

14 Panel Data

14.1 GLS — Review

Regression model:

$$y = X\beta + u, \quad u \sim N(0, \Omega),$$

where $y, X, \beta, u, 0$ and Ω are $n \times 1, n \times k, k \times 1, n \times 1, n \times 1$, and $n \times n$, respectively.

We solve the following minimization problem:

$$\min_{\beta} (y - X\beta)' \Omega^{-1} (y - X\beta).$$

Let b be a solution of the above minimization problem.

GLS estimator of β is given by:

$$b = (X' \Omega^{-1} X)^{-1} X' \Omega^{-1} y.$$

14.2 Panel Model Basic

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it}, \quad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T$$

where i indicates individual and t denotes time.

There are n observations for each t .

u_{it} indicates the error term, assuming that $E(u_{it}) = 0$, $V(u_{it}) = \sigma_u^2$ and $\text{Cov}(u_{it}, u_{js}) = 0$ for $i \neq j$ and $t \neq s$.

v_i denotes the individual effect, which is fixed or random.

14.2.1 Fixed Effect Model (固定効果モデル)

In the case where v_i is fixed, the case of $v_i = z_i\alpha$ is included.

$$y_{it} = X_{it}\beta + v_i + u_{it}, \quad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

$$\bar{y}_i = \bar{X}_i\beta + v_i + \bar{u}_i, \quad i = 1, 2, \dots, n,$$

where $\bar{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}$, $\bar{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}$, and $\bar{u}_i = \frac{1}{T} \sum_{t=1}^T u_{it}$.

$$(y_{it} - \bar{y}_i) = (X_{it} - \bar{X}_i)\beta + (u_{it} - \bar{u}_i), \quad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

Taking an example of y , the left-hand side of the above equation is rewritten as:

$$y_{it} - \bar{y}_i = y_{it} - \frac{1}{T} \mathbf{1}'_T y_i,$$

where $1_T = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, which is a $T \times 1$ vector, and $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}$.

$$\begin{pmatrix} y_{i1} - \bar{y}_i \\ y_{i2} - \bar{y}_i \\ \vdots \\ y_{iT} - \bar{y}_i \end{pmatrix} = I_T y_i - 1_T \bar{y}_i = I_T y_i - \frac{1}{T} 1_T 1'_T y_i = (I_T - \frac{1}{T} 1_T 1'_T) y_i$$

Thus,

$$\begin{pmatrix} y_{i1} - \bar{y}_i \\ y_{i2} - \bar{y}_i \\ \vdots \\ y_{iT} - \bar{y}_i \end{pmatrix} = \begin{pmatrix} X_{i1} - \bar{X}_i \\ X_{i2} - \bar{X}_i \\ \vdots \\ X_{iT} - \bar{X}_i \end{pmatrix} \beta + \begin{pmatrix} u_{i1} - \bar{u}_i \\ u_{i2} - \bar{u}_i \\ \vdots \\ u_{iT} - \bar{u}_i \end{pmatrix}, \quad i = 1, 2, \dots, n,$$

which is re-written as:

$$(I_T - \frac{1}{T} 1_T 1'_T) y_i = (I_T - \frac{1}{T} 1_T 1'_T) X_i \beta + (I_T - \frac{1}{T} 1_T 1'_T) u_i, \quad i = 1, 2, \dots, n,$$

i.e.,

$$D_T y_i = D_T X_i \beta + D_T u_i, \quad i = 1, 2, \dots, n,$$

where $D_T = (I_T - \frac{1}{T}1_T 1_T')$, which is a $T \times T$ matrix.

Note that $D_T D_T' = D_T$, i.e., D_T is a symmetric and idempotent matrix.

Using the matrix form for $i = 1, 2, \dots, n$, we have:

$$\begin{pmatrix} D_T y_1 \\ D_T y_2 \\ \vdots \\ D_T y_n \end{pmatrix} = \begin{pmatrix} D_T X_1 \\ D_T X_2 \\ \vdots \\ D_T X_n \end{pmatrix} \beta + \begin{pmatrix} D_T u_1 \\ D_T u_2 \\ \vdots \\ D_T u_n \end{pmatrix},$$

i.e.,

$$\begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} y = \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} X \beta + \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} u,$$

where $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$, which are $Tn \times 1$, $Tn \times k$ and $Tn \times 1$ matrices, respectively

