
計量経済基礎

Tue., 8:50-10:20

場所：　文法経研究講義棟　3階　32番

1



1 最小二乗法について

経済理論に基づいた線型モデルの係数の値をデータから求める時に用いられる

手法 =⇒最小二乗法

1.1 最小二乗法と回帰直線

(X1,Y1), (X2,Y2), · · ·, (Xn,Yn)のように n組のデータがあり，Xi と Yi との間に以

下の線型関係を想定する。

Yi = α + βXi,

Xi は説明変数，Yi は被説明変数，α, βはパラメータとそれぞれ呼ばれる。

上の式は回帰モデル (または，回帰式)と呼ばれる。目的は，切片 αと傾き βを

データ {(Xi,Yi), i = 1, 2, · · · , n}から推定すること，
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データについて：

1. タイム・シリーズ (時系列)・データ： iが時間を表す (第 i期)。

2. クロス・セクション (横断面)・データ： iが個人や企業を表す (第 i番目の

家計，第 i番目の企業)。

1.2 切片 αと傾き βの推定

次のような関数 S (α, β)を定義する。

S (α, β) =
n∑

i=1

u2
i =

n∑
i=1

(Yi − α − βXi)2

このとき，

min
α,β

S (α, β)

となるような α, βを求める (最小自乗法)。このときの解を α̂, β̂とする。
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最小化のためには，
∂S (α, β)
∂α

= 0

∂S (α, β)
∂β

= 0

を満たす α, βが α̂, β̂となる。 すなわち，α̂, β̂は，

n∑
i=1

(Yi − α̂ − β̂Xi) = 0, (1)

n∑
i=1

Xi(Yi − α̂ − β̂Xi) = 0, (2)

を満たす。 さらに，

n∑
i=1

Yi = nα̂ + β̂
n∑

i=1

Xi, (3)

n∑
i=1

XiYi = α̂

n∑
i=1

Xi + β̂

n∑
i=1

X2
i ,
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行列表示によって， ( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

) (
α̂

β̂

)
,

逆行列の公式： ( a b

c d

)−1

=
1

ad − bc

( d −b

−c a

)
α̂, β̂について，まとめて，(

α̂

β̂

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)−1 ( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

1
n
∑n

i=1 X2
i − (

∑n
i=1 Xi)2

( ∑n
i=1 X2

i −∑n
i=1 Xi

−∑n
i=1 Xi n

) ( ∑n
i=1 Yi∑n

i=1 XiYi

)
さらに，β̂について解くと，

β̂ =
n
∑n

i=1 XiYi − (
∑n

i=1 Xi)(
∑n

i=1 Yi)
n
∑n

i=1 X2
i − (

∑n
i=1 Xi)2
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=

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2 =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

連立方程式の (3)式から，

α̂ = Y − β̂X

となる。ただし，

X =
1
n

n∑
i=1

Xi, Y =
1
n

n∑
i=1

Yi,

とする。

数値例： 以下の数値例を使って，回帰式 Yi = α + βXi の α，βの推定値 α̂，β̂

を求める。
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i Yi Xi

1 6 10

2 9 12

3 10 14

4 10 16

α̂，β̂を求めるための公式は

β̂ =

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2

α̂ = Y − β̂X

なので，必要なものは X，Y，
n∑

i=1

X2
i，

n∑
i=1

XiYi である。
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i Yi Xi XiYi X2
i

1 6 10 60 100

2 9 12 108 144

3 10 14 140 196

4 10 16 160 256

合計
∑

Yi
∑

Xi
∑

XiYi
∑

X2
i

35 52 468 696

平均 Y X

8.75 13

よって，

β̂ =
468 − 4 × 13 × 8.75

696 − 4 × 132 =
13
20
= 0.65

α̂ = 8.75 − 0.65 × 13 = 0.3

となる。
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注意事項：

1. α, βは真の値で未知

2. α̂, β̂は α, βの推定値でデータから計算される

回帰直線は

Ŷi = α̂ + β̂Xi,

として与えられる。

上の数値例では，

Ŷi = 0.3 + 0.65Xi

となる。
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i Yi Xi XiYi X2
i Ŷi

1 6 10 60 100 6.8

2 9 12 108 144 8.1

3 10 14 140 196 9.4

4 10 16 160 256 10.7

合計
∑

Yi
∑

Xi
∑

XiYi
∑

X2
i

∑
Ŷi

35 52 468 696 35.0

平均 Y X

8.75 13
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図 2： Yi，Xi，Ŷi
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Ŷi を実績値 Yi の予測値または理論値と呼ぶ。

