
エコノメトリックス

(2016年度前期講義ノート)
April 19, 2016 (火)版

教科書『計量経済学』
(山本拓著，新世社，1995年)

i



谷﨑　久志
大阪大学・経済学部

Contents
1 計量経済学について 1

1.1 例 1：マクロの消費関数 . . . . . . . . . . . . . . . . . . . . . . 1
1.2 例 2：日本酒の需要関数 . . . . . . . . . . . . . . . . . . . . . . 4

2 行列について 6

3 最小二乗法について 20

ii



3.1 最小二乗法と回帰直線 . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 切片 αと傾き βの推定 . . . . . . . . . . . . . . . . . . . . . . . 21
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教科書
『計量経済学』(山本拓著，1995，新世社)
『基本統計学 (第 3版)』(豊田他著，東洋経済新報社，2010年)

1 計量経済学について

• 経済理論 (ミクロ，マクロ，財政，金融，国際経済，・・・)

• データ (GNP，消費，投資，金利，為替レート，・・・)

計量経済学 =⇒ 経済理論が現実に成り立つものかどうかを，データを用いて，
統計的に検証する。

1.1 例 1：マクロの消費関数

C = f (Y)

ただし，C は消費，Y は所得。
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1. Y ↗ =⇒ C ↗

2.
dC
dY
=限界消費性向 =所得 1円増加で消費が何円増加するか

3. すなわち，
dC
dY
> 0

モデルの定式化

1. C = a + bY

2. b =
dC
dY
=限界消費性向

3. a =基礎消費 (Y = 0のときに必要な消費)

4. 符号条件： a > 0，b > 0 (しかも，1 > b)
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図 1：消費 (Ci)と所得 (Yi)

0

500

1000

1500

2000

2500

3000

Ci

0 1000 2000 3000 4000
Yi

×

×

×

×
×

×

×
×

×

90

91

92

93
94

95

96
97

98

1. × −→実際のデータ

2. (Yi,Ci) =⇒ t期のデータ, i.e., i = 1, 2, · · · , 9

3. i = 1 =⇒ 1990年，

i = 2 =⇒ 1991年，
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· · ·，
i = 9 =⇒ 1998年，

1. 実際のデータを用いて，a, bを求める。

2. a, bを求める ≡現実の経済構造を求める

3. その結果，もし a > 0，1 > b > 0なら，経済理論は現実経済を説明してい
ると言える。

1.2 例 2：日本酒の需要関数

Q = f (Y, P1, P2)

ただし，Qは日本酒の需要量，Y は所得，P1は日本酒の価格，P2は洋酒の価格。

1. Y ↗ =⇒ Q↗,

P1 ↗ =⇒ Q↘,

P2 ↗ =⇒ Q↗

4



2.
∂Q
∂Y
> 0,

∂Q
∂P1
< 0,

∂Q
∂P2
> 0

3. 日本酒と洋酒は代替財

4. モデルの定式化 (A)

Q = a + b1Y + b2P1 + b3P2

5. Q, Y , P1, P2を用いて，a, b1, b2, b3を求める (日本酒の需要構造を求める)。

6. 符号条件： b1 > 0, b2 < 0, b3 > 0, a ?

7. t期のデータ (Qi,Yi, P1i, P2i)

8. n組のデータ, i.e., i = 1, 2, · · · , n

9. モデルの定式化 (B)

Q = a + b1Y + b2
P1

P2

符号条件： b1 > 0, b2 < 0
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10. モデルの定式化 (C)

log(Q) = a + b1 log(Y) + b2 log(
P1

P2
)

符号条件： b1 > 0, b2 < 0

11. モデル (A), (B), (C)のどれが最も現実的かを得られた結果から判断する。

2 行列について

Aを 2 × 2行列とすると，

A =
( a11 a12

a21 a22

)
と表される。

ai j = Aの第 i行，第 j列の要素

aを 2 × 1行列 (縦ベクトル)とすると，

a =
( a1

a2

)
6



と表される。
ai = aの第 i要素

aを 1 × 2行列 (横ベクトル)とすると，

a = ( a1 a2 )

と表される。
ai = aの第 i要素

Aを n × k行列とすると，

A =


a11 · · · a1k
...
. . .

...
an1 · · · ank


と表される。

ai j = Aの第 i行，第 j列の要素 (i j要素)

aを n × 1行列 (縦ベクトル)とすると，

a =


a1
...

an


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と表される。
ai = aの第 i要素

aを 1 × k行列 (横ベクトル)とすると，

a = ( a1 · · · ak )

と表される。
ai = aの第 i要素

行列の等号： A，B を n × k 行列とする。A = B は，すべての i = 1, · · · , n,
j = 1, · · · , kについて，ai j = bi jを意味する。ただし，ai j, bi jは，それぞれ，A, B
の i j要素とする。

x = 3, y = 2の２つの等式を行列で表す。( x
y

)
=

( 3
2

)
または ( x y ) = ( 3 2 )

行列の和と差： A, Bを n × k行列とする。

A + B =


a11 · · · a1k
...
. . .

...
an1 · · · ank

 +


b11 · · · b1k
...
. . .

...
bn1 · · · bnk


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=


a11 + b11 · · · a1k + b1k
...