Using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y , X , and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Kronecker Product — Review:

1. $A: n \times m, B: T \times k$

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{pmatrix}, \text{ which is a } nT \times mk \text{ matrix.}$$

2. $A: n \times n, B: m \times m$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}, \quad |A \otimes B| = |A|^m |B|^n,$$

$$(A \otimes B)' = A' \otimes B', \quad \text{tr}(A \otimes B) = \text{tr}(A)\text{tr}(B).$$

3. For A, B, C and D such that the products are defined,

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

End of Review

Going back to the previous slide, using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y , X , and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Apply OLS to the above regression model.

$$\begin{aligned}\hat{\beta} &= \left(((I_n \otimes D_T)X)'(I_n \otimes D_T)X \right)^{-1} ((I_n \otimes D_T)X)'(I_n \otimes D_T)y \\ &= \left(X'(I_n \otimes D_T D_T') X \right)^{-1} X'(I_n \otimes D_T D_T') y \\ &= \left(X'(I_n \otimes D_T) X \right)^{-1} X'(I_n \otimes D_T) y.\end{aligned}$$

Note that the inverse matrix of D_T is not available, because the rank of D_T is $T - 1$, not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

The fixed effect v_i is estimated as:

$$\hat{v}_i = \bar{y}_i - \bar{X}_i \hat{\beta}.$$

Possibly, we can estimate the following regression:

$$\hat{v}_i = Z_i\alpha + \epsilon_i,$$

where it is assumed that the individual-specific effect depends on Z_i .

The estimator of σ_u^2 is given by:

$$\hat{\sigma}_u^2 = \frac{1}{nT - k - n} \sum_{i=1}^n \sum_{t=1}^T (y_{it} - X_{it}\hat{\beta} - \hat{v}_i)^2.$$

[Remark]

More than ten years ago, “fixed” indicates that v_i is nonstochastic.

Recently, however, “fixed” does not mean anything.

“fixed” indicates that OLS is applied and that v_i may be correlated with X_{it} .

Possibly, $E(v_i|X) = \alpha_i(X)$, where $\alpha_i(X)$ is a function of X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$, and it is normalized to $\sum_{i=1}^n \alpha_i(X) = 0$.

14.2.2 Random Effect Model (ランダム効果モデル)

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it}, \quad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T$$

where i indicates individual and t denotes time.

The assumptions on the error terms v_i and u_{it} are:

$$E(v_i|X) = E(u_{it}|X) = 0 \text{ for all } i,$$

$$V(v_i|X) = \sigma_v^2 \text{ for all } i, \quad V(u_{it}|X) = \sigma_u^2 \text{ for all } i \text{ and } t,$$

$$\text{Cov}(v_i, v_j|X) = 0 \text{ for } i \neq j, \quad \text{Cov}(u_{it}, u_{js}|X) = 0 \text{ for } i \neq j \text{ and } t \neq s,$$

$$\text{Cov}(v_i, u_{jt}|X) = 0 \text{ for all } i, j \text{ and } t.$$

Note that X includes X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$.

In a matrix form with respect to $t = 1, 2, \dots, T$, we have the following:

$$y_i = X_i \beta + v_i 1_T + u_i, \quad i = 1, 2, \dots, n,$$

where $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}$, $X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{iT} \end{pmatrix}$ and $u_i = \begin{pmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{iT} \end{pmatrix}$ are $T \times 1$, $T \times k$ and $T \times 1$, respectively.

$$u_i \sim N(0, \sigma_u^2 I_T) \text{ and } v_i 1_T \sim N(0, \sigma_v^2) \implies v_i 1_T + u_i \sim N(0, \sigma_v^2 1_T 1_T' + \sigma_u^2 I_T).$$

Again, in a matrix form with respect to i , we have the following:

$$y = X\beta + v + u,$$

where $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, $v = \begin{pmatrix} v_1 1_T \\ v_2 1_T \\ \vdots \\ v_n 1_T \end{pmatrix}$ and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$ are $nT \times 1$, $nT \times k$, $nT \times 1$ and $nT \times 1$, respectively.

The distribution of $u + v$ is given by:

$$v + u \sim N\left(0, I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)\right)$$

The likelihood function is given by:

$$L(\beta, \sigma_v^2, \sigma_u^2) = (2\pi)^{-nT/2} \left| I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right|^{-1/2} \\ \times \exp\left(-\frac{1}{2}(y - X\beta)' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} (y - X\beta)\right).$$

Remember that $f(x) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1} (x-\mu)\right)$ when $X \sim N(\mu, \Sigma)$, where X denotes a k -variate random variable.

