Gauss－Markov Theorem（ガウス・マルコフ定理）：It has been discussed above that $\hat{\beta}_{2}$ is represented as（9），which implies that $\hat{\beta}_{2}$ is a linear estimator，i．e．，linear in y_{i} ．
In addition，（14）indicates that $\hat{\beta}_{2}$ is an unbiased estimator．
Therefore，summarizing these two facts，it is shown that $\hat{\beta}_{2}$ is a linear unbiased estimator（線形不偏推定量）

Furthermore，here we show that $\hat{\beta}_{2}$ has minimum variance within a class of the linear unbiased estimators．

Consider the alternative linear unbiased estimator $\tilde{\beta}_{2}$ as follows：

$$
\tilde{\beta}_{2}=\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) y_{i},
$$

where $c_{i}=\omega_{i}+d_{i}$ is defined and d_{i} is nonstochastic．

Then, $\tilde{\beta}_{2}$ is transformed into:

$$
\begin{aligned}
\tilde{\beta}_{2} & =\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right) \\
& =\beta_{1} \sum_{i=1}^{n} \omega_{i}+\beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} d_{i} u_{i} \\
& =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\sum_{i=1}^{n} d_{i} u_{i}
\end{aligned}
$$

Equations (10) and (11) are used in the forth equality.
Taking the expectation on both sides of the above equation, we obtain:

$$
\begin{aligned}
\mathrm{E}\left(\tilde{\beta}_{2}\right) & =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)+\sum_{i=1}^{n} d_{i} \mathrm{E}\left(u_{i}\right) \\
& =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}
\end{aligned}
$$

Note that d_{i} is not a random variable and that $\mathrm{E}\left(u_{i}\right)=0$.

Since $\tilde{\beta}_{2}$ is assumed to be unbiased, we need the following conditions:

$$
\sum_{i=1}^{n} d_{i}=0, \quad \sum_{i=1}^{n} d_{i} x_{i}=0 .
$$

When these conditions hold, we can rewrite $\tilde{\beta}_{2}$ as:

$$
\tilde{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i} .
$$

The variance of $\tilde{\beta}_{2}$ is derived as:

$$
\begin{aligned}
\mathrm{V}\left(\tilde{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\left(\omega_{i}+d_{i}\right) u_{i}\right) \\
& =\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)^{2} \mathrm{~V}\left(u_{i}\right)=\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+2 \sum_{i=1}^{n} \omega_{i} d_{i}+\sum_{i=1}^{n} d_{i}^{2}\right) \\
& =\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+\sum_{i=1}^{n} d_{i}^{2}\right) .
\end{aligned}
$$

From unbiasedness of $\tilde{\beta}_{2}$, using $\sum_{i=1}^{n} d_{i}=0$ and $\sum_{i=1}^{n} d_{i} x_{i}=0$, we obtain:

$$
\sum_{i=1}^{n} \omega_{i} d_{i}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} d_{i}-\bar{x} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0
$$

which is utilized to obtain the variance of $\tilde{\beta}_{2}$ in the third line of the above equation.
From (15), the variance of $\hat{\beta}_{2}$ is given by: $\mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$.

Therefore, we have:

$$
\mathrm{V}\left(\tilde{\beta}_{2}\right) \geq \mathrm{V}\left(\hat{\beta}_{2}\right)
$$

because of $\sum_{i=1}^{n} d_{i}^{2} \geq 0$.

When $\sum_{i=1}^{n} d_{i}^{2}=0$, i.e., when $d_{1}=d_{2}=\cdots=d_{n}=0$, we have the equality: $\mathrm{V}\left(\tilde{\beta}_{2}\right)=\mathrm{V}\left(\hat{\beta}_{2}\right)$.

Thus, in the case of $d_{1}=d_{2}=\cdots=d_{n}=0, \hat{\beta}_{2}$ is equivalent to $\tilde{\beta}_{2}$.

As shown above，the least squares estimator $\hat{\beta}_{2}$ gives us the minimum variance lin－ ear unbiased estimator（最小分散線形不偏推定量），or equivalently the best linear unbiased estimator（最良線形不偏推定量，BLUE），which is called the Gauss－ Markov theorem（ガウス・マルコフ定理）

Asymptotic Properties（漸近近的性質）of $\hat{\boldsymbol{\beta}}_{2}$ ：We assume that as n goes to infinity we have the following：

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \longrightarrow m<\infty
$$

where m is a constant value．From（12），we obtain：

$$
n \sum_{i=1}^{n} \omega_{i}^{2}=\frac{1}{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)} \longrightarrow \frac{1}{m}
$$

Note that $\quad f\left(x_{n}\right) \longrightarrow f(m)$ when $x_{n} \longrightarrow m$ ，called Slutsky＇s theorem（スルツキー定理），where m is a constant value and $f(\cdot)$ is a function．