. . .
...

an1 + bn1 · · · ank + bnk


すなわち，A + Bの i j要素は，ai j + bi j となる。

A =
( 1 2

3 4

)
B =
( 5 6

7 8

)
A + B =

( 1 + 5 2 + 6
3 + 7 4 + 8

)
=

( 6 8
10 12

)
A − B =

( 1 − 5 2 − 6
3 − 7 4 − 8

)
=

(−4 −4
−4 −4

)
要素と行列の積： Aを n × k行列とする。cをスカラー (1 × 1行列のこと)と
する。

cA = c


a11 · · · a1k
...
. . .

...
an1 · · · ank

 =


ca11 · · · ca1k
...

. . .
...

can1 · · · cank


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A =
( 1 2

3 4

)
c = 5 のとき

cA = 5
( 1 2

3 4

)
=

( 5 × 1 5 × 2
5 × 3 5 × 4

)
=

( 5 10
15 20

)
行列と行列の積： A, Bを n × k，k × n行列とする。

AB =


a11 · · · a1k
...
. . .

...
an1 · · · ank




b11 · · · b1n
...
. . .

...
bk1 · · · bkn


=


∑k

m=1 a1mbm1 · · · ∑k
m=1 a1mbmn

...
. . .

...∑k
m=1 anmbm1 · · · ∑k

m=1 a1mbmn


すなわち，ABは n × n 行列で，ABの i j要素は，ai1b1 j + ai2b2 j + · · · + aikbk j =∑k

m=1 aikbk j となる。
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BA =


b11 · · · b1n
...
. . .

...
bk1 · · · bkn




a11 · · · a1k
...
. . .

...
an1 · · · ank


=


∑n

m=1 b1mam1 · · · ∑n
m=1 b1mamk

...
. . .

...∑n
m=1 bkmam1 · · · ∑n

m=1 b1mamk


すなわち，BA は k × k 行列で，BA の i j要素は，bi1a1 j + bi2a2 j + · · · + bikak j =∑k

m=1 aikbk j となる。
このように，ABと BAの次元は異なる。

A =
( 1 2

3 4

)
B =
( 5 6

7 8

)
AB =

( 1 2
3 4

) ( 5 6
7 8

)
=

( 1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

)
=

( 19 22
43 50

)
11



BA =
( 5 6

7 8

) ( 1 2
3 4

)
=

( 5 × 1 + 6 × 3 5 × 2 + 6 × 4
7 × 1 + 8 × 3 7 × 2 + 8 × 4

)
=

( 23 34
31 46

)
一般的に，AB , BAとなる。

cをスカラーとする。

cAB = AcB = (Ac)B = A(cB) = ABc

cをどこで掛けても値は変わらない。

連立方程式： {
x + 2y = 3
4x + 5y = 6

行列表示すると， ( 1 2
4 5

) ( x
y

)
=

( 3
6

)
12



となる。

また， 
x + 2y + 3z = 4
5x + 6y + 7z = 8
9x + 10y + 11z = 12

行列表示すると，  1 2 3
5 6 7
9 10 11


 x

y
z

 =
 4

8
12


となる。

単位行列： 単位行列とは，対角要素 1，その他 0となる行列であり，Iで表す。

I =


1 0 · · · 0
0 1
...

. . .
...

1 0
0 · · · 0 1


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I が n × n行列のとき，In と書くことも多い。

Aを n × n行列，xを n × 1行列 (ベクトル)とする。

InA = AIn = A Inx = x

 1 0
. . .

0 1




a11 · · · a1n
...
. . .

...
an1 · · · ann


=


a11 · · · a1n
...
. . .

...
an1 · · · ann


 1 0

. . .

0 1


=


a11 · · · a1n
...
. . .

...
an1 · · · ann


 1 0

. . .

0 1




x1
...

xn

 =


x1
...

xn


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逆行列： Aを n × nとする。Aの逆行列とは，AB = In または BA = In となる
Bを指す。Aも Bも次元は同じ。

Bを A−1 と表す。
すなわち，Aの逆行列は A−1 であり，A−1 の逆行列は Aである。

A =
( a b

c d

)
のとき，

A−1 =
1

ad − bc

( d −b
−c a

)
となる。

A−1A =
1

ad − bc

( d −b
−c a

) ( a b
c d

)
=

1
ad − bc

( da − bc db − bd
−ca + ac −bc + ad

)
=

( 1 0
0 1

)
= I2
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AA−1 =

( a b
c d

)
× 1

ad − bc

( d −b
−c a

)
=

1
ad − bc

( ad − bc −ab + ba
cd − dc −cb + da

)
=

( 1 0
0 1

)
= I2

連立方程式の解： Aを n × n行列，xと bを n × 1行列 (ベクトル)とする。

Ax = b

両辺に A−1 を左から掛ける。

A−1Ax = A−1b

A−1A = In なので，
Inx = A−1b

となる。また，
Inx = x
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なので，xを A, bで表すと，
x = A−1b

となる。

例 {
x + 2y = 3
4x + 5y = 6

の行列表示は， ( 1 2
4 5

) ( x
y

)
=

( 3
6

)
となる。

x, yの解は， ( 1 2
4 5

)−1 ( 1 2
4 5

) ( x
y

)
=

( 1 2
4 5

)−1 ( 3
6

)
なので， ( 1 0

0 1

) ( x
y

)
=

( 1 2
4 5

)−1 ( 3
6

)
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すなわち， ( x
y

)
=

( 1 2
4 5

)−1 ( 3
6

)
=

1
1 × 5 − 2 × 4

( 5 −2
−4 1

) ( 3
6

)
= − 1

1 × 3

( 5 × 3 − 2 × 6
−4 × 3 + 1 × 6

)
=

(−1
2

)

例 
x + 2y + 3z = 4
5x + 6y + 7z = 8
9x + 10y + 11z = 12

の行列表示は，  1 2 3
5 6 7
9 10 11


 x

y
z

 =
 4

8
12


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となる。x, y, zの解は，  x
y
z

 =
 1 2 3

5 6 7
9 10 11


−1  4

8
12


となる。

転置行列： Aを n × k行列とする。
Aの i j要素を ai j とする。
Aの転置行列 (A′ または tA)の i j要素は，a ji となる。

A =


a11 · · · a1k
...
. . .