The estimators of β , σ_v^2 and σ_u^2 are given by maximizing the following log-likelihood function:

$$\begin{aligned}\log L(\beta, \sigma_v^2, \sigma_u^2) &= -\frac{nT}{2} \log(2\pi) - \frac{1}{2} \log \left| I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right| \\ &\quad - \frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} (\mathbf{y} - \mathbf{X}\beta).\end{aligned}$$

MLE of β , denoted by $\tilde{\beta}$, is given by:

$$\begin{aligned}\tilde{\beta} &= \left(\mathbf{X}' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} \mathbf{y} \\ &= \left(\sum_{i=1}^n \mathbf{X}'_i (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T)^{-1} \mathbf{X}_i \right)^{-1} \left(\sum_{i=1}^n \mathbf{X}'_i (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T)^{-1} \mathbf{y}_i \right),\end{aligned}$$

which is equivalent to GLS.

Note that $\tilde{\beta}$ is not operational, because $\tilde{\beta}$ depends on σ_v^2 and σ_u^2 .

14.3 Hausman's Specification Error (特定化誤差) Test

Regression model:

$$y = X\beta + u, \quad y: n \times 1, \quad X: n \times k, \quad \beta: k \times 1, \quad u: n \times 1.$$

Suppose that X is stochastic.

If $E(u|X) = 0$, OLSE $\hat{\beta}$ is unbiased because of $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$ and $E((X'X)^{-1}X'u) = 0$.

However, If $E(u|X) \neq 0$, OLSE $\hat{\beta}$ is biased and inconsistent.

Therefore, we need to check if X is correlated with u or not.

⇒ **Hausman's Specification Error Test**

The null and alternative hypotheses are:

- H_0 : X and u are independent, i.e., $\text{Cov}(X, u) = 0$,
- H_1 : X and u are not independent.

Suppose that we have two estimators $\hat{\beta}_0$ and $\hat{\beta}_1$, which have the following properties:

- $\hat{\beta}_0$ is consistent and efficient under H_0 , but is not consistent under H_1 ,
- $\hat{\beta}_1$ is consistent under both H_0 and H_1 , but is not efficient under H_0 .

Under the conditions above, we have the following test statistic:

$$(\hat{\beta}_1 - \hat{\beta}_0)' \left(V(\hat{\beta}_1) - V(\hat{\beta}_0) \right)^{-1} (\hat{\beta}_1 - \hat{\beta}_0) \longrightarrow \chi^2(k).$$

Example: $\hat{\beta}_0$ is OLS, while $\hat{\beta}_1$ is IV such as 2SLS.

Hausman, J.A. (1978) “Specification Tests in Econometrics,” *Econometrica*, Vol.46, No.6, pp.1251–1271.

14.4 Choice of Fixed Effect Model or Random Effect Model

14.4.1 The Case where X is Correlated with u — Review

The standard regression model is given by:

$$y = X\beta + u, \quad u \sim N(0, \sigma^2 I_n)$$

OLS is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

If X is not correlated with u , i.e., $E(X'u) = 0$, we have the result: $E(\hat{\beta}) = \beta$.

However, if X is correlated with u , i.e., $E(X'u) \neq 0$, we have the result: $E(\hat{\beta}) \neq \beta$.
⇒ $\hat{\beta}$ is biased.

Assume that in the limit we have the followings:

$$\left(\frac{1}{n}X'X\right)^{-1} \longrightarrow M_{xx}^{-1},$$

$$\frac{1}{n}X'u \longrightarrow M_{xu} \neq 0 \text{ when } X \text{ is correlated with } u.$$

Therefore, even in the limit,

$$\text{plim } \hat{\beta} = \beta + M_{xx}^{-1}M_{xu} \neq \beta,$$

which implies that $\hat{\beta}$ is not a consistent estimator of β .

Thus, in the case where X is correlated with u , OLSE $\hat{\beta}$ is neither unbiased nor consistent.

14.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v_i is correlated with X_{it} .

[Reason:]

v_i includes the unobserved variables in the i th individual, i.e., ability, intelligence, and so on.

X_{it} represents the observed variables in the i th individual, i.e., income, assets, and so on.