ûi = Yi − Ŷi,
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ûi を残差と呼ぶ。

Yi = Ŷi + ûi = α̂ + β̂Xi + ûi,

さらに，Y を両辺から引いて，

(Yi − Y) = (Ŷi − Y) + ûi,

1.3 残差 ûi の性質について

ûi = Yi − α̂ − β̂Xi に注意して，(1)式から，

n∑
i=1

ûi = 0,

を得る。 (2)式から，
n∑

i=1

Xîui = 0,
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を得る。 Ŷi = α̂ + β̂Xi から，

n∑
i=1

Ŷîui = 0,

を得る。なぜなら，

n∑
i=1

Ŷîui =

n∑
i=1

(α̂ + β̂Xi)̂ui

= α̂

n∑
i=1

ûi + β̂

n∑
i=1

Xîui

= 0

である。
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i Yi Xi Ŷi ûi Xîui Ŷîui

1 6 10 6.8 −0.8 −8.0 −5.44

2 9 12 8.1 0.9 10.8 7.29

3 10 14 9.4 0.6 8.4 5.64

4 10 16 10.7 −0.7 −11.2 −7.49

合計
∑

Yi
∑

Xi
∑

Ŷi
∑

ûi
∑

Xîui
∑

Ŷîui

35 52 35.0 0.0 0.0 0.00

1.4 決定係数 R2 について

次の式

(Yi − Y) = (Ŷi − Y) + ûi,
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の両辺を二乗して，総和すると，
n∑

i=1

(Yi − Y)2 =

n∑
i=1

(
(Ŷi − Y) + ûi

)2

=

n∑
i=1

(Ŷi − Y)2 + 2
n∑

i=1

(Ŷi − Y )̂ui +

n∑
i=1

û2
i

=

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i

となる。まとめると，
n∑

i=1

(Yi − Y)2 =

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i

を得る。さらに，

1 =
∑n

i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2

+

∑n
i=1 û2

i∑n
i=1(Yi − Y)2

それぞれの項は，
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1.
n∑

i=1

(Yi − Y)2 =⇒ yの全変動

2.
n∑

i=1

(Ŷi − Y)2 =⇒ Ŷi (回帰直線)で説明される部分

3.
n∑

i=1

û2
i =⇒ Ŷi (回帰直線)で説明されない部分

となる。

回帰式の当てはまりの良さを示す指標として，決定係数R2を以下の通りに定義

する。

R2 =

∑n
i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2

または，

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
,

として書き換えられる。
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または，Yi = Ŷi + ûi と
n∑

i=1

(Ŷi − Y)2 =

n∑
i=1

(Ŷi − Y)(Yi − Y − ûi)

=

n∑
i=1

(Ŷi − Y)(Yi − Y) −
n∑

i=1

(Ŷi − Y )̂ui

=

n∑
i=1

(Ŷi − Y)(Yi − Y)

を用いて，

R2 =

∑n
i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2

=

(∑n
i=1(Ŷi − Y)2

)2

∑n
i=1(Yi − Y)2 ∑n

i=1(Ŷi − Y)2

=


∑n

i=1(Ŷi − Y)(Yi − Y)√∑n
i=1(Yi − Y)2 ∑n

i=1(Ŷi − Y)2


2
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と書き換えられる。 すなわち，R2 は Yi と Ŷi の相関係数の二乗と解釈さ

れる。
n∑

i=1

(Yi − Y)2 =

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i から，明らかに，

0 ≤ R2 ≤ 1,

となる。R2 が 1に近づけば回帰式の当てはまりは良いと言える。しかし，t分

布のような数表は存在しない。したがって，「どの値よりも大きくなるべき」と

いうような基準はない。

慣習的には，メドとして 0.9以上を判断基準にする。

数値例： 決定係数の計算には以下の公式を用いる。

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
= 1 −

∑n
i=1 û2

i∑n
i=1 Y2

i − nY
2
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計算に必要なものは，ûi = Yi − (α̂ + β̂Xi)，Y，
n∑

