13 Qualitative Dependent Variable (& M#tEZ )

1. Discrete Choice Model (BEEUEIRE T L)
2. Limited Dependent Variable Model (FIfREEZEEHETIL)

3. Count Data Model (87 —% €7 /L)

Usually, the regression model is given by:
vi=XB+u,  u~NO0%,  i=12-.n,
where y; is a continuous type of random variable within the interval from —oo to co.

When y; is discrete or truncated, what happens?
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13.1 Discrete Choice Model (BtHLEIRETIL)
13.1.1 Binary Choice Model (Z{&ZIRETIL)

Example 1:  Consider the regression model:

vi=XB+u,  w~(0,0%, i=12-,n,
where y? is unobserved, but y; is observed as O or 1, i.e.,
1, if y: >0,
Yi= { 0, ify <0.
Consider the probability that y; takes 1, i.e.,

P(yl = 1) = P(y;k > 0) = P(Ltl > —Xiﬁ) = P(l/t;k > —Xiﬁ*) =1- P(M;F < —Xl'ﬁ*)
=1-F(=X;f") = F(X;#"), (if the dist. of u} is symmetric.),

where u; = ﬂ, and B = E are defined.
o o
(*) B* can be estimated, but 8 and o cannot be estimated separately (i.e., 8 and

o? are not identified).
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The distribution function of u} is given by F(x) = f f(2)dz.

If u} is standard normal, i.e., u’ ~ N(0, 1), we call probit model.

F(x) = f ) @2m)~'"? eXp(—%zz)dz, f(x) = 2n) 12 exp(—%xz).

If u} is logistic, we call logit model.

F(x) = ) = 2P

1 +exp(—x)’ (1 + exp(=x))?

We can consider the other distribution function for u;.

Likelihood Function: y; is the following Bernoulli distribution:

SO = (PGi = DY'(Pi = )™ = (FXB)' (1 - FXBN'™,  y=0,1.

[Review — Bernoulli Distribution (X)L X 1 93%7)]
Suppose that X is a Bernoulli random variable. the distribution of X, denoted by f(x),
is:

fx) =p*(1 - p)', x=0,1.
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The mean and variance are:

1
p=EX)= > xf(x)=0x(1-p)+1xp=p,

x=0

1
o? = V(X) = B(X - ") = D (x= () = 0= p)’(1 = p) + (1 = p)’p = p(1 = p).
x=0

[End of Review]
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The likelihood function is given by:
L) = foryao0 = | | fo0 = | |F&s)ya - Fosy'™,
i=1 i=1

The log-likelihood function is:

n

log L(B") = Y (yilog F(X8") + (1 - y) log(1 — F(X8")).

i=1

Solving the maximization problem of log L(8*) with respect to g*, the first order
condition is:

dlog L(B") _ i(y,-xzﬂx,ﬁ*) _ UK OB,
B LN FXB) - F(Xp)

:i X =~ FXBY) _ <A X(fivi = FD) _
L FXp)(1-FXp) & F(-F)

where f; = f(X;8") and F; = F(X;8"). Remember that f(x) = diix).
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The second order condition is:

Ofi _F OUi— Fi)
logL(B") < Xfaﬁ* b . n, Xi o
papr L F(l-F) i F(1-F)
, A(F(1 - F))™!
X, fi(yi — F;
+Z R
XX f) i — N XX O, Xifi(1 - 2F))
Z F(l—F) ;F,-a—m+;X"m"_F”<F,-<1—F,-»2

is a negative definite matrix.

For maximization, the method of scoring is given by:

#(J -1 s(
U = g _E(82 log L(B (J))) dlog L(B*)

g 3 XKXU U X0 - FD)
= 7+ — - P
P FI(J)(l _ F;])) = Fl(])(l _ Ffj))
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where F = F(X,8?) and £ = f(X,8°7). Note that

o g(Plog LB v XIXif?
1) =E("Gpap )= LEi-Fy

because of E(y;) = F

It is known that
0% log L(B*)
V@B -pH — N(O lim ( nE(—aﬁaﬁ*, )) }

where 8 = lim 8* denotes MLE of j3*.

