
max
θ

l(θ)

と
max
θ

log l(θ)

の θの解はともに同じものであることに注意。log l(θ)を対数尤度関数と呼ぶ。

最尤推定量の性質： nが大きいとき，

θ̂ ∼ N(θ, σ2
θ)

ただし，

σ2
θ =

1∑n
i=1 E

[(d log f (Xi; θ)
dθ

)2]
= − 1∑n

i=1 E
[d2 log f (Xi; θ)

dθ2
]
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θがベクトル (k × 1)の場合，nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ =
( n∑

i=1

E
[(∂ log f (Xi; θ)

∂θ

)(∂ log f (Xi; θ)
∂θ

)′])−1

= −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1

例 1： 正規母集団 N(µ, σ2)からの標本値 x1, x2, · · ·, xn を用いて，
(1) σ2 が既知のとき，µの最尤推定値と最尤推定量
(2) σ2 が未知のとき，µと σ2 の最尤推定値と最尤推定量
をそれぞれ求める。

［解］N(µ, σ2)の密度関数は，

f (x; µ, σ2) =
1

√
2πσ2

exp
(
− 1

2σ2 (x − µ)2
)
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となる。したがって，互いに独立な X1, X2, · · ·, Xn の結合分布は，

f (x1, x2, · · · , xn; µ, σ2) ≡
n∏

i=1

f (xi; µ, σ2)

=

n∏
i=1

1
√

2πσ2
exp

(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。

(1) σ2 が既知のとき，尤度関数 l(µ)は，

l(µ) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。
l(µ)を最大にする µと log l(µ)を最大にする µは同じになる。
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したがって，対数尤度関数は，

log l(µ) = −n
2

log(2πσ2) − 1
2σ2

n∑
i=1

(xi − µ)2

となり，
d log l(µ)

dµ
=

1
σ2

n∑
i=1

(xi − µ) = 0

となる µを求める。µの解を µ̂とすると，µの最尤推定値は，

µ̂ =
1
n

n∑
i=1

xi ≡ x

を得る。

さらに，観測値 x1, x2, · · ·, xnをその確率変数 X1, X2, · · ·, Xnで置き換えて，µ
の最尤推定量は，

µ̂ =
1
n

n∑
i=1

Xi ≡ X
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となる。
µ̂の分散を求めるために，

log f (Xi; µ) = −
1
2

log(2πσ2) − 1
2σ2 (Xi − µ)2

d log f (Xi; µ)
dµ

=
1
σ2 (Xi − µ)(d log f (Xi; µ)

dµ

)2
=

1
σ4 (Xi − µ)2

E
[(d log f (Xi; µ)

dµ

)2]
=

1
σ4 E[(Xi − µ)2] =

1
σ2

と計算される。

最尤推定量の性質から，nが大きいとき，

µ̂ ∼ N(µ, σ2
µ)

ただし，

σ2
µ =

1∑n
i=1 E

[(d log f (Xi; µ)
dµ

)2] = σ2

n
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この場合は，nの大きさに関わらず，µ̂ ∼ N(µ, σ2
µ)が成り立つ。

(2) σ2 が未知のとき，µと σ2 の尤度関数は，

l(µ, σ2) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。
対数尤度関数は，

log l(µ, σ2) = −n
2

log(2π) − n
2

logσ2

− 1
2σ2

n∑
i=1

(xi − µ)2

と表される。
µと σ2 について，最大化するためには，

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑
i=1

(xi − µ) = 0

∂ log l(µ, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(xi − µ)2 = 0
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の連立方程式を解く。

µ, σ2 の解を µ̂, σ̂2 とすると，最尤推定値は，

µ̂ =
1
n

n∑
i=1

xi ≡ x

σ̂2 =
1
n

n∑
i=1

(xi − µ̂) ≡
1
n

n∑
i=1

(xi − x)

となる。

観測値 x1, x2, · · ·, xn をその確率変数 X1, X2, · · ·, Xn で置き換えて，µ, σ2 の最
尤推定量は，

µ̂ =
1
n

n∑
i=1

Xi ≡ X

σ̂2 =
1
n

n∑
i=1

(Xi − µ̂) ≡
1
n

n∑
i=1

(Xi − X)

