Gauss-Markov Theorem (77~ X - ¥ JL O 7 EH): It has been discussed above
that 3, is represented as (9), which implies that 3, is a linear estimator, i.e., linear in
Yi-

In addition, (14) indicates that 3, is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that ,32 is a linear unbiased

estimator (RN REEE).

Furthermore, here we show that 8, has minimum variance within a class of the linear

unbiased estimators.

Consider the alternative linear unbiased estimator 3, as follows:

n

B = Z Ciyi = Zn:(wi +d,)yi,
=1

i=1 i

where ¢; = w; + d; is defined and d; is nonstochastic.
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Then, (3, is transformed into:

n

B = Z Ciyi = Z(wi +d)(By + Bax; + u;)

i=1 i=1
n n n n n n
=B Z w; + Z w;ix; + Z wiu; + B Z di + B> Z dix; + Z diu;
i=1 i=1 i=1 i=1 i=1 i=1
n n n n
=62+ B Z di + B> Z dix; + Z wil; + Z diu;.
i=1 i=1 i=1 i=1

Equations (10) and (11) are used in the forth equality.

Taking the expectation on both sides of the above equation, we obtain:

E(By) = ﬁ2+,812d +ﬁ22dxl+ZwE(u)+ZdE(u)

—ﬁz‘*'ﬁlzd"‘ﬁzzdxz

Note that d; is not a random variable and that E(u;) = 0
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Since ,Bz is assumed to be unbiased, we need the following conditions:

Zdi =0, Zdl-xi = 0.
i=1 i=1
When these conditions hold, we can rewrite Bg as:
ﬁz =6+ Z(wi + d;)u;.
i=1
The variance of 3, is derived as:

V() = V(B + Z(w, +du) Z(w, +du) Z V((wi + du;)

—Z(w,+d) V) = o (Zw +2de +Zd2
= 0'2(2 w? + de).
i=1 i=1
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From unbiasedness of 53, using Y, d; = 0 and Y, d;x; = 0, we obtain:

de ,1(xz )a'i_lexzz XX d;

= =0,
l l(xl - x)Z Zz_l(xl - X)

which is utilized to obtain the variance of 3, in the third line of the above equation.

From (15), the variance of j, is given by: V(5,) = 0> Y1, w?.

Therefore, we have:
V(B2) = V(Bo),

because of Y, d? > 0.

When Y7, d? = 0,ie,whend, =d, =---=d, =0,
we have the equality: V(53,) = V(5,).

Thus, inthe case of d; =d, =---=d,, =0, ,32 is equivalent to /3.
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As shown above, the least squares estimator /3, gives us the minimum variance lin-
ear unbiased estimator (/N3 BUHR N RHEE £), or equivalently the best linear
unbiased estimator (& R#xFFm#EE, BLUE), which is called the Gauss-
Markov theorem (A X - <)L 37 EE).
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HTAZA A
Asymptotic Properties (EIITEIM &) of B,:  We assume that as n goes to infinity

we have the following:
1 ¢ 0
" i; (x; —X) m < oo

where m is a constant value. From (12), we obtain:

o, 1 1
DI Am Yy i-n  m

i=1
Note that  f(x,) — f(m) when x, — m, called Slutsky’s theorem (X JL*) F—

EIF), where m is a constant value and f(-) is a function.

We show both consistency (—21%) of 3, and asymptotic normality (&3 IE#R )
of \/ﬁ(ﬁz - B2).
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@ First, we prove that ﬁz is a consistent estimator of 3.

[Review] Chebyshev’s inequality (F = £ = 7 DARZF) is given by:
o2
P(X —ul>e) <= where u = E(X), 02 = V(X) and any € > 0.

e’
[End of Review]
Replace X, E(X) and V(X) by:
2

N " N a o
B, E@B,) =B, and V(B,) = o’ w,~2 ST~
Then, when n — oo, we obtain the following result:
" o2 W o’n a)
P(|B2 — B2l > €) < L1 = Zici — 0,
€2 ne’

1 .
where })" | w? — 0 because n Y, w? — — from the assumption.
m
Thus, we obtain the result that 8, — 8, as n —> 0.

Therefore, we can conclude that ﬁz is a consistent estimator (—EHEE) of 5,.
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@ Next, we want to show that vn(3, — 8,) is asymptotically normal.