We show both consistency（一致性）of $\hat{\beta}_{2}$ and asymptotic normality（漸近正規性） of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ ．
－First，we prove that $\hat{\beta}_{2}$ is a consistent estimator of β_{2} ．
［Review］Chebyshev’s inequality（チェビシェフの不等式）is given by：

$$
P(|X-\mu|>\epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}, \quad \text { where } \mu=\mathrm{E}(X), \sigma^{2}=\mathrm{V}(X) \text { and any } \epsilon>0
$$

［End of Review］
Replace $X, \mathrm{E}(X)$ and $\mathrm{V}(X)$ by：

$$
\hat{\beta}_{2}, \quad \mathrm{E}\left(\hat{\beta}_{2}\right)=\beta_{2}, \quad \text { and } \quad \mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)} .
$$

Then，when $n \longrightarrow \infty$ ，we obtain the following result：

$$
P\left(\left|\hat{\beta}_{2}-\beta_{2}\right|>\epsilon\right) \leq \frac{\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}}{\epsilon^{2}}=\frac{\sigma^{2} n \sum_{i=1}^{n} \omega_{i}^{2}}{n \epsilon^{2}} \longrightarrow 0,
$$

where $\sum_{i=1}^{n} \omega_{i}^{2} \longrightarrow 0$ because $n \sum_{i=1}^{n} \omega_{i}^{2} \longrightarrow \frac{1}{m}$ from the assumption．
Thus，we obtain the result that $\hat{\beta}_{2} \longrightarrow \beta_{2}$ as $n \longrightarrow \infty$ ．
Therefore，we can conclude that $\hat{\beta}_{2}$ is a consistent estimator（一致推定量）of β_{2} ．
－Next，we want to show that $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is asymptotically normal．
［Review］The Central Limit Theorem（中心極限定理，CLT）is：for random vari－ ables $X_{1}, X_{2}, \cdots, X_{n}$ ，

$$
\frac{\bar{X}-\mathrm{E}(\bar{X})}{\sqrt{\mathrm{V}(\bar{X})}}=\frac{\sum_{i=1}^{n} X_{i}-\mathrm{E}\left(\sum_{i=1}^{n} X_{i}\right)}{\sqrt{\mathrm{V}\left(\sum_{i=1}^{n} X_{i}\right)}} \longrightarrow N(0,1), \quad \text { as } \quad n \longrightarrow \infty,
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ ．
$X_{1}, X_{2}, \cdots, X_{n}$ are not necesarily iid，if $\mathrm{V}(\bar{X})$ is finite as n goes to infinity．
［End of Review］

Note that $\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}$ as in (13), and X_{i} is replaced by $\omega_{i} u_{i}$.

From the central limit theorem, asymptotic normality is shown as follows:

$$
\frac{\sum_{i=1}^{n} \omega_{i} u_{i}-\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}{\sqrt{\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}}=\frac{\sum_{i=1}^{n} \omega_{i} u_{i}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1),
$$

where

- $\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=0$,
- $\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$, and
- $\sum_{i=1}^{n} \omega_{i} u_{i}=\hat{\beta}_{2}-\beta_{2}$
are substituted in the first and second equalities.

Moreover, we can rewrite as follows:

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Replacing $(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ by its converged value m, we have:

$$
\frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{m}} \rightarrow N(0,1)
$$

which implies

$$
\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right) \longrightarrow N\left(0, \frac{\sigma^{2}}{m}\right)
$$

Thus, the asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is shown.

Finally, replacing σ^{2} by its consistent estimator s^{2}, it is known as follows:

$$
\begin{equation*}
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1), \tag{16}
\end{equation*}
$$

where s^{2} is defined as:

$$
\begin{equation*}
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{1}}-\hat{\beta_{2}} x_{i}\right)^{2}, \tag{17}
\end{equation*}
$$

which is a consistent and unbiased estimator of $\sigma^{2} . \longrightarrow$ Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test the hypothesis.
［Review］Confidence Interval（信頼区間，区間推定））：
Suppose $X_{1}, X_{2}, \cdots, X_{n}$ are iid with mean μ and variance $\sigma^{2} . \longrightarrow$ No N assumption
From CLT，$\frac{\bar{X}-\mathrm{E}(\bar{X})}{\sqrt{\mathrm{V}(\bar{X})}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \longrightarrow N(0,1)$ ．
Replacing σ^{2} by $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ，we have：$\frac{\bar{X}-\mu}{S / \sqrt{n}} \longrightarrow N(0,1)$ ．
That is，for large n ，

$$
P\left(-1.96<\frac{\bar{X}-\mu}{S / \sqrt{n}}<1.96\right)=0.95 \text {, i.e., } P\left(\bar{X}-1.96 \frac{S}{\sqrt{n}}<\mu<\bar{X}+1.96 \frac{S}{\sqrt{n}}\right)=0.95 .
$$