i=1

Y2
i である。

i Yi Xi Ŷi ûi ûi Y2
i

1 6 10 6.8 −0.8 0.64 36

2 9 12 8.1 0.9 0.81 81

3 10 14 9.4 0.6 0.36 100

4 10 16 10.7 −0.7 0.49 100

合計
∑

Yi
∑

Xi
∑

Ŷi
∑

ûi
∑

û2
i

∑
Y2

i

35 52 35.0 0.0 2.30 317

∑
û2

i = 2.30，X = 13，Y = 8.75，
n∑

i=1

Y2
i = 317なので，

R2 = 1 − 2.30
317 − 4 × 8.752 = 1 − 2.30

10.75
= 0.786
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1.5 まとめ

α̂，β̂を求めるための公式は

β̂ =

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2

α̂ = Y − β̂X

なので，必要なものは X，Y，
n∑

i=1

X2
i，

n∑
i=1

XiYi である。

決定係数の計算には以下の公式を用いる。

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
= 1 −

∑n
i=1 û2

i∑n
i=1 Y2

i − nY
2

計算に必要なものは，
∑

û2
i，Y，

n∑
i=1

Y2
i である。
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2 Regression Analysis (回帰分析)

2.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

yi = β1 + β2xi + ui, (4)

for i = 1, 2, · · · , n. xi and yi denote the ith observations.

−→ Single (or simple) regression model (単回帰モデル)

yi is called the dependent variable (従属変数) or the explained variable (被説明変

数), while xi is known as the independent variable (独立変数) or the explanatory

(or explaining) variable (説明変数).
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β1 = Intercept (切片), β2 = Slope (傾き)

β1 and β2 are unknown parameters (パラメータ，母数) to be estimated.

β1 and β2 are called the regression coefficients (回帰係数).

ui is the unobserved error term (誤差項) assumed to be a random variable with mean

zero and variance σ2.

σ2 is also a parameter to be estimated.

xi is assumed to be nonstochastic (非確率的), but yi is stochastic (確率的) because

yi depends on the error ui.

The error terms u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed, which is called iid.

It is assumed that ui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (4), the expectation of yi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi, (5)

for i = 1, 2, · · · , n.

Using E(yi) we can rewrite (4) as yi = E(yi) + ui.

(5) represents the true regression line.

Let β̂1 and β̂2 be estimates of β1 and β2.

Replacing β1 and β2 by β̂1 and β̂2, (4) turns out to be:

yi = β̂1 + β̂2xi + ei, (6)
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for i = 1, 2, · · · , n, where ei is called the residual (残差).

The residual ei is taken as the experimental value (or realization) of ui.

We define ŷi as follows:

ŷi = β̂1 + β̂2xi, (7)

for i = 1, 2, · · · , n, which is interpreted as the predicted value (予測値) of yi.

(7) indicates the estimated regression line, which is different from (5).

Moreover, using ŷi we can rewrite (6) as yi = ŷi + ei.

(5) and (7) are displayed in Figure 1.

Consider the case of n = 6 for simplicity. × indicates the observed data series.
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Figure 1. True and Estimated Regression Lines (回帰直線)
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26



Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.

In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1 and

β̂2.

2.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (4), we consider estimating β1 and β2.

Replacing β1 and β2 by their estimates β̂1 and β̂2, remember that the residual ei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi.
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The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =
n∑

i=1

e2
i =

n∑
i=1

(yi − β̂1 − β̂2xi)2.

It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared

residuals, i.e., S (β̂1, β̂2).

This method is called the ordinary least squares estimation (最小二乗法，OLS).

To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial derivatives equal

to zero:

∂S (β̂1, β̂2)
∂β̂1

= −2
n∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S (β̂1, β̂2)
∂β̂2

= −2
n∑

i=1

xi(yi − β̂1 − β̂2xi) = 0.
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The second order condition for minimization is:( ∂2S (β̂1,β̂2)
∂β̂2

1

∂2S (β̂1,β̂2)
∂β̂1∂β̂2

∂2S (β̂1,β̂2)
∂β̂2∂β̂1

∂2S (β̂1,β̂2)
∂β̂2

2

)
=

( 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

)
should be a positive definite matrix.

The diagonal elements 2n and 2
∑n

i=1 x2
i are positive.

The determinant:∣∣∣∣∣∣ 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

∣∣∣∣∣∣ = 4n
n∑

i=1

x2
i − 4(

n∑
i=1

xi)2 = 4n
n∑

i=1

(xi − x)2

is positive. =⇒ The second-order condition is satisfied.