Jj—ooo
Practically, we use the following normal distribution:
B~ N 1B,
9 log L(B*)) Z XX f“2
oprop Fi(l -

Thus, the significance test for 5* and the confidence interval for 8* can be con-
structed.

where I(8°) = —E( . f = fXB) and Fy = FXBY).
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Another Interpretation:  This maximization problem is equivalent to the nonlin-
ear least squares estimation problem from the following regression model:

yi = F(XiB") + u;,
where u; = y; — F; takes u; = 1 — F; with probability P(y; = 1) = F(X;8") = F; and
u; = —F; with probability P(y; =0) =1 - F(X;8") =1 - F..
Therefore, the mean and variance of u; are:
Ew)=(0-F)F;+(-F)(1-F;) =0,
o7 = V() = Ew)) — Bw))* = (1 = Fi’F; + (=F)*(1 - F)) = F(1 - F)).
The weighted least squares method solves the following minimization problem:
o (v — F(Xi8))*
in 3 G PO
i=1

g

1

The first order condition is:
i X fXiB) i = FXB) _ Z X/ f:0i = F) _

=1 0'1'2 =1 Fi(l_Fi) -

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.
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Prediction: E(yl) =0x (1 - F,) +1xXF;=F, = F(Xlﬁ*)
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Empirical Application of Example 1: = Excess Demand Function.

Demand is observed as both amount and quantity, while supply is not.
Therefore, excess demand is not observed,
Data are taken from household expenditure survey as follows:

y FINA ()
s BN (]
b r—iL [H)

sml V5 [1ml)
bl vE—)L [11)
CPI HEEWIMMIEEL - B4

year y s b sml bl C(CPI

2000.01 458911 716 1350 828 2.67 102.8
2000.02 486601 643 1527 728 3.01 102.5
2000.03 494395 661 1873 775 3.69 102.7
2000.04 505409 614 1967 749 3.93 102.9
2000.05 460116 567 2311 679 4.64 103.0
2000.06 772611 518 2225 596 4.40 102.8
2000.07 640258 459 3419 511 6.57 102.5
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2000.
2000.
2000.
2000.
2000.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2001.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.

506757
446405
488921
457054
1035616
453748
475556
481198
498080
447510
766471
614715
496482
447397
489834
461094
1000728
462389
477622
496351
485770
444612
745480
583862
488257
440319
475494
439186
939747

455
477
626
680
1623
689
554
567
532
486
446

436
479
568
646
1609
637
570
552
502
497
442
499
472

561
730
1589

530
580
750
831
1688
806
688
708
637
608
535

492
617
733
818
1710
716

748
689
602
537
554
508
536
757
888
1936

ARNNNAEPAWWNNNNAERNNWARUTWWWNNDNDUVITWWAWUV

102.
102.
102.
102.
102.
102.
102.
101.
102.
102.
101.
101.
102.
101.
101.
101.
101.
101.

100.
101.
101.
101.
100.
101.
101.
100.
100.
100.

COWORFRRFROONWONUVIDS N W20 ONR ORUVTUTER NN
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2003.
2003.
2003.
2003.
2003.
2003.
2003.
2003.
2003.
2003.
2003.
2003.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2004.
2005.
2005.
2005.
2005.
2005.

435989
455309
456873
475037
429669
730617
574574
474973
429301
467408
435079
932887
445133
474143
456288
488217
446758
723370
599045
476264
440187
467895
442885
920100
448635
469673
451360
495036
440388

549
519
531
514

484
492
503
395
498
560
1484
530
591

441
438
391
414
403
387
454
482
1262
542
497
485
406
386

1025
1089
1343
1369
1396
1609
2013
2146
1331
1312
1230
2012
1062
1086
1239
1273
1530
1729
2166
2032
1414
1269
1266
1912

999

917
1060
1226
1437

632
670
686
576

597
636
641
463
560
760
1621
595
705
621
539
524
447

474
450
551
619
1272
678

714
505
443

NNNRFRRFRWNNNASE R WWNNNMNNWNNNAS WWNDNNDN =

100.
100.
100.
100.
101.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
101.
101.
100.
100.
100.
100.
100.
100.
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2005.
2005.
2005.
2005.
2005.
2005.
2005.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2006.
2007.
2007.
2007.
2007.
2007.
2007.
2007.
2007.
2007.
2007.

720667
576129
463034
427753
463838
433036
905473
437787
461368
429948
472583
426680
684632
613269
475866
429017
467163
442147
968162
441039
471681
445076
472446
431013
735579
592452
467786
431793
469981

375
451
370
323
500
519
1173
466
433
416
444
426
431
358
400
341
479
533
1144
505
428
434
413
346
374
414
368
329
445

1472
2214
2001
1321
1246
1064
2090

921

884
1060
1269
1367
1360
1803
1843
1139
1183
1053
1882

941

899
1071
1291
1302
1532
1845
2121
1446
1108

430
555
440
390
624
678
1152
501
580
517
536

529
395
448
444
696
660
1200
695
580
528
506
450
490
530
511
425
542

NN WNNNNRERE R WNNNNWWNNNNRERANNDDND D ADND

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
101.
101.
101.
100.

