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2 Regression Analysis ([2]1F %3 #7T)

2.1 Setup of the Model

When (x1,y1), (x2,¥2), - -+, (x,,¥,) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

Vi =P+ Boxi + u;, 4)
fori=1,2,---,n. x; and y; denote the ith observations.
— Single (or simple) regression model (E2[E]/FE 5 /L)

y; is called the dependent variable (/& Z%X) or the explained variable (%5t BiZ
#0), while x; is known as the independent variable (JR3ZZ %) or the explanatory

(or explaining) variable (FZEAZ%X).
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B = Intercept (Y1), B> = Slope (%)
B and B, are unknown parameters (/X7 X —%, %K) to be estimated.
B and 3, are called the regression coefficients (B {%%%).

u; is the unobserved error term (F22Z18) assumed to be a random variable with mean

zero and variance 0.

o is also a parameter to be estimated.

x; is assumed to be nonstochastic (FEFEZRY), but y; is stochastic (FEZRY) because

y; depends on the error u;.

The error terms uy, u,, - - -, u, are assumed to be mutually independently and identi-

cally distributed, which is called iid.

It is assumed that u; has a distribution with mean zero, i.e., E(x;) = 0 is assumed.
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Taking the expectation on both sides of (4), the expectation of y; is represented as:

E(y;) = E(B1 + Bax; + u;) = B + Box; + E(u;)

=B+ Baxi, ()
fori=1,2,---,n.
Using E(y;) we can rewrite (4) as y; = E(y;) + u;.
(5) represents the true regression line.
Let 8, and 3, be estimates of 8; and 3.

Replacing 8, and 3, by 3, and 3, (4) turns out to be:

yi = Bl +BZXi + e, (6)
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fori=1,2,---,n, where ¢; is called the residual (F2Z).
The residual e; is taken as the experimental value (or realization) of ;.

We define y; as follows:
Ji= ,[31 +,32Xi, (7)

fori=1,2,---,n, which is interpreted as the predicted value (F8{&) of y,.
(7) indicates the estimated regression line, which is different from (5).
Moreover, using ¥; we can rewrite (6) as y; = J; + e;.

(5) and (7) are displayed in Figure 1.

Consider the case of n = 6 for simplicity. % indicates the observed data series.
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Figure 1. True and Estimated Regression Lines ([B]F E %)

(xi, yi)

Distributions Res;dual
of the Errors !

$i =1+ Bax;
(Estimated
Regression Line)

X

The true regression line (5) is represented by the solid line, while the estimated re-

gression line (7) is drawn with the dotted line.
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Based on the observed data, 8; and /3, are estimated as: 3, and /3.

In the next section, we consider how to obtain the estimates of 8, and S,, i.e., 3; and

A

Ba.

2.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2,¥2), - - -, (x,,, y,) are available.

For the regression model (4), we consider estimating 5; and 3.

Replacing 3, and S, by their estimates 3; and j3,, remember that the residual e; is
given by:

ei =y —9i=yi— B - Brxi.
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The sum of squared residuals is defined as follows:

n

S(Bl,ﬁz) = Zeiz = i()’i —,[31 —,ézxi)z-
i=1

i=1
It might be plausible to choose the 3, and 3, which minimize the sum of squared
residuals, i.e., S(ﬁl,ﬁz).
This method is called the ordinary least squares estimation (/N Z"%&}%, OLS).
To minimize S (B;,3,) with respect to 8; and 3,, we set the partial derivatives equal
to zero:
8S(§ﬁ1;,32) 22( Vi By = Boxy) =

aS (ﬁl,ﬁz)

7 2Zx,<y, Bi-Box) =0
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The second order condition for minimization is:
PSBLB)  PSBib)

n
( B ek | _[ " 2=
PSBip)  PSBuB | T n no.2
3‘[;25[;»] 3ﬁ|% 200 220X
should be a positive definite matrix.