...
an1 · · · ank


A′ =


a11 · · · an1
...
. . .

...
a1k · · · ank


A′ は k × nとなる。
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(A′)′ = A

x =


x1

x2
...

xn

 x′ = ( x1 x2 · · · xn )

3 最小二乗法について

経済理論に基づいた線型モデルの係数の値をデータから求める時に用いられる
手法 =⇒最小二乗法

3.1 最小二乗法と回帰直線

(X1,Y1), (X2,Y2), · · ·, (Xn,Yn)のように n組のデータがあり，Xi と Yi との間に以
下の線型関係を想定する。

Yi = α + βXi,

Xi は説明変数，Yi は被説明変数，α, βはパラメータとそれぞれ呼ばれる。

20



上の式は回帰モデル (または，回帰式)と呼ばれる。目的は，切片 αと傾き
βをデータ {(Xi,Yi), i = 1, 2, · · · , n}から推定すること，

データについて：

1. タイム・シリーズ (時系列)・データ： iが時間を表す (第 i期)。

2. クロス・セクション (横断面)・データ： iが個人や企業を表す (第 i番目の
家計，第 i番目の企業)。

3.2 切片 αと傾き βの推定

次のような関数 S (α, β)を定義する。

S (α, β) =
n∑

i=1

u2
i =

n∑
i=1

(Yi − α − βXi)2

このとき，
min
α,β

S (α, β)

となるような α, βを求める (最小自乗法)。このときの解を α̂, β̂とする。
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最小化のためには，
∂S (α, β)
∂α

= 0

∂S (α, β)
∂β

= 0

を満たす α, βが α̂, β̂となる。
すなわち，α̂, β̂は，

n∑
i=1

(Yi − α̂ − β̂Xi) = 0, (1)

n∑
i=1

Xi(Yi − α̂ − β̂Xi) = 0, (2)

を満たす。
さらに，

n∑
i=1

Yi = nα̂ + β̂
n∑

i=1

Xi, (3)
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n∑
i=1

XiYi = α̂

n∑
i=1

Xi + β̂

n∑
i=1

X2
i ,

行列表示によって，( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

) (
α̂
β̂

)
,

逆行列の公式： ( a b
c d

)−1

=
1

ad − bc

( d −b
−c a

)
α̂, β̂について，まとめて，(

α̂
β̂

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)−1 ( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

1
n
∑n

i=1 X2
i − (
∑n

i=1 Xi)2

×
( ∑n

i=1 X2
i −∑n

i=1 Xi

−∑n
i=1 Xi n

) ( ∑n
i=1 Yi∑n

i=1 XiYi

)
23



さらに，β̂について解くと，

β̂ =
n
∑n

i=1 XiYi − (
∑n

i=1 Xi)(
∑n

i=1 Yi)
n
∑n

i=1 X2
i − (
∑n

i=1 Xi)2

=

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2

=

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

連立方程式の (3)式から，
α̂ = Y − β̂X

となる。ただし，

X =
1
n

n∑
i=1

Xi, Y =
1
n

n∑
i=1

Yi,

とする。

数値例： 以下の数値例を使って，回帰式 Yi = α + βXi の α，βの推定値 α̂，β̂
を求める。
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i Yi Xi

1 6 10
2 9 12
3 10 14
4 10 16

α̂，β̂を求めるための公式は

β̂ =

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2

α̂ = Y − β̂X

なので，必要なものは X，Y，
n∑

i=1

X2
i，

n∑
i=1

XiYi である。
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i Yi Xi XiYi X2
i

1 6 10 60 100
2 9 12 108 144
3 10 14 140 196
4 10 16 160 256

合計
∑

Yi
∑

Xi
∑

XiYi
∑

X2
i

35 52 468 696
平均 Y X

8.75 13

よって，

β̂ =
468 − 4 × 13 × 8.75

696 − 4 × 132 =
13
20
= 0.65

α̂ = 8.75 − 0.65 × 13 = 0.3

となる。

注意事項：

1. α, βは真の値で未知
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2. α̂, β̂は α, βの推定値でデータから計算される