100.

99.
100.
100.
100.
100.
100.
101.
101.
101.

WRASUIOWUINOBROUVINNUIOOUVITWERE R WNOO WN W
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2007.
2007.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2008.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2009.
2010.
2010.
2010.

435640
950654
438998
476282
453482
469774
435076
737166
587732
488216
433502
481746
439394
969449
443337
464665
443429
473779
436123
700239
573821
466393
422120
459704
428219
906884
434344
464866
439410

541
1085
509
445
400
376
329
356
298
334
293
346
439
1076
479
417
444
354

343
287
300
263
349
432

420
347
386

1116
1892
1000
1008
1199
1234
1404
1410
1832
1767
1086
1066
1077
1711
962
849
1009
958
1180
1126
1478
1519
974
941
941
1546
800
751
885

594
1209
707
558
573
492
406
395
338
413
423

533
1231
636
705
478
428

386
327
345
363
435
588
1019
464
500
578

R EENEFERERFRRNNNNREREREREERERWONNNNWWNNNNEREREWND

101.
101.
101.
100.
101.
101.
102.
102.
102.
103.
103.
103.
102.
101.
101.
100.
101.
101.

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
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2010.
2010.
2010.
2010.
2010.
2010.
2010.
2010.
2010.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2011.
2012.
2012.
2012.
2012.
2012.
2012,
2012.
2012.

474616
421413
733886
562094
470717
425771
494398
431281
895511
419728
470071
419862
454433
413506
687212
572662
463760
422720
479749
424272
893811
430477
483625
441015
469381
417723
712592
557032
470470

317
316
316
362
314
255
337
374
943
418
345
366
371
345
317
267
277
276

329
884
432
394
397
381
309
337
284
288

926
1040
1236
1600
1571
1028
1017

870
1456

693

650

703

814

888
1025
1407
1378

917

848
1398

721
787
833

1015
1242
1374

404
455
375
382
397
361
520
485
912
495
552

485
432
327
367
345
419

426
907
619
495
592
466

417
375
357

NNRRERERRBRRERNRRERRERNNRRRERRRBRERENRRFRRWWN ==

100.
100.
100.
99.
99.
99.
100.
99.
99.
99.
99.

99.
99.
99.
99.
99.
99.
100.
99.
99.
99.
99.
100.
100.
100.
99.
99.
99.
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2012,
2012.
2012.
2012.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2013.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2014.
2015.

422046
482101
432681
902928
433858
476256
444379
479854
422724
728678
569174
471411
431931
482684
436293
905822
438646
479268
438145
463964
421117
710375
555276
463810
421809
488273
431543
924911
440226

294
282
361
859
377
325
384
323
322
433
281
298
258
282
377
835
431
365

304
348
356
304
325
319
345
398
892
400

903
752
756
1347

656
815
680
853
973
1104
1200
848
805
725
1351
703
612
891
630
846
933
1182
1159
840
707
716
1324
622

337
361
510
863
467
410
467
359
402
541
315
324
311
296
447
933
530
446

401
432
394
361
356
383
391
519
901
494

RNRRERENNRRRERRBNRERERNNRERRRRRNR 3=

99.
99.
99.
99.
99.
99.
99.
99.
99.
99.
100.
100.
100.
100.
100.
100.
100.
100.
101.
103.
103.
103.
103.
103.
103.
103.
103.
103.
103.
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2015.02 488519 356 600 469 1.12
2015.03 449243 353 712 416 1.28
2015.04 476880 353 739 413 1.35
2015.05 430325 331 909 377 1.64
2015.06 733589 350 928 231 1.66
2015.07 587156 331 1105 347 2.02
2015.08 475369 339 1165 462 2.18
2015.09 415467 346 797 354 1.47
. gen t=_n
. tsset t

time variable: t, 1 to 189

delta: 1 unit

. gen ry=y/(cpi/100)
. gen rsp=(s/sml)/(cpi/100)
. gen rbp=(b/bl)/(cpi/100)
. gen ds=0
. replace ds=1 if f.rsp>rsp

(94 real changes made)

102.
103.
103.
104.
103.
103.
103.
103.