The first two equations yield the following two equations:

y = β̂1 + β̂2x, (8)
n∑

i=1

xiyi = nxβ̂1 + β̂2

n∑
i=1

x2
i , (9)
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where y =
1
n

n∑
i=1

yi and x =
1
n

n∑
i=1

xi.

Multiplying (8) by nx and subtracting (9), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy∑n
i=1 x2

i − nx2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 . (10)

From (8), β̂1 is directly obtained as follows:

β̂1 = y − β̂2x. (11)

When the observed values are taken for yi and xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares

estimates,最小二乗推定値) of β1 and β2.

When yi for i = 1, 2, · · · , n are regarded as the random sample, we say that β̂1 and β̂2

are called the ordinary least squares estimators (or the least squares estimators,

最小二乗推定量) of β1 and β2.
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2.3 Properties of Least Squares Estimator

Equation (10) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 =

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2 −

y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑
i=1

xi − x∑n
i=1(xi − x)2 yi =

n∑
i=1

ωiyi. (12)

In the third equality,
n∑

i=1

(xi − x) = 0 is utilized because of x =
1
n

n∑
i=1

xi.

In the fourth equality, ωi is defined as: ωi =
xi − x∑n

i=1(xi − x)2 .

ωi is nonstochastic because xi is assumed to be nonstochastic.

ωi has the following properties:

n∑
i=1

ωi =

n∑
i=1

xi − x∑n
i=1(xi − x)2 =

∑n
i=1(xi − x)∑n

i=1(xi − x)2 = 0, (13)
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n∑
i=1

ωixi =

n∑
i=1

ωi(xi − x) =
∑n

i=1(xi − x)2∑n
i=1(xi − x)2 = 1, (14)

n∑
i=1

ω2
i =

n∑
i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2(∑n

i=1(xi − x)2
)2 =

1∑n
i=1(xi − x)2 . (15)

The first equality of (14) comes from (13).

From now on, we focus only on β̂2, because usually β2 is more important than β1 in

the regression model (4).

In order to obtain the properties of the least squares estimator β̂2, we rewrite (12) as:

β̂2 =

n∑
i=1

ωiyi =

n∑
i=1

ωi(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωixi +

n∑
i=1

ωiui = β2 +

n∑
i=1

ωiui. (16)

In the fourth equality of (16), (13) and (14) are utilized.
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[Review] Random Variables:

Let X1, X2, · · ·, Xn be n random variavles, which are mutually independently and

identically distributed.

mutually independent =⇒ f (xi, x j) = fi(xi) f j(x j) for i , j.

f (xi, x j) denotes a joint distribution of Xi and X j.

fi(x) indicates a marginal distribution of Xi.

identical =⇒ fi(x) = f j(x) for i , j.

[End of Review]
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[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

• E(g(X)) =
∫

g(x) f (x)dx for a function g(·) and a density function f (·).

• V(X) = E((X − µ)2) =
∫

(x − µ)2 f (x)dx for µ = E(X).

• E(aX + b) = aE(X) + b and V(aX + b) = a2V(X).

• E(X ± Y) = E(X) ± E(Y) and V(X ± Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and variance σ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (16), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑
i=1

ωiui) = β2 + E(
n∑

i=1

ωiui) = β2 +

n∑
i=1

ωiE(ui) = β2. (17)

It is shown from (17) that the ordinary least squares estimator β̂2 is an unbiased

estimator (不偏推定量) of β2.
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From (16), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n∑
i=1

ωiui) = V(
n∑

i=1

ωiui) =
n∑

i=1

V(ωiui) =
n∑

i=1

ω2
i V(ui)

= σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)2 . (18)

The third equality holds because u1, u2, · · ·, un are mutually independent.

The last equality comes from (15).

Thus, E(β̂2) and V(β̂2) are given by (17) and (18).

Gauss-Markov Theorem (ガウス・マルコフ定理): β̂2 has minimum variance

within a class of the linear unbiased estimators.

−→ best linear unbiased estimator (BLUE,最良線型不偏推定量)

(Proof is omitted.)
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Distribution of β̂2: We discuss the small sample properties of β̂2.

In order to obtain the distribution of β̂2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is that ui ∼ N(0, σ2).

Writing (16), again, β̂2 is represented as:

β̂2 = β2 +

n∑
i=1

ωiui.