The unobserved variables v_i are related to the observed variables X_{it} .

Therefore, we consider that v_i is correlated with X_{it} .

Thus, in the case of the random effect model, usually we cannot use OLS or GLS.

In order to use the random effect model, we need to test whether v_i is uncorrelated with X_{it} .

Apply Hausman's test.

- H_0 : X_{it} and e_{it} are independent (\rightarrow Use the random effect model),
- H_1 : X_{it} and e_{it} are not independent (\rightarrow Use the fixed effect model),

where $e_{it} = v_i + u_{it}$.

Example of Panel Data:

Production Function of Prefectures from 2001 to 2010.

pref: 都道府県（通し番号 1~47）

year: 年度（2001~2010 年）

y : 県内総生産（支出側、実質：固定基準年方式），出所：県民経済計算（平成 13 年度 - 平成 24 年度）(93SNA, 平成 17 年基準計数)

k : 都道府県別民間資本ストック（平成 12 暦年価格，年度末，国民経済計算ベース 平成 23 年 3 月時点）一期前（2000~2009 年）

l : 県内就業者数，出所：県民経済計算（平成 13 年度 - 平成 24 年度）(93SNA, 平成 17 年基準計数)

```
. tsset pref year
    panel variable:  pref (strongly balanced)
    time variable:  year, 2001 to 2010
    delta:  1 unit

. gen ly=log(y)
. gen lk=log(k)
. gen ll=log(l)
```

```
. reg ly lk ll
```

Source	SS	df	MS	Number of obs	=	470
Model	316.479302	2	158.239651	F(2, 467)	=	19374.95
Residual	3.81409572	467	.008167229	Prob > F	=	0.0000
Total	320.293398	469	.682928354	R-squared	=	0.9881
				Adj R-squared	=	0.9880
				Root MSE	=	.09037

ly	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lk	.0941587	.0081273	11.59	0.000	.0781881 .1101294
ll	.9976399	.0102641	97.20	0.000	.9774703 1.017809
_cons	.5970719	.0773137	7.72	0.000	.4451461 .7489978

```
. xtreg ly lk ll,fe
```

Fixed-effects (within) regression
Group variable: pref

R-sq: within = 0.1721
between = 0.9456
overall = 0.9439

corr(u_i, Xb) = 0.8803

Number of obs = 470
Number of groups = 47

Obs per group: min = 10
avg = 10.0
max = 10

F(2,421) = 43.77
Prob > F = 0.0000

ly	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lk	.2329208	.0252321	9.23	0.000	.1833242 .2825175
ll	.3268537	.0810662	4.03	0.000	.1675088 .4861987
_cons	7.691145	1.376677	5.59	0.000	4.985128 10.39716
sigma_u	.41045507				
sigma_e	.03561437				
rho	.99252757				(fraction of variance due to u_i)

F test that all $u_i=0$: F(46, 421) = 56.22 Prob > F = 0.0000

. est store fixed

. xtreg ly lk ll,re

Random-effects GLS regression Number of obs = 470
 Group variable: pref Number of groups = 47

R-sq: within = 0.1058 Obs per group: min = 10
 between = 0.9805 avg = 10.0
 overall = 0.9787 max = 10

corr(u_i , X) = 0 (assumed) Wald chi2(2) = 3875.75
 Prob > chi2 = 0.0000

ly	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
----	-------	-----------	---	------	----------------------

lk	.2457767	.0153094	16.05	0.000	.2157708	.2757827
11	.8105099	.0220256	36.80	0.000	.7673406	.8536793
_cons	.8332015	.2411141	3.46	0.001	.3606265	1.305776
sigma_u	.081609					
sigma_e	.03561437					
rho	.8400205	(fraction of variance due to u_i)				

. hausman fixed

----- Coefficients -----

	(b) fixed	(B) . .	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
lk	.2329208	.2457767	-.0128559	.020057
11	.3268537	.8105099	-.4836562	.0780167

b = consistent under H_0 and H_a ; obtained from xtreg
 B = inconsistent under H_a , efficient under H_0 ; obtained from xtreg

Test: H_0 : difference in coefficients not systematic

$$\begin{aligned}
 \text{chi2}(2) &= (b-B)'[(V_b-V_B)^{-1}](b-B) \\
 &= 144.66 \\
 \text{Prob}>\text{chi2} &= 0.0000
 \end{aligned}$$