回帰直線は
Ŷi = α̂ + β̂Xi,

として与えられる。
上の数値例では，

Ŷi = 0.3 + 0.65Xi

となる。

i Yi Xi XiYi X2
i Ŷi

1 6 10 60 100 6.8
2 9 12 108 144 8.1
3 10 14 140 196 9.4
4 10 16 160 256 10.7

合計
∑

Yi
∑

Xi
∑

XiYi
∑

X2
i
∑

Ŷi

35 52 468 696 35.0
平均 Y X

8.75 13
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図 2： Yi，Xi，Ŷi

0

5

10

Yi

0 5 10 15 20
Xi

×

×
× ×

Ŷi →

Ŷi を実績値 Yi の予測値または理論値と呼ぶ。

ûi = Yi − Ŷi,

ûi を残差と呼ぶ。
Yi = Ŷi + ûi = α̂ + β̂Xi + ûi,

28



さらに，Y を両辺から引いて，

(Yi − Y) = (Ŷi − Y) + ûi,

3.3 残差 ûi の性質について

ûi = Yi − α̂ − β̂Xi に注意して，(1)式から，

n∑
i=1

ûi = 0,

を得る。
(2)式から，

n∑
i=1

Xîui = 0,

を得る。
Ŷi = α̂ + β̂Xi から，

n∑
i=1

Ŷîui = 0,
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を得る。なぜなら，

n∑
i=1

Ŷîui =

n∑
i=1

(α̂ + β̂Xi)̂ui

= α̂

n∑
i=1

ûi + β̂

n∑
i=1

Xîui

= 0

である。

i Yi Xi Ŷi ûi Xîui Ŷîui

1 6 10 6.8 −0.8 −8.0 −5.44
2 9 12 8.1 0.9 10.8 7.29
3 10 14 9.4 0.6 8.4 5.64
4 10 16 10.7 −0.7 −11.2 −7.49

合計
∑

Yi
∑

Xi
∑

Ŷi
∑

ûi
∑

Xîui
∑

Ŷîui

35 52 35.0 0.0 0.0 0.00
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3.4 決定係数 R2 について

次の式
(Yi − Y) = (Ŷi − Y) + ûi,

の両辺を二乗して，総和すると，
n∑

i=1

(Yi − Y)2

=

n∑
i=1

(
(Ŷi − Y) + ûi

)2
=

n∑
i=1

(Ŷi − Y)2 + 2
n∑

i=1

(Ŷi − Y )̂ui +

n∑
i=1

û2
i

=

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i

となる。まとめると，
n∑

i=1

(Yi − Y)2 =

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i
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を得る。さらに，

1 =
∑n

i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2

+

∑n
i=1 û2

i∑n
i=1(Yi − Y)2

それぞれの項は，

1.
n∑

i=1

(Yi − Y)2 =⇒ yの全変動

2.
n∑

i=1

(Ŷi − Y)2 =⇒ Ŷi (回帰直線)で説明される部分

3.
n∑

i=1

û2
i =⇒ Ŷi (回帰直線)で説明されない部分

となる。
回帰式の当てはまりの良さを示す指標として，決定係数 R2 を以下の通りに

定義する。

R2 =

∑n
i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2
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または，

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
,

として書き換えられる。
または，Yi = Ŷi + ûi と

n∑
i=1

(Ŷi − Y)2

=

n∑
i=1

(Ŷi − Y)(Yi − Y − ûi)

=

n∑
i=1

(Ŷi − Y)(Yi − Y) −
n∑

i=1

(Ŷi − Y )̂ui

=

n∑
i=1

(Ŷi − Y)(Yi − Y)

を用いて，

R2 =

∑n
i=1(Ŷi − Y)2∑n
i=1(Yi − Y)2
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=

(∑n
i=1(Ŷi − Y)2

)2
∑n

i=1(Yi − Y)2∑n
i=1(Ŷi − Y)2

=


∑n

i=1(Ŷi − Y)(Yi − Y)√∑n
i=1(Yi − Y)2∑n

i=1(Ŷi − Y)2


2

と書き換えられる。すなわち，R2 は Yi と Ŷi の相関係数の二乗と解釈される。
n∑

i=1

(Yi − Y)2 =

n∑
i=1

(Ŷi − Y)2 +

n∑
i=1

û2
i から，明らかに，

0 ≤ R2 ≤ 1,

となる。R2 が 1に近づけば回帰式の当てはまりは良いと言える。しかし，t分
布のような数表は存在しない。したがって，「どの値よりも大きくなるべき」と
いうような基準はない。
慣習的には，メドとして 0.9以上を判断基準にする。
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数値例： 決定係数の計算には以下の公式を用いる。

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
= 1 −

∑n
i=1 û2

i∑n
i=1 Y2

i − nY
2

計算に必要なものは，ûi = Yi − (α̂ + β̂Xi)，Y，
n∑

i=1

Y2
i である。

i Yi Xi Ŷi ûi ûi Y2
i

1 6 10 6.8 −0.8 0.64 36
2 9 12 8.1 0.9 0.81 81
3 10 14 9.4 0.6 0.36 100
4 10 16 10.7 −0.7 0.49 100

合計
∑

Yi
∑

Xi
∑

Ŷi
∑

ûi
∑

û2
i
∑

Y2
i

35 52 35.0 0.0 2.30 317

∑
û2

i = 2.30，X = 13，Y = 8.75，
n∑

i=1

Y2
i = 317なので，

R2 = 1 − 2.30
317 − 4 × 8.752 = 1 − 2.30

10.75
= 0.786
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3.5 まとめ

α̂，β̂を求めるための公式は

β̂ =

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2

α̂ = Y − β̂X

なので，必要なものは X，Y，
n∑

i=1

X2
i，

n∑
i=1

XiYi である。

決定係数の計算には以下の公式を用いる。

R2 = 1 −
∑n

i=1 û2
i∑n

i=1(Yi − Y)2
= 1 −

∑n
i=1 û2

i∑n
i=1 Y2

i − nY
2

計算に必要なものは，
∑

û2
i，Y，

n∑
i=1

Y2
i である。
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4 統計学の回帰分析への応用

(X1,Y1), (X2,Y2), · · ·, (Xn,Yn)のように n組のデータがあり，Xi と Yi との間に線
型関係を想定する。

Yi = α + βXi
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最小二乗法を用いて，データに直線のあてはめを行った。
α̂，β̂，Ŷi を求めるための公式は