First, we obtain the distribution of the second term in the above equation.

It is well known that sum of normal random variables results in a normal distribution.

Therefore,
∑n

i=1 ωiui is distributed as:

n∑
i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ).
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Therefore, β̂2 is distributed as:

β̂2 = β2 +

n∑
i=1

ωiui ∼ N(β2, σ
2

n∑
i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
∼ N(0, 1),

for any n.

Moreover, replacing σ2 by its estimator s2 =
1

n − 2

n∑
i=1

(yi − β̂1 − β̂2xi)2, it is known

that we have:
β̂2 − β2

s/
√∑n

i=1(xi − x)2
∼ t(n − 2),

where t(n − 2) denotes t distribution with n − 2 degrees of freedom.
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Thus, under normality assumption on the error term ui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√∑n

i=1(xi − x)2

)2
∼ F(1, n − 2).
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[Review] Confidence Interval (信頼区間，区間推定)):

Suppose that X1, X2, · · · , Xn are mutually independently, identically and normally dis-

tributed with mean µ and variance σ2.

Then, we can obtain:
X − µ
S/
√

n
∼ t(n − 1), where S 2 =

1
n − 1

n∑
i=1

(Xi − X)2.

That is,

P
(
−tα/2(n − 1) <

X − µ
S/
√

n
< tα/2(n − 1)

)
= 1 − α

i.e.,

P
(
X − tα/2(n − 1)

S
√

n
< µ < X + tα/2(n − 1)

S
√

n

)
= 1 − α.

Note that tα/2(n − 1) is obtained from the t distribution table, given α and n − 1.

Then, replacing X by x, we obtain the 100(1−α)% confidence interval of µ as follows:

(x − tα/2(n − 1)
s
√

n
, x + tα/2(n − 1)

s
√

n
).

[End of Review]
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In the case of OLS,

P
(
−tα/2(n − 2) <

β̂2 − β2

s/
√∑n

i=1(xi − x)2
< tα/2(n − 2)

)
= 1 − α,

where tα/2(n − 2) denotes 100 × α/2% point from the t(n − 2) distribution.

Rewriting,

P
(
β̂2 − tα/2(n − 2)

s√∑n
i=1(xi − x)2

< β2 < β̂2 + tα/2(n − 2)
s√∑n

i=1(xi − x)2

)
= 1 − α.

Replacing β̂2 and s2 by observed data, the 100(1 − α)% confidence interval of β2 is

given by:

(
β̂2 − tα/2(n − 2)

s√∑n
i=1(xi − x)2

, β̂2 + tα/2(n − 2)
s√∑n

i=1(xi − x)2

)
.
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[Review] Testing the Hypothesis (仮説検定):

Suppose that X1, X2, · · · , Xn are mutually independently, identically and normally dis-

tributed with mean µ and variance σ2.

Then, we obtain:
X − µ
S/
√

n
∼ t(n− 1), where S 2 =

1
n − 1

n∑
i=1

(Xi − X)2, which is known

as the unbiased estimator of σ2.

• The null hypothesis H0 : µ = µ0, where µ0 is a fixed number.

• The alternative hypothesis H1 : µ , µ0

Under the null hypothesis, we have the disribution:
X − µ0

S/
√

n
∼ t(n − 1).

Replacing X and S 2 by x and s2, compare
x − µ0

s/
√

n
and t(n − 1).

H0 is rejected when
∣∣∣∣ x − µ0

s/
√

n

∣∣∣∣ > tα/2(n − 1).

tα/2(n− 1) is obtained from the significance level α and the degrees of freedom n− 1.

[End of Review]
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In the case of OLS, the hypotheses are as follows:

• The null hypothesis H0 : β2 = β
∗
2

• The alternative hypothesis H1 : β2 , β∗2

Under H0,
β̂2 − β∗2

s/
√∑n

i=1(xi − x)2
∼ t(n − 2).

Replacing β̂2 and s2 by the observed data, compare
β̂2 − β∗2

s/
√∑n

i=1(xi − x)2
and t(n − 2).

H0 is rejected at significance level α when
∣∣∣∣ β̂2 − β∗2
s/

√∑n
i=1(xi − x)2

∣∣∣∣ > tα/2(n − 1).

(*) β̂2 = Coefficient,
s√∑n

i=1(xi − x)2
= Standard Error,

s = Standard Error of Regression
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