The diagonal elements 2n and 2 }." | x? are positive.
The determinant:

2n 230 X

‘2 2 X 220 xiz

is positive. =  The second-order condition is satisfied.

n

= 4dn Z X2 - 4(2 x)? = 4n an(xi -X)°
i=1 i=1

i=1

The first two equations yield the following two equations:
¥ =B +Box, (8)
D xii=nxp+ By ), ©)

i=1 i=1
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n

where y = %any,- and x = %in.
i=1

i=1
Multiplying (8) by nX and subtracting (9), we can derive /3, as follows:

Dic Xy —nxy (g = X)(yi —y)

B> = = == = (10)
’ Z?:l x? - nx i (xi — x)?
From (8), 3, is directly obtained as follows:
B =3 - Box. (1)
When the observed values are taken for y; and x; fori = 1,2,---,n, we say that ,[3’1

and 3, are called the ordinary least squares estimates (or simply the least squares
estimates, /N _FHE(E) of B and B;.

When y; fori = 1,2, ---,n are regarded as the random sample, we say that Bl and ,@2
are called the ordinary least squares estimators (or the least squares estimators,

RIN_ZEHEE) of 5, and Ss.
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2.3 Properties of Least Squares Estimator

Equation (10) is rewritten as:

r _ 2icti =D -y X=Xy Y X —X)

B =

_ Z T 1(x _x)zy, szy,

- 1
In the third equality, Z(x,- —x) = 0 1is utilized because of x = — Z X;.

i=1 _ i=1
Xi— X
Z?:] (x; — X)? .

w; 1s nonstochastic because x; is assumed to be nonstochastic.

In the fourth equality, w; is defined as: w; =

w; has the following properties:

: X=X
Z‘”’ Z ha (x, —x>2 DY 0

31
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- - _ X —Xx)?
; wiX; = ; wi(x; — Xx) = m =1, (14)

Y 2 n( Xi—X )2: Z;’:l(xi_})z _ |
X O

(15)

i=1 i=
The first equality of (14) comes from (13).

From now on, we focus only on ﬁz, because usually 3, is more important than §; in
the regression model (4).

In order to obtain the properties of the least squares estimator 3, we rewrite (12) as:

ﬁz—szyz Zw(ﬁl+ﬁ2xl+u)

—ﬂlzw,+ﬂ22wx,+2wu, ﬁ2+2wul (16)

In the fourth equality of (16), (13) and (14) are utilized.
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[Review] Random Variables:

Let X;, X5, ---, X, be n random variavles, which are mutually independently and

identically distributed.

mutually independent — f(x;, x;) = fi(x;)fj(x;) fori # j.
f(xi, x;) denotes a joint distribution of X; and X.
fi(x) indicates a marginal distribution of X;.

identical = fi(x) = fj(x) fori # j.

[End of Review]
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[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

e E(g(X)) = f g(x)f(x)dx for a function g(-) and a density function f(-).
o V(X) = E(X - ) = f (x — > f(0)dx for u = E(X).

e E(aX + b) = aE(X) + b and V(aX + b) = a*V(X).

e EX+Y)=EX)xE(Y) and V(X +Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of ﬁzz uy, Uy, -+, U, are assumed to be mutually indepen-
dently and identically distributed with mean zero and variance o, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (16), the expectation of 3, is derived as follows:
E(B) = BB + ) wi) = o+ EQ)_ wit) = o+ ) wBw) =5 (17)
i=1 i=1 i=1

It is shown from (17) that the ordinary least squares estimator 3, is an unbiased

estimator (RNRHEEE) of 5.
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From (16), the variance of 3, is computed as:

V(By) = V(ﬁ2+2wu)—V(Za)u)—ZV(wu)—Za)zV(u)

=0 Z(t) _W (18)

The third equality holds because uy, u,, - - -, u, are mutually independent.
The last equality comes from (15).
Thus, E(,Bz) and V(,Bz) are given by (17) and (18).

Gauss-Markov Theorem (H 7 R - ¥J)L. O 7 EH): A, has minimum variance
within a class of the linear unbiased estimators.
— best linear unbiased estimator (BLUE, R RiREI R EE)

(Proof is omitted.)
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Distribution of ,@z: We discuss the small sample properties of /3.