β̂=

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

=

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2

α̂ = Y − β̂X,
Ŷi = α̂ + β̂Xi,

である。
Yi，Ŷi，ûi，α̂，β̂の関係は以下の通りである。

Yi = Ŷi + ûi

= α̂ + β̂Xi + ûi

残差 ûi が必ず含まれることから，

Yi = α + βXi + ui,

39



として誤差項 (または，攪乱項) ui を含め，それを確率変数として考える。
=⇒確率的モデル

Yi：被説明変数，従属変数

Xi：説明変数，独立変数

α, β：未知母数 (未知パラメータ)

α̂, β̂：推定量 (特に，最小二乗推定量)

1. 残差 ûi は ui の実現値としてみなすことができる。

2. α̂，β̂の性質を統計学的に考察可能となる。

統計学の復習 (統計量，推定量，推定値について)

1. 理論標本，理論観測値

=⇒ X1, X2, · · ·, Xn

=⇒確率変数
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2. 実現された標本，実現された観測値，実現値

=⇒ x1, x2, · · ·, xn

=⇒数値

1. 理論観測値 X1, X2, · · ·, Xn の関数 =⇒統計量

2. すべての iについて，µ = E(Xi)と仮定する。

3. 母平均 µの推定に使われる統計量 =⇒ µの推定量

(a) X =
1
n

n∑
i=1

Xi は µの推定量

(b) S 2 =
1

n − 1

n∑
i=1

(Xi − X)2 は σ2 の推定量

4. 実現された標本を用いて実際に計算された推定量の値 =⇒推定値

(a) x =
1
n

n∑
i=1

xi は µの推定値
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(b) s2 =
1

n − 1

n∑
i=1

(xi − x)2 は σ2 の推定値

5. µや σ2 の推定量の候補は無数に考えられる。

6. α, βは母数。

7. α̂, β̂は α, βの推定量である。

4.1 回帰モデルの仮定

回帰モデル
Yi = α + βXi + ui,

の仮定：

1. Xi は確率変数でないと仮定する (固定された値)。

2. すべての iについて，E(ui) = 0とする。

3. すべての iについて，V(ui) = σ2 とする。(V(ui) = E(u2
i ) = σ2 に注意)
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4. すべての i , jについて，Cov(ui, u j) = 0とする。(Cov(ui, u j) = E(uiu j) = 0
に注意)

5. すべての iについて，ui ∼ N(0, σ2)とする。

6. n −→ ∞のとき，∑n
i=1(Xi − X)2 −→ ∞とする。

攪乱項 u1, u2, · · ·, un はそれぞれ独立に平均ゼロ，分散 σ2 の正規分布する。

再度，まとめて，回帰モデル：

Yi = α + βXi + ui, ui ∼ N(0, σ2),

ただし，

Yi：被説明変数，従属変数

Xi：説明変数，独立変数

α, β, σ2：未知母数 (未知パラメータ)

α̂, β̂：推定量 (特に，最小二乗推定量)
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特に，回帰直線は，
E(Yi) = α + βXi

として解釈される。

4.2 誤差項 (攪乱項)の経済学的意味
1. 経済理論自身が不完全： X 以外にも他の説明変数が必要であるにもかか
わらず，それを誤って除いている可能性がある。

2. モデルの定式化が不完全： Y と Xとの間の線形関係が誤りかもしれない。

3. 理論モデルとデータとの対応：理論モデルで考えられる変数と実際に用
いたデータが適当でないかもしれない。例：所得のデータについては国
民総生産，国民所得，可処分所得，労働所得・・・，金利では公定歩合，国
債利回り，定期預金金利，全国銀行平均約定金利・・・

4. 測定上の誤差：経済データは一般的に推計されているため完全ではない。
誤差を含む。
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4.3 α̂，β̂の統計的性質
準備：

Yi = α + βXi + ui,

Y = α + βX + u,

ただし，

Y =
1
n

n∑
i=1

Yi,

X =
1
n

n∑
i=1

Xi,

u =
1
n

n∑
i=1

ui,

とする。辺々を引いて，

Yi − Y = β(Xi − X) + (ui − u),

を得る。
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4.3.1 β̂について

βの最小二乗推定量 β̂に代入すると，

β̂ =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

=

∑n
i=1(Xi − X)

(
β(Xi − X) + (ui − u)

)
∑n

i=1(Xi − X)2

=

∑n
i=1(Xi − X)

(
β(Xi − X)

)
∑n

i=1(Xi − X)2

+

∑n
i=1(Xi − X)(ui − u)∑n

i=1(Xi − X)2

= β +

∑n
i=1(Xi − X)ui∑n
i=1(Xi − X)2

である。途中の計算で，
∑n

i=1(Xi − X)u = 0に注意せよ。
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よって，まとめると，

β̂ =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

= β +

∑n
i=1(Xi − X)ui∑n
i=1(Xi − X)2

= β +

n∑
i=1

ωiui,

となる。ただし，ωi =
(Xi − X)∑n

i=1(Xi − X)2
とする。

4.3.2 α̂について

αの最小二乗推定量 α̂については，

α̂ = Y − β̂X
= α − (̂β − β)X + u
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ただし，u =
1
n

n∑
i=1

ui である。Y = α + βX + uを途中で使う。

4.3.3 α̂，β̂の平均

統計学の復習 (期待値の公式)：

1. X を確率変数とする。

E(a + bX) = a + bE(X),

となる。ただし，a, bは定数とする。

2. X1, X2, · · ·, Xn の n個の確率変数を考える。このとき，

E(
n∑

i=1

ciXi) =
n∑

i=1

E(ciXi),=
n∑

i=1

ciE(Xi),

となる。ただし，c1, c2, · · ·, cn は定数とする。
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α̂，β̂の平均： β̂は次のように書き換えられた。