となる。
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σ2 の最尤推定量 σ̂2 は，σ2 の不偏推定量 S 2 =
1

n − 1

n∑
i=1

(Xi − X)2 とは異なる

ことに注意。

θ = (µ, σ2)′ とする。nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ = −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1

log f (Xi; θ) = −
1
2

log(2π) − 1
2

log(σ2) − 1
2σ2 (Xi − µ)2

∂ log f (Xi; θ)
∂θ

=


∂ log f (Xi; θ)

∂µ
∂ log f (Xi; θ)
∂σ2


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=


1
σ2 (Xi − µ)

− 1
2σ2 +

1
2σ4 (Xi − µ)2


∂2 log f (Xi; θ)
∂θ∂θ′

=


∂2 log f (Xi; θ)

∂µ2

∂2 log f (Xi; θ)
∂µ∂σ2

∂2 log f (Xi; θ)
∂σ2∂µ

∂2 log f (Xi; θ)
∂(σ2)2


=

 − 1
σ2 − 1

σ4 (Xi − µ)

− 1
σ4 (Xi − µ)

1
2σ4 −

1
σ6 (Xi − µ)2


E
[∂2 log f (Xi; θ)

∂θ∂θ′

]
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=

 − 1
σ2 − 1

σ4 E(Xi − µ)

− 1
σ4 E(Xi − µ)

1
2σ4 −

1
σ6 E[(Xi − µ)2]


=

−
1
σ2 0

0 − 1
2σ4


よって，

Σθ = −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1

=


σ2

n
0

0
2σ4

n


まとめると，µ，σ2 の最尤推定量 µ̂ = (1/n)

∑n
i=1 Xi，σ̂2 = (1/n)

∑n
i=1(Xi − X)2
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の分布は，nが大きいとき，

(
µ̂
σ̂2

)
∼ N

( (
µ
σ2

)
,


σ2

n
0

0
2σ4

n


)

となる。

例 2： X1, Xn, · · ·, Xn は互いに独立で，それぞれパラメータ pを持ったベルヌ
イ分布に従うものとする。すなわち，Xi の確率関数は，

f (x; p) = px(1 − p)1−x x = 0, 1

となる。

このとき尤度関数は，

l(p) =
n∏

i=1

f (xi; p) =
n∏

i=1

pxi(1 − p)1−xi
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となり，対数尤度関数は，

log l(p) =
n∑

i=1

log f (xi; p)

= log(p)
n∑

i=1

xi + log(1 − p)
n∑

i=1

(1 − xi)

= log(p)
n∑

i=1

xi + log(1 − p)(n −
n∑

i=1

xi)

となる。
log l(p)を最大にする pを求める。

d log l(p)
dp

=
1
p

n∑
i=1

xi −
1

1 − p
(n −

n∑
i=1

xi) = 0

したがって，pについて解くと，pの最尤推定値 p̂は，

p̂ =
1
n

n∑
i=1

xi
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となる。

さらに，xi を Xi で置き換えて，pの最尤推定量 p̂は，

p̂ =
1
n

n∑
i=1

Xi

となる。

p̂の分布を求める。

log f (Xi; p) = Xi log(p) + (1 − Xi) log(1 − p)

d log f (Xi; p)
dp

=
Xi

p
− 1 − Xi

1 − p
=

Xi − p
p(1 − p)

E
[(d log f (Xi; p)

dp

)2]
=

E[(Xi − p)2]
p2(1 − p)2

E[(Xi − p)2] =
1∑

xi=0

(xi − p)2 f (xi; p)
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=

1∑
xi=0

(xi − p)2 pxi(1 − p)1−xi

= p2(1 − p) + (1 − p)2 p = p(1 − p)

1∑n
i=1 E

[(d log f (Xi; p)
dp

)2] = p(1 − p)
n

したがって，

p̂ ∼ N(p,
p(1 − p)

n
)

を得る。

例 3： X1, Xn, · · ·, Xn は互いに独立で，それぞれパラメータ λを持ったポアソ
ン分布に従うものとする。すなわち，Xi の確率関数は，

f (x; λ) =
λxe−λ

x!
x = 0, 1, 2, · · ·

となる。
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このとき尤度関数は，

l(λ) =
n∏

i=1

f (xi; λ) =
n∏

i=1

λxie−λ

xi!

