be close to one because we have E(X2) = V(X) = 1 from X ∼ N(0, 1).

The cases ofσ∗ = 1.5, 2.0, 3.0, 4.0 and the cases ofµ∗ = 0,1 andσ∗ = 1.0 are very

close to one, but the other cases are different from one.

These are the same results as the case of E(X).

E(X3) should be close to zero because E(X3) represents skewness.

For skewness, we obtain the similar results, i.e., the cases ofσ∗ = 1.5, 2.0, 3.0, 4.0

and the cases ofµ∗ = 0,1 andσ∗ = 0.5,1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performance of

the three, and IR and MH is quite good whenσ∗ is relatively large.

We can conclude that IR is slightly worse than RS and MH.

As for the acceptance rates of MH in E(X) = 0, from the table a higher acceptance

rate generally shows a better performance.

The high acceptance rate implies high randomness of the generated random draws.
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For variance of the sampling density, both too small variance and too large variance

give us the relatively low acceptance rate, which result is consistent with the discus-

sion in Chib and Greenberg (1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be computed in

advance (see Section 9.7.2 for IR).

That is, 104 candidate random draws are generated from the sampling densityf∗(x)

and therefore 104 acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depend onµ∗ andσ∗.

However, for RS, givenσ∗ computational time increases asµ∗ is large.

In other words, as the sampling density is far from the target density the number of

rejections increases.

Whenσ∗ increases givenµ∗, the acceptance rate does not necessarily increase.
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However, from the table a largeσ∗ is better than a smallσ∗ in general.

Accordingly, as for RS, under the condition that mean off (x) is unknown, we can

conclude that relatively large variance off∗(x) should be taken.

Finally, the results are summarized as follows.

(1) For IR and MH, depending on choice of the sampling densityf∗(x), we have

the cases where the estimates of mean, variance and skewness are biased.

For RS, we can always obtain the unbiased estimates without depending on

choice of the sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose the

sampling density with relatively large variance.

Furthermore, for RS we should take the sampling density with relatively large

variance to reduce computational burden.
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But, note that too large variance leads to an increase in computational disad-

vantages.

(3) MH is the least computational sampling method of the three.

For IR, all the acceptance probabilities have to be computed in advance and

therefore

IR takes a lot of time to generate random draws.

In the case of RS, the amount of computation increases asf∗(x) is far from

f (x).

(4) For the sampling density in MH, it is known that both too large variance and

too small variance yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have to be

generated from the sampling density for evaluation of the expectations such as
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E(X) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS some-

times has the case where the supremum ofq(x) does not exist and in this case it is

impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferred to

IR and RS in a sense of less risk.

However, we should keep in mind that MH also has the problem which choice of the

sampling density is very important.
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