β̂ = β +

n∑
i=1

ωiui,

の両辺に期待値をとると，

E(̂β) = E(β +
n∑

i=1

ωiui)

= β +

n∑
i=1

E(ωiui)

= β +

n∑
i=1

ωiE(ui)

= β,

となり，β̂は βの不偏推定量であると言える。
α̂については，

α̂ = α − (̂β − β)X + u
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を利用して，辺々に期待値をとると，

E(α̂) = α − E(̂β − β)X + E(u)
= α

となる。E(̂β − β) = 0に注意。また，E(u)の計算は以下のとおり。

E(u) = E(
1
n

n∑
i=1

ui)

=
1
n

n∑
i=1

E(ui)

= 0

α̂は αの不偏推定量であると言える。

4.3.4 α̂，β̂の分散

統計学の復習 (分散の公式)：

1. X を確率変数とする。
V(X) = E(X − µ)2,
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となる。ただし，µ = E(X)とする。

2. X を確率変数とする。

V(a + bX) = V(bX) = b2V(X),

となる。ただし，a, bは定数とする。

3. X1, X2, · · ·, Xn の n個の確率変数は互いに独立とする。このとき，

V(
n∑

i=1

ciXi) =
n∑

i=1

V(ciXi) =
n∑

i=1

c2
i V(Xi),

となる。ただし，c1, c2, · · ·, cn は定数とする。

α̂，β̂の分散： β̂の分散について，β̂ = β +
∑n

i=1 ωiui を用いると，

V(̂β) = V(β +
n∑

i=1

ωiui)

= V(
n∑

i=1

ωiui)
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=

n∑
i=1

ω2
i V(u2

i )

= σ2
n∑

i=1

ω2
i

=
σ2∑n

i=1(Xi − X)2

誤差項 (または，攪乱項)の仮定より，

V(ui) = σ2,

を用いる。

最後の行は，ωi =
Xi − X∑n

i=1(Xi − X)2
に注意して，

n∑
i=1

ω2
i =

n∑
i=1

 Xi − X∑n
i=1(Xi − X)2

2
=

n∑
i=1

(Xi − X)2(∑n
i=1(Xi − X)2

)2
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=

∑n
i=1(Xi − X)2(∑n

i=1(Xi − X)2
)2

=
1∑n

i=1(Xi − X)2

を用いる。

よって，β̂の平均は β，分散は
σ2∑

(Xi − X)2
となることが示された。

α̂の分散について，α̂ = α − (̂β − β)X + uを利用すると，

V(α̂) = E(α̂ − α)2

= E(−(̂β − β)X + u)2

= X
2
E(̂β − β)2 − 2XE((̂β − β)u) + E(u2)

= σ2

 X
2∑n

i=1(Xi − X)2
+

1
n


=
σ2∑n

i=1 X2
i

n
∑n

i=1(Xi − X)2
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途中で，以下の計算が使われる。

E((̂β − β)u)

= E

∑n
i=1(Xi − X)ui∑n
i=1(Xi − X)2

1
n

n∑
i=1

ui


=

1

n
∑n

i=1(Xi − X)2
E

 n∑
i=1

(Xi − X)ui

n∑
j=1

u j


=

1

n
∑n

i=1(Xi − X)2

n∑
i=1

n∑
j=1

(Xi − X)E(uiu j)

=
1

n
∑n

i=1(Xi − X)2
σ2

n∑
i=1

(Xi − X)

= 0∑n
i=1(Xi − X) = 0であることに注意。

E(u2) = E(
1
n

n∑
i=1

ui)2

54



=
1
n2 E(

n∑
i=1

n∑
j=1

uiu j)

=
1
n2 E(

n∑
i=1

u2
i )

=
1
n2

n∑
i=1

E(u2
i )

=
1
n2

n∑
i=1

σ2

=
σ2

n

よって，α̂の平均は α，分散は
σ2∑n

i=1 X2
i

n
∑n

i=1(Xi − X)2
となることが示された。

α̂と β̂の共分散について，α̂ = α − (̂β − β)X + uを利用すると，

Cov(α̂, β̂) = E((α̂ − α)(̂β − β))
= E((−(̂β − β)X + u)(̂β − β))
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= −E(̂β − β)2X + E(u(̂β − β))
= −E(̂β − β)2X

= − σ2X∑n
i=1(Xi − X)2

となる。

数値例：

i Yi Xi XiYi X2
i

1 6 10 60 100
2 9 12 108 144
3 10 14 140 196
4 10 16 160 256

合計
∑

Yi
∑

Xi
∑

XiYi
∑

X2
i

35 52 468 696
平均 Y X

8.75 13
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V(̂β) =
σ2∑n

i=1(Xi − X)2

=
σ2∑n

i=1 X2
i − nX

2

=
σ2

696 − 4 × 132

=
σ2

20
= 0.05σ2

V(α̂) =
σ2∑n

i=1 X2
i

n
∑n

i=1(Xi − X)2

=
σ2∑n

i=1 X2
i

n(
∑n

i=1 X2
i − nX

2
)