In order to obtain the distribution of 3, in small sample, the distribution of the error
term has to be assumed.

Therefore, the extra assumption is that u; ~ N(0, o).

Writing (16), again, 3, is represented as:
Br=pr+ Z wild;.
i=1

First, we obtain the distribution of the second term in the above equation.
It is well known that sum of normal random variables results in a normal distribution.

Therefore, )", w;u; is distributed as:

n n
Z wi; ~ N(O, o? Z a)iz).
i=1 i=1
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Therefore, ,32 1s distributed as:
n n
Br=B+ ) witti ~ Ny, 02 ) ),
i=1 i=1
or equivalently,

B BB o

oS w? T/ VEL =)

for any n.

n

P Z()’i — B1 = Bax;)?, it is known

i=1

Moreover, replacing o2 by its estimator s*> =

that we have: A
B2 =P

e (x; = X)?

~tn-2),
where #(n — 2) denotes ¢ distribution with n — 2 degrees of freedom.
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Thus, under normality assumption on the error term u;, the #(n — 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,
( B =B
s/ N iz (i = %)?

) ~ Fl,n-2).
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[Review] Confidence Interval (55X B, XEHE)):

Suppose that X;, X, - - -, X, are mutually independently, identically and normally dis-

tributed with mean y and variance o

—u 1
STV t(n = 1), where §* = — Z(X X)2.

Then, we can obtain:

That is,

X -
P(—ta/z(n—l)< 5 \/_

<tapn—1)=1-a
i.e.,
— S — S
PIX-t,n(n-1)—<u<X+t,pn—-1)—)=1-«
(X = tapp(n = 1) 7 <K pn=1) \/ﬁ)
Note that #,5(n — 1) is obtained from the ¢ distribution table, given @ and n — 1.

Then, replacing X by X, we obtain the 100(1—a)% confidence interval of u as follows:

X+t — 1)—).

i

(X = topa(n — 1)—

vﬁ’
[End of Review]
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In the case of OLS,

B - B
s/ \/er'lzl(xi - X)?

where #,,2(n — 2) denotes 100 X a/2% point from the #(n — 2) distribution.

P(~topp(n -2) < < top(n — 2)) =1-a,

Rewriting,

P(,éz —ltop(n—12) u <Br <P+ typ(n—2) u

V2 (xi = %) 2i=1(x; — X)?

Replacing 3, and s> by observed data, the 100(1 — @)% confidence interval of S, is

):l—a.

given by:
(Bz —typp(n—2) - - —, ,[32 +1y2(n—2) - - — )
VZ,‘:](xi - x)? Zi:]('xi - x)?
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[Review] Testing the Hypothesis ({R 5% 1 ):

Suppose that X;, X, - - -, X, are mutually independently, identically and normally dis-

tributed with mean y and variance o™.

_ 1 <& _
Then, we obtain: 2. t(n—1), where §? = 1 E (X; — X)?, which is known
n —
i=1

S/ \n

as the unbiased estimator of 0.
e The null hypothesis Hy : u = po, where py is a fixed number.

e The alternative hypothesis H; : u # o

—Ho
S/Nn

0 and t(n - 1).

n

Under the null hypothesis, we have the disribution: ~ tn—1).

Replacing X and S? by X and s2, compare al

=B > a1,
s/ \n

to2(n—1) is obtained from the significance level o and the degrees of freedom n — 1.

H, is rejected when ‘

[End of Review]
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In the case of OLS, the hypotheses are as follows:

e The null hypothesis Hy : 5, = 3,
e The alternative hypothesis H; : 5, # f3;

Under H,, .
Bi_ﬁz — ~Hn-2).
s/ N2z (xi = X)?
4 ) B2 - B
Replacing 3, and s~ by the observed data, compare = — and t(n — 2).
. Zi: (X = x)?

. . B2 —p;
H, is rejected at significance level @ when ' = — ‘ > typ(n—1).
(*) B, = Coefficient, = > — = Standard Error,

iy (Xi = x)?

s = Standard Error of Regression
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