となり，対数尤度関数は，

log l(λ) =
n∑

i=1

log f (xi; λ)

= log(λ)
n∑

i=1

xi − nλ −
n∑

i=1

log(xi!)

となる。
log l(λ)を最大にする pを求める。

d log l(λ)
dλ

=
1
λ

n∑
i=1

xi − n = 0

したがって，λについて解くと，λの最尤推定値 λ̂は，

λ̂ =
1
n

n∑
i=1

xi
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となる。

さらに，xi を Xi で置き換えて，λの最尤推定量 λ̂は，

λ̂ =
1
n

n∑
i=1

Xi

となる。

λ̂の分布を求める。

log f (Xi; λ) = Xi log(λ) − λ − log(Xi!)

d log f (Xi; λ)
dλ

=
Xi

λ
− 1

d2 log f (Xi; λ)
dλ2 = −Xi

λ2

E
(d2 log f (Xi; λ)

dλ2

)
=

E(Xi)
λ2
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E(Xi) =
∞∑

x=0

x f (x; λ)

=

∞∑
x=0

x
λxe−λ

x!

=

∞∑
x=1

x
λxe−λ

x!

=

∞∑
x=1

λ
λx−1e−λ

(x − 1)!

=

∞∑
x=0

λ
λxe−λ

x!

= λ

− 1∑n
i=1 E

(d2 log f (Xi; λ)
dλ2

) = λn
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したがって，

λ̂ ∼ N(λ,
λ

n
)

を得る。

例 4： X1, Xn, · · ·, Xn は互いに独立で，それぞれパラメータ λを持った指数分
布に従うものとする。すなわち，Xi の密度関数は，

f (x; λ) = λe−λx x > 0

となる。

このとき尤度関数は，

l(λ) =
n∏

i=1

f (xi; λ) =
n∏

i=1

λe−λxi

となり，対数尤度関数は，

log l(λ) =
n∑

i=1

log f (xi; λ)
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= n log λ − λ
n∑

i=1

xi

となる。
log l(λ)を最大にする pを求める。

d log l(λ)
dλ

=
n
λ
−

n∑
i=1

xi = 0

したがって，λについて解くと，λの最尤推定値 λ̂は，

λ̂ =
n∑n

i=1 xi

となる。

さらに，xi を Xi で置き換えて，λの最尤推定量 λ̂は，

λ̂ =
n∑n

i=1 Xi

となる。
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λ̂の分布を求める。
log f (Xi; λ) = log λ − λXi

d log f (Xi; λ)
dλ

=
1
λ
− Xi

d2 log f (Xi; λ)
dλ2 = − 1

λ2

− 1∑n
i=1 E

(d2 log f (Xi; λ)
dλ2

) = λ2

n

したがって，

λ̂ ∼ N(λ,
λ2

n
)

を得る。

12.2.1 変数変換

確率変数 Xの密度関数を f (x)，分布関数を F(x) ≡ P(X < x)とする。Y = aX + b
とするとき，Y の密度関数 g(y)を求める。
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Y の分布関数を G(y)として，次のように変形できる。

G(y) = P(Y < y) = P(aX + b < y)

=


P
(
X <

y − b
a

)
, a > 0のとき

P
(
X >

y − b
a

)
, a < 0のとき

=


P
(
X <

y − b
a

)
, a > 0のとき

1 − P
(
X <

y − b
a

)
, a < 0のとき

=


F
(y − b

a

)
, a > 0のとき

1 − F
(y − b

a

)
, a < 0のとき

分布関数と密度関数との関係は，
dF(x)

dx
= f (x)

dG(x)
dx

= g(x)

であるので，Y の密度関数は，

g(y) =
dG(y)

dy
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=


1
a

f
(y − b

a

)
, a > 0のとき

−1
a

f
(y − b

a

)
, a < 0のとき

=
∣∣∣∣1a ∣∣∣∣ f (y − b

a

)
と表される。

一般に，確率変数 Xの密度関数を f (x)とする。単調変換 X = h(Y)とすると
き，Y の密度関数 g(y)は，

g(y) = |h′(y)| f (h(y))