=
σ2696

4(696 − 4 × 132)
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=
696σ2

80
= 8.7σ2

Cov(α̂, β̂) = − σ2X∑n
i=1(Xi − X)2

= − σ2X∑n
i=1 X2

i − nX
2

= − 13σ2

696 − 4 × 132

= −0.65σ2

注意： 最小二乗法を復習すると，まず，次のような関数 S (α, β)を定義する。

S (α, β) =
n∑

i=1

u2
i =

n∑
i=1

(Yi − α − βXi)2
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S (α, β)の最小化によって，
∂S (α, β)
∂α

= 0

∂S (α, β)
∂β

= 0

を満たす α, βが α̂, β̂となる。
すなわち，α̂, β̂は，

n∑
i=1

(Yi − α̂ − β̂Xi) = 0,

n∑
i=1

Xi(Yi − α̂ − β̂Xi) = 0

を満たす。
さらに，

n∑
i=1

Yi = nα̂ + β̂
n∑

i=1

Xi,
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n∑
i=1

XiYi = α̂

n∑
i=1

Xi + β̂

n∑
i=1

X2
i ,

行列表示によって，( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

) (
α̂
β̂

)
,

α̂, β̂について，まとめて，(
α̂
β̂

)
=

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)−1 ( ∑n
i=1 Yi∑n

i=1 XiYi

)
=

1
n
∑n

i=1 X2
i − (
∑n

i=1 Xi)2

×
( ∑n

i=1 X2
i −∑n

i=1 Xi

−∑n
i=1 Xi n

) ( ∑n
i=1 Yi∑n

i=1 XiYi

)
逆行列の部分と分散，共分散とは以下のような関係がある。( V(α̂) Cov(α̂, β̂)

Cov(α̂, β̂) V(̂β)

)
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= σ2
( n

∑n
i=1 Xi∑n

i=1 Xi
∑n

i=1 X2
i

)−1

=
σ2

n
∑n

i=1 X2
i − (
∑n

i=1 Xi)2

×
( ∑n

i=1 X2
i −∑n

i=1 Xi

−∑n
i=1 Xi n

)

=


σ2∑n

i=1 X2
i

n
∑

(Xi − X)2
− σ2X∑

(Xi − X)2

− σ2X∑
(Xi − X)2

σ2∑
(Xi − X)2


4.3.5 α̂，β̂の分布 (σ2 が既知の場合)

統計学の復習 (正規分布について):

1. n個の独立な確率変数 X1, X2, · · ·, Xn が同一の分布に従うものとする。こ
のとき，

E(
n∑

i=1

ciXi) =
n∑

i=1

ciE(Xi),
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V(
n∑

i=1

ciXi) =
n∑

i=1

c2
i V(Xi),

となる。

2. n個の独立な確率変数 X1, X2, · · ·, Xn が同一の正規分布に従うものとする。
このとき，

n∑
i=1

ciXi ∼ N
(
E(

n∑
i=1

ciXi),V(
n∑

i=1

ciXi)
)

となる。すなわち，
n∑

i=1

ciXi ∼ N
( n∑

i=1

ciE(Xi),
n∑

i=1

c2
i V(Xi)

)

3. 特に，Xi ∼ N(µ, σ2)，標本平均 X =
1
n

n∑
i=1

Xi を考えると，

X ∼ N(µ,
σ2

n
)

となる。(すべての iについて，ci =
1
n
の場合を考えればよい。)
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α̂，β̂の分布:

1. β̂ = β +
∑n

i=1 ωiui

2. E(̂β) = β

3. V(̂β) =
σ2∑n

i=1(Xi − X)2

よって，

β̂ ∼ N
β, σ2∑n

i=1(Xi − X)2

 ,
となる。

1. α̂ = α − (̂β − β)X + u

2. E(α̂) = α

3. V(α̂) = σ2

 X
2∑n

i=1(Xi − X)2
+

1
n


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よって，

α̂ ∼ N

α, σ2

 X
2∑n

i=1(Xi − X)2
+

1
n


 ,

となる。

4.3.6 α̂，β̂の性質：最良線型不偏性と一致性

統計学の復習 (推定量の望ましい性質)： α̂，β̂の性質を求めるために

1. 不偏性：

ある母集団のある母数 θに対して，θの推定量として θ̂を考える。

このとき，
E(̂θ) = θ

となるとき，θ̂は θの不偏推定量であると言う。

θ̂は不偏性を持つと言う。

E(̂θ) − θは偏りと定義される。
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(a) 標本平均 X は µの不偏推定量である。
証明：

E(X) = E(
1
n

n∑
i=1

Xi)

=
1
n

n∑
i=1

E(Xi)

=
1
n

n∑
i=1

µ

= µ

このように，E(X) = µなので，標本平均 Xは µの不偏推定量となる。

2. 有効性 (最小分散性)：
ある母数 θに対して，θ̂1 と θ̂2 の 2つの不偏推定量を考える。

このとき，V(̂θ1) ≤ V(̂θ2)が成り立つとき，̂θ1は θ̂2より有効であると言う。

ある母数 θに対して，可能なすべての不偏推定量を考え，θ̂が最も小さな
分散を持つ不偏推定量であるとする。
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このとき，θ̂を最小分散不偏推定量，または，最良不偏推定量と言う。