OONSNWO

<———=

Lm———

L<———=

Lmm——

L ===

L ====

Lmmm

. probit ds ry rsp rbp, if t<188.5 <----

276

make data

set t as time series data

real income
real sake price per 1ml
real beer price per 11
dfault data

set ds=1 when excess demand exists

Estimate probit



during the period from 1 to 188

Iteration 0: log likelihood = -130.30103
Iteration 1: log likelihood = -95.883766
Iteration 2: log likelihood = -95.419505
Iteration 3: log likelihood = -95.419207
Iteration 4: log likelihood = -95.419207
Probit regression Number of obs = 188
LR chi2(3) = 69.76
Prob > chi2 = 0.0000
Log likelihood = -95.419207 Pseudo R2 = 0.2677
ds | Coef Std. Err z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
ry | 8.04e-07 9.42e-07 0.85 0.393 -1.04e-06 2.65e-06
rsp | -13.8574 2.166711 -6.40 0.000 -18.10408 -9.610729
rbp | .0026681 .0067234 0.40 0.691 -.0105094 .0158457
_cons | 9.44494  3.697318 2.55 0.011 2.198331 16.69155

Note: 1 failure and O successes completely determined.

. logit ds ry rsp rbp if t<188.5 <---- Estimate logit
during the period from 1 to 188
Iteration O: log likelihood = -130.30103
Iteration 1: log likelihood = -96.132508
Iteration 2: log likelihood = -95.65503
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Iteration 3: log likelihood = -95.653538
Iteration 4: log likelihood = -95.653538
Logistic regression Number of obs = 188
LR chi2(3) = 69.29
Prob > chi2 = 0.0000
Log likelihood = -95.653538 Pseudo R2 = 0.2659
ds | Coef Std. Err z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
ry | 1.41e-06 1.56e-06 0.90 0.368 -1.65e-06 4.47e-06
rsp | -23.36485 3.941076 -5.93  0.000 -31.08922  -15.64048
rbp |  .0046687 .0113128 0.41 0.680  -.0175041 .0268414
_cons | 15.82621 6.301665 2.51 0.012 3.475172 28.17724

D; =S, = Bo + Biry; + Barsp, + Barbp,

D, is observed, but S, is not observed.  Therefore, D, — S, is unobserved.
rsp >rspp = D, =8, >0 = ds, = 1.

rspu <rspp = D, -85, <0 = ds, =0.
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Example 2:  Consider the two utility functions: Uy; = X;58,+¢€; and U,; = X5, +6;.

A linear utility function is problematic, but we consider the linear function for
simplicity of discussion.

We purchase a good when Uy; > U,; and do not purchase it when Uy; < Uy;.

We can observe y; = 1 when we purchase the good, i.e., when U;; > U,;, and
y; = 0 otherwise.

P(y; = 1) = P(Uy; > Uy) = P(Xi(B1 — B2) > —€1; + &)
= P(-X;" > ) = P(-X;" > ") = 1 = F(-X;") = F(X;8")
B €

where 8" =1 — B2, € =€;—€;, B7=— and €=

1 *'

We can estimate 5™, but we cannot estimate € and o™, separately.

Mean and variance of €/ are normalized to be zero and one, respectively.
If the distribution of €™ is symmetric, the last equality holds.

We can estimate 5™ by MLE as in Example 1.
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Example 3: Consider the questionnaire:

3 1, if the ith person answers YES,
Yi= 0, if the ith person answers NO.

Consider estimating the following linear regression model:
Vi = Xif + u;.
When E(u;) = 0, the expectation of y; is given by:
E(y:) = XiB.
Because of the linear function, X;8 takes the value from —co to oo.

However, E(y;) indicates the ratio of the people who answer YES out of all the
people, because of E(y;)) = 1 X P(y; = 1) + 0 X P(y; =0) = P(y; = 1).

That is, E(y;) has to be between zero and one.
Therefore, it is not appropriate that E(y;) is approximated as X;5.
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The model is written as:
yi=PQyi=1)+u,

where u; is a discrete type of random variable, i.e., u; takes 1 — P(y; = 1) with
probability P(y; = 1) and —P(y; = 1) with probability 1 — P(y; = 1) = P(y; = 0).

Consider that P(y;) is connected with the distribution function F(X;3) as follows:
P(y; = 1) = F(X;B),

where F(-) denotes a distribution function such as normal dist., logistic dist., and so
on. — probit model or logit model.