Note that 1.96 is obtained from the normal distribution table．
Then，replacing the estimators \bar{X} and S^{2} by the estimates \bar{x} and s^{2} ，we obtain the 95% confidence interval of μ as follows：

$$
\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right) .
$$

［End of Review］

Going back to OLS, we have:

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1)
$$

Therefore,

$$
P\left(-2.576<\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}<2.576\right)=0.99
$$

i.e.,

$$
P\left(\hat{\beta}_{2}-2.576 \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}<\beta_{2}<\hat{\beta}_{2}+2.576 \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)=0.99
$$

Note that 2.576 is 0.005 value of $N(0,1)$, which comes from the statistical table.
Thus, the 99% confidence interval of β_{2} is:

$$
\left(\hat{\beta}_{2}-2.576 \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}, \hat{\beta}_{2}+2.576 \frac{s}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)
$$

where $\hat{\beta}_{2}$ and s^{2} should be replaced by the observed data.
［Review］Testing the Hypothesis（仮説検定）：
Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are iid with mean μ and variance σ^{2} ．
From CLT，$\frac{\bar{X}-\mu}{S / \sqrt{n}} \longrightarrow N(0,1)$ ，where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ，which is known as the unbiased estimator of σ^{2} ．
－The null hypothesis $H_{0}: \mu=\mu_{0}$ ，where μ_{0} is a fixed number．
－The alternative hypothesis $H_{1}: \mu \neq \mu_{0}$
Under the null hypothesis，in large sample we have the following disribution：

$$
\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim N(0,1) .
$$

Replacing \bar{X} and S^{2} by \bar{x} and s^{2} ，compare $\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$ and $N(0,1)$ ．
H_{0} is rejected at significance level 0.05 when $\left|\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}\right|>1.96$ ．
［End of Review］

In the case of OLS, the hypotheses are as follows:

- The null hypothesis $H_{0}: \beta_{2}=\beta_{2}^{*}$
- The alternative hypothesis $H_{1}: \beta_{2} \neq \beta_{2}^{*}$

Under H_{0}, in large sample,

$$
\frac{\hat{\beta}_{2}-\beta_{2}^{*}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1) .
$$

Replacing $\hat{\beta}_{2}$ and s^{2} by the observed data, compare $\frac{\hat{\beta}_{2}-\beta_{2}^{*}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}$ and $N(0,1)$.
H_{0} is rejected at significance level 0.05 when $\left|\frac{\hat{\beta}_{2}-\beta_{2}^{*}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right|>1.96$.

Exact Distribution of $\hat{\boldsymbol{\beta}}_{2}$: We have shown asymptotic normality of $\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{2}-\beta_{2}\right)$, which is one of the large sample properties.

Now, we discuss the small sample properties of $\hat{\beta}_{2}$.
In order to obtain the distribution of $\hat{\beta}_{2}$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
Writing (13), again, $\hat{\beta}_{2}$ is represented as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}
$$

First, we obtain the distribution of the second term in the above equation.
［Review］Content of Special Lectures in Economics（Statistical Analysis）
Note that the moment－generating function（積率母関数，MGF）is given by $M(\theta) \equiv$ $\mathrm{E}(\exp (\theta X))=\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right)$ when $X \sim N\left(\mu, \sigma^{2}\right)$ ．
$X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently distributed as $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=$ $1,2, \cdots, n$ ．
MGF of X_{i} is $M_{i}(\theta) \equiv \mathrm{E}\left(\exp \left(\theta X_{i}\right)\right)=\exp \left(\mu_{i} \theta+\frac{1}{2} \sigma_{i}^{2} \theta^{2}\right)$ ．
Consider the distribution of $Y=\sum_{i=1}^{n}\left(a_{i}+b_{i} X_{i}\right)$ ，where a_{i} and b_{i} are constant．

$$
\begin{aligned}
M_{y}(\theta) & \equiv \mathrm{E}(\exp (\theta Y))=\mathrm{E}\left(\exp \left(\theta \sum_{i=1}^{n}\left(a_{i}+b_{i} X_{i}\right)\right)\right) \\
& =\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) \mathrm{E}\left(\exp \left(\theta b_{i} X_{i}\right)\right)=\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) M_{i}\left(\theta b_{i}\right) \\
& =\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) \exp \left(\mu_{i} \theta b_{i}+\frac{1}{2} \sigma_{i}^{2}\left(\theta b_{i}\right)^{2}\right)=\exp \left(\theta \sum_{i=1}^{n}\left(a_{i}+b_{i} \mu_{i}\right)+\frac{1}{2} \theta^{2} \sum_{i=1}^{n} b_{i}^{2} \sigma_{i}^{2}\right),
\end{aligned}
$$

which implies that $Y \sim N\left(\sum_{i=1}^{n}\left(a_{i}+b_{i} \mu_{i}\right), \sum_{i=1}^{n} b_{i}^{2} \sigma_{i}^{2}\right)$ ．
［End of Review］