(a) 推定量
n∑

i=1

ciXi の中で，X =
1
n

n∑
i=1

Xi が最も小さな分散を持つ推定量

となる。
=⇒最良線型不偏推定量

3. 一致性：

ある母数 θについて推定量 θ̂を考える。n個の標本から構成された推定量
を θ̂(n) と定義する。

数列 θ̂(1), θ̂(2), · · ·, θ̂(n), · · ·を考える。
十分大きな nについて，θ̂(n) が θに確率的に収束するとき，θ̂は θの一致
推定量であると言う。

plim
n→∞
θ̂ = θ

と表現する。

(a) E(̂θ) = θとする。n → ∞のとき，V(̂θ) → 0が成り立てば，θ̂は θの
一致推定量である。
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(b) µの推定量 X を調べる。
E(X) = µ

である。

V(X) =
σ2

n
となる。n→ ∞のとき，

V(X) =
σ2

n
−→ 0

となるので，X は µの一致推定量であると言える。

α̂，β̂の最良線型不偏性と一致性

不偏性： 既に証明したとおり，E(̂β) = β，E(α̂) = αなので，α̂，β̂は β，αの
不偏推定量である。
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最良線型不偏性： β̂を変形すると以下の通りとなる。

β̂ =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

=

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2

=

n∑
i=1

ωiYi

ただし，ωi =
(Xi − X)∑n

i=1(Xi − X)2
とする。このように，β̂は線型不偏推定量であると

言える。
別の線型不偏推定量を次のように考える。

β̃ =

n∑
i=1

ciYi
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ただし，ci = ωi + di とする。β̃もまた βの不偏推定量と仮定したので，

β̃ =

n∑
i=1

ciYi

=

n∑
i=1

(ωi + di)(α + βXi + ui)

= α

n∑
i=1

ωi + β

n∑
i=1

ωiXi +

n∑
i=1

ωiui

+ α

n∑
i=1

di + β

n∑
i=1

diXi +

n∑
i=1

diui

= β + α

n∑
i=1

di + β

n∑
i=1

diXi

+

n∑
i=1

ωiui +

n∑
i=1

diui

と変形される。
∑n

i=1 ωi = 0，
∑n

i=1 ωiXi = 1に注意。
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よって，期待値をとると，

E(̃β) = β + α
n∑

i=1

di + β

n∑
i=1

diXi

+

n∑
i=1

ωiE(ui) +
n∑

i=1

diE(ui)

= β + α

n∑
i=1

di + β

n∑
i=1

diXi

となる。β̃が不偏であるためには，

n∑
i=1

di = 0,
n∑

i=1

diXi = 0,

の条件が必要となる。
この 2つの条件が成り立っていると仮定すると，

β̃ = β +

n∑
i=1

(ωi + di)ui
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を利用して，

V(̃β) = E(̃β − β)2

= E(
n∑

i=1

(ωi + di)ui)2

=

n∑
i=1

(ωi + di)2E(u2
i )

= σ2

 n∑
i=1

ω2
i + 2

n∑
i=1

ωidi +

n∑
i=1

d2
i


= σ2

 n∑
i=1

ω2
i +

n∑
i=1

d2
i


β̃の不偏性の条件

∑n
i=1 di = 0，

∑n
i=1 diXi = 0を利用すると，

n∑
i=1

ωidi =

∑n
i=1(Xi − X)di∑n
i=1(Xi − X)2

=

∑n
i=1 Xidi − X

∑n
i=1 di∑n

i=1(Xi − X)2
= 0
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を得る。
まとめると，β̃の分散は，

V(̃β) = σ2

 n∑
i=1

ω2
i +

n∑
i=1

d2
i


となる。β̂の分散は，

V(̂β) = σ2
n∑

i=1

ω2
i

なので，
V(̃β) ≥ V(̂β)

となる。等号が成り立つときは，
∑n

i=1 d2
i = 0，すなわち，d1 = d2 = · · · = dn = 0

のときとなり，これは β̂に一致する。
よって，β̂は最小分散線型不偏推定量，または，最良線型不偏推定量である

と言える。
=⇒ガウス=マルコフの定理
α̂についても，同様で，αの最小分散線型不偏推定量となる。
証明は，
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α̂ − α = −(̂β − β)X + u

を利用すればよい。

推定量の関係 =⇒
最小分散 (最良)線型不偏推定量 ⊂線型不偏推定量 ⊂線型推定量 ⊂全推定量

一致性： E(̂β) = βとなることが分かった。
nが大きくなると，β̂は βに近づくかどうかを調べる。

V(̂β) =
σ2∑n

i=1(Xi − X)2

n −→ ∞のとき，V(̂β) −→ 0となれば，β̂は βの一致推定量となる。
最小二乗法の仮定の一つに，「n −→ ∞のとき，∑n

i=1(Xi − X)2 −→ ∞」という
ものがあった。この仮定は，「n −→ ∞のとき，V(̂β) −→ 0」を保証する。よって，
β̂は βの一致推定量である。
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α̂についても，同様に，E(α̂) = αであることは分かっている。

V(α̂) = σ2

1n + X
2∑n

i=1(Xi − X)2


となり，「n −→ ∞のとき，V(α̂) −→ 0」となるので，α̂も αの一致推定量である
と言える。

4.4 誤差項 (または，攪乱項) ui の分散 σ2 について

Yi = α + βXi + ui,

誤差項 (または，攪乱項)の仮定：ui ∼ N(0, σ2)

Yi = α̂ + β̂Xi + ûi,

ui の分散 σ2 の不偏推定量： ∑n
i=1 û2

i

自由度
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