となる。

12.2.2 回帰分析への応用

回帰モデル
Yi = α + βXi + ui i = 1, 2, · · · , n

u1, u2, · · ·, un は互いに独立で，すべての iについて ui ∼ N(0, σ2)を仮定する。
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ui の密度関数は，

f (ui) =
1

√
2πσ2

exp
(
− 1

2σ2 u2
i

)
となる。

Yi の密度関数 g(Yi)は，

g(Yi) = |h′(Yi)| f (h(Yi))

によって求められる。
この場合，h(Yi) = Yi − α − βXi なので，h′(Yi) = 1となる。
したがって，Yi の密度関数は，

g(Yi) = |h′(Yi)| f (h(Yi))
= f (h(Yi))

=
1

√
2πσ2

exp
(
− 1

2σ2 (Yi − α − βXi)2
)

となる。
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u1, u2, · · ·, unは互いに独立であれば，Y1, Y2, · · ·, Ynも互いに独立になるので，
Y1, Y2, · · ·, Yn の結合密度関数は，

g(Y1,Y2, · · · ,Yn) =
n∏

i=1

g(Yi)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(Yi − α − βXi)2
)

となる。これは α, β, σ2 の関数となっている。

よって，尤度関数は，

l(α, β, σ2) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(Yi − α − βXi)2
)

となる。
対数尤度関数は，

log l(α, β, σ2) = −n
2

log(2π) − n
2

log(σ2)

− 1
2σ2

n∑
i=1

(Yi − α − βXi)2
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となる。

log l(α, β, σ2)を最大にするために，

∂ log l(α, β, σ2)
∂α

=
1
σ2

n∑
i=1

(Yi − α − βXi) = 0

∂ log l(α, β, σ2)
∂β

=
1
σ2

n∑
i=1

Xi(Yi − α − βXi) = 0

∂ log l(α, β, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(Yi − α − βXi)2 = 0

の連立方程式を解く。
上 2つの式は σ2に依存していない。α，βの最尤推定量は最小二乗推定量と

同じになる。
すなわち，

β̂ =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

α̂ = Y − β̂X

226



σ2 の最尤推定量は，

σ̂2 =
1
n

n∑
i=1

(Yi − α̂ − β̂Xi)2

となり，s2 とは異なる。

θ̂ = (α̂, β̂, σ̂2)′，θ = (α, β, σ2)′ とする。nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ =
( n∑

i=1

E
[(∂ log g(Yi; θ)

∂θ

)(∂ log g(Yi; θ)
∂θ

)′])−1

= −
( n∑

i=1

E
[∂2 log g(Yi; θ)

∂θ∂θ′

])−1

Yi の密度関数 g(Yi; θ)の対数は，

log g(Yi; θ) = −
1
2

log(2π) − 1
2

log(σ2)

− 1
2σ2 (Yi − α − βXi)2
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となる。

∂ log g(Yi; θ)
∂θ

=


∂ log g(Yi; θ)
∂α

∂ log g(Yi; θ)
∂β

∂ log g(Yi; θ)
∂σ2



=


1
σ2 (Yi − α − βXi)
1
σ2 Xi(Yi − α − βXi)

− 1
2σ2 +

1
2σ4 (Yi − α − βXi)2


∂2 log g(Yi; θ)
∂θ∂θ′
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=



∂2 log g(Yi; θ)
∂α2

∂2 log g(Yi; θ)
∂α∂β

∂2 log g(Yi; θ)
∂α∂σ2

∂2 log g(Yi; θ)
∂β∂α

∂2 log g(Yi; θ)
∂β2

∂2 log g(Yi; θ)
∂β∂σ2

∂2 log g(Yi; θ)
∂σ2∂α

∂2 log g(Yi; θ)
∂σ2∂β

∂2 log g(Yi; θ)
∂(σ2)2



=


− 1
σ2 − Xi

σ2 − ui

σ4

− Xi

σ2 −
X2

i

σ2 −Xiui

σ4

− ui

σ4 −Xiui

σ4

1
2σ4 −

u2
i

σ6


ただし，ui = Yi − α − βXi

期待値をとると，

E
(∂2 log g(Yi; θ)