The probability function of y; is:
fO) = FXB(1 - FXB)' ™ = FI'(1-F)'™,  y:=0,1
The joint distribution of yy, y,, - -+, y, 1s:

Fouys-w = [fon =] [ Fra-ry'~ = Lp),
i=1 i=1

which corresponds to the likelihood function. — MLE
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Example 4:  Ordered probit or logit model:

Consider the regression model:

V= XBtuw,  w~©1,  i=12

where y? is unobserved, but y; is observed as 1,2, ---,m, i.e.,

1, if —oo <y! < ay,

2, ifa; <y’ <a,
yi =

m, ifa,_ <y <oo,

where a;, a,, - - -, a,,—1 are assumed to be known.
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Consider the probability that y; takes 1, 2, - - -, m, i.e.,
P(yi=1)=PQ; <a)) = P(u; < a) - X;f)
= F(a - Xip),
P(y; =2) = P(a) <y; <a) = Pla; = Xif <u; < ay — Xif})
= F(a, — Xif) — F(a — Xif}),
P(y; =3) = P(ay <y; < a3) = P(ay — X < u; < a3 — X;3)
= F(az — X;f) — F(a, — Xif}),

P(y; = m) = P(ay-1 <Y;) = Plam-1 — XiB < u;)
=1-F(an-1 — Xip).

Define the following indicator functions:

I = 1, ify; =1, I = 1, ify; =2, I = 1, ify;, =m,
1700, otherwise. 2700, otherwise. 10, otherwise.
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More compactly,
P(y; = j) = F(a; - Xif) — F(a;-1 — Xif}),

for j=1,2,---,m, where ay = —o0 and a,, = co.

L ityi=)
710, otherwise,

forj=1,2,---,m.
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Then, the likelihood function is:

L) = ﬁ(ﬂm - Xp)"(F@ - Xp) - Flai = Xp)" - (1= Flanr - Xp)"

i=1

=[1[(F@ - x8 - Fa. - x8)".
i=1 j=1

where ap = —oo0 and a,, = co. Remember that F'(—oo0) = 0 and F(o0) = 1.

The log-likelihood function is:

log L(B) = > > Iijlog(F(a; = XiB) - F(aj1 = X;)).

i=1 j=1

The first derivative of log L(f) with respect to S is:

9 log L(B) 1;X/(f(a; - XiB) - f(aj1 — XiB)
Z Z F(a;j— XiB) — F(aj-1 — XiB)

i=1 j=1

Usually, normal distribution or logistic distribution is chosen for F(-).
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Example 5: Multinomial logit model:

The ith individual has m + 1 choices, i.e., j =0,1,---,m.

exp(X;B;) _p

P i = = S v oo~ ijs
o YioexpXiBy) Y

for B = 0.  The case of m = 1 corresponds to the bivariate logit model (binary
choice).
Note that
log L1 — x 8.
%P o &
The log-likelihood function is:

n

log LBy, -+, Bm) = Z dijln P;j,

=1

where d;; = 1 when the ith individual chooses jth choice, and d;; = 0 otherwise.
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Example 6: Nested logit model:

(1) In the 1st step, choose YES or NO. Each probability is Py and Py = 1 — Py.

(1) Stop if NO is chosen in the 1st step. Go to the next if YES is chosen in the
Ist step.

(iii) In the 2nd step, choose A or B if YES is chosen in the Ist step. Each
probability is P4y and Ppy.

For simplicity, usually we assume the logistic distribution.
So, we call the nested logit model.
The probability that the ith individual chooses NO is:

1
T T+exp(X;B)
The probability that the ith individual chooses YES and A is:
exp(Ziaw)  exp(Xif)
1 +exp(Zia) 1 +exp(X;8)
The probability that the ith individual chooses YES and B is:

1 exp(X;B)
1 + exp(Zia) 1 + exp(X;B)°

PN,[

PAlY,iPY,i = PAlY,i(l - PN,i) =

PpyiPyi = (1 = Poy)(1 — Py;) =
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In the 1st step, decide if the ith individual buys a car or not.
In the 2nd step, choose A or B.

X; includes annual income, distance from the nearest station, and so on.
Z; are speed, fuel-efficiency, car company, color, and so on.

The likelihood function is:

=1

L. ) = ﬂ Pl (€1 = P Pa) (1 = P = Pay)! )

1-1;;
— npllr PN,i)l_Ih( ixz|’yl(1 PAIY,i)l_IZi) ! ,

where
I = 1, if the ith individual decides not to buy a car in the 1st step,
700, if the ith individual decides to buy a car in the Ist step,
I = 1, if the ith individual chooses A in the 2nd step,
2710, if the ith individual chooses B in the 2nd step,
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Remember that E(y;) = F(X;5"), where §* = 'ﬁ
o

Therefore, size of 5* does not mean anything.

The marginal effect is given by:

A JXiBHB".

Thus, the marginal effect depends on the height of the density function f(X;5").
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