∂θ∂θ′

)
= E


− 1
σ2 − Xi

σ2 − ui

σ4

− Xi

σ2 −
X2

i

σ2 −Xiui

σ4

− ui

σ4 −Xiui

σ4

1
2σ4 −

u2
i

σ6


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=


− 1
σ2 − Xi

σ2 0

− Xi

σ2 −
X2

i

σ2 0

0 0 − 1
2σ4


となる。

Σθ = −
( n∑

i=1

E
[∂2 log g(Yi; θ)

∂θ∂θ′

])−1

=


n
σ2

∑n
i=1 Xi

σ2 0∑n
i=1 Xi

σ2

∑n
i=1 X2

i

σ2 0

0 0
n

2σ4


−1

=

σ
2
( n

∑n
i=1 Xi∑n

i=1 Xi
∑n

i=1 X2
i

)−1

0

0
2σ4

n


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したがって， (
α̂
β̂

)
∼ N

( (
α
β

)
, σ2

( n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)−1 )
となる。
−→最小二乗推定量の分布と同じ。

12.2.3 誤差項に系列相関がある場合

回帰モデル

Yi = α + βXi + ui

ui = ρui−1 + εi i = 2, 3, · · · , n

ε2, ε3, · · ·, εn は互いに独立で，すべての iについて εi ∼ N(0, σ2)を仮定する。

ui を消去すると，

(Yi − α − βXi) = ρ(Yi−1 − α − βXi−1) + εi

または
(Yi − ρYi−1) = α(1 − ρ) + β(Xi − ρXi−1) + εi
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と書き直すことが出来る。

θ = (α, β, σ2, ρ)とする。

log f (Yi; θ) = −
1
2

log(2πσ2)

− 1
2σ2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

尤度関数は，

log l(θ) =
n∑

i=2

log f (Yi; θ) = −
n − 1

2
log(2π) − n − 1

2
log(σ2)

− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

となる。
尤度関数をそれぞれ α，β，σ2，ρについて微分し，ゼロとおく。

∂ log l(θ)
∂α

=
1 − ρ
σ2

n∑
i=2

(
(Yi − ρYi−1)

−α(1 − ρ) − β(Xi − ρXi−1)
)
= 0
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∂ log l(θ)
∂β

=
1
σ2

n∑
i=2

(Xi − ρXi−1)
(
(Yi − ρYi−1)

−α(1 − ρ) − β(Xi − ρXi−1)
)
= 0

∂ log l(θ)
∂σ2 = −n − 1

2σ2 +
1

2σ4

n∑
i=2

(
(Yi − ρYi−1)

−α(1 − ρ) − β(Xi − ρXi−1)
)2
= 0

∂ log l(θ)
∂ρ

=
1
σ2

n∑
i=2

(Yi−1 − α − βXi−1)
(
(Yi − α − βXi)

−ρ(Yi−1 − α − βXi−1)
)
= 0

(Yi − α − βXi) − ρ(Yi−1 − α − βXi−1)は
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)を書き直したもの。

4つの連立方程式を解いて，最尤推定量 α̂，β̂，σ̂2，ρ̂が得られる。
−→ 下記のように収束計算によって求める。
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(i) 初期段階では，ρ̂ = 0とする。

(ii) X∗i = Xi − ρ̂Xi−1

Y∗i = Yi − ρ̂Yi−1

(iii)
(
α̃
β̂

)
=

( n − 1
∑n

i=2 X∗i∑n
i=2 X∗i

∑n
i=2 X∗2i

)−1 ( ∑n
i=2 Y∗i∑n

i=2 X∗i Y∗i

)
(iv) α̂ =

α̃

1 − ρ̂

(v) ûi = Yi − α̂ − β̂Xi

(vi) σ̂2 =
1

n − 1

n∑
i=2

(̂ui − ρ̂̂ui−1)2

(vii) ρ̂ =
∑n

i=2 ûîui−1∑n
i=2 û2

i−1

(viii) ステップ (ii)～ (vii)を，収束するまで繰り返し計算する。
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