[Review] The Central Limit Theorem (/0GR EIE, CLT) is: for random vari-
ables Xi, X», - -+, X,,,

X —EX) _ X Xi - B(EL X))

— 1<
h X=- X,'.
where n;

— N(0,1), as n— oo,

X1, X5, - -+, X,, are not necesarily iid, if V(Y) is finite as n goes to infinity.

[End of Review]
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Note that /3’2 = + X, wiu; asin (13), and X; is replaced by w;u;.

From the central limit theorem, asymptotic normality is shown as follows:

Yimi wii — B, wiuz) D) Will; _ ,32 -
VV(Z:l:l (/.),‘l/ti) o , i 10_) , ](xl - .X)2

— N(,1),

where
o E(XL, wit) = 0
o V(L wu) = o2 3, w2, and
o SLiwitti =P~

are substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

Pr=Br  _ V(B - B2)

S —x o/ (I (i = %2
Replacing (1/n) YL, (x; — X)* by its converged value m, we have:

Bz = B)

— N(, 1),
o/ m O

which implies

2
VB - B) — N, %)

Thus, the asymptotic normality of vn(B, — 8,) is shown.
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Finally, replacing o by its consistent estimator s2, it is known as follows:

PP — — N, 1), (16)
s/ Z?:l(xi - X)?
where s? is defined as:
s2 = ! Y 6-2 = ! Zn:(yi—,é1 —,ézxi)z, (17)
n—2 Y on=2

i=1 i=1

which is a consistent and unbiased estimator of 2. — Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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[Review] Confidence Interval ((SfEX [, XBEHE)):
Suppose Xi, X5, - - -, X, are iid with mean u and variance o

X-EX) X-pu

\/@‘a/w )

1 < - X
Replacing o by §2 = — ;(Xi — X)?, we have: S

. — No N assumption

From CLT, — N, 1).

— U
NG — N(O, 1).
That is, for large n,
X-u
S/~n

Note that 1.96 is obtained from the normal distribution table.

P(—1.96 <

. — S — S
< 1.96) =095, i.e., P(X - 1.96% <u<X+ 1.96W) =0.95.

Then, replacing the estimators X and S by the estimates X and s>, we obtain the 95%
confidence interval of u as follows:
s s
x—196—, x+1.96—).
( Nz n)

\/_

[End of Review]
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Going back to OLS, we have:

Pr= P — — N(0, 1).
s/ Z?:l(xi - x)z
Therefore, A
B2 —ba B
P(—2.576 < < 2.576) - 0.99,
(i —X)?
1.e.,
A ) A S
P(B, - 2.576 < B < +2.576 ) =0.99.

V2ini (i = %)? V2ini (i = %)?
Note that 2.576 is 0.005 value of N(0, 1), which comes from the statistical table.

Thus, the 99% confidence interval of 3, is:

By +2.576 > )

S
VI - %) - %2

where £3, and s? should be replaced by the observed data.

(B - 2576
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[Review] Testing the Hypothesis ({R 5% 1 ):

Suppose that X;, X5, - - -, X, are iid with mean u and variance 2.
Y _ 1 n _

From CLT, —& _ N(0,1), where §? = —— >(X; — X)2, which is known as
S/ Nn n-1 i=1

the unbiased estimator of o-°.
e The null hypothesis Hy : u = po, where y is a fixed number.
e The alternative hypothesis H; : u # uo

Under the null hypothesis, in large sample we have the following disribution:

X — po
S/~n

~ N(,1).

X H0 and N(O, 1),
n

X — Ho

s/ \n

Replacing X and S? by X and s?, compare

H, is rejected at significance level 0.05 when ‘ ' > 1.96.

[End of Review]

32



In the case of OLS, the hypotheses are as follows:

e The null hypothesis Hy : 5, = 3,
e The alternative hypothesis H; : 5, # f3;

Under H), in large sample,

B> - B;
s/ Z?=1(xi -X)?

~ N(0, 1).

2_:82

Replacing 3, and s? by the observed data, compare and N(@,1).
s/ Vo (= %)?
. . . . ﬁZ - ﬁz
H, is rejected at significance level 0.05 when ‘ = — ‘ > 1.96.
S (i = X)?
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Exact Distribution of ﬁzz We have shown asymptotic normality of vn(3, — 8,),
which is one of the large sample properties.

Now, we discuss the small sample properties of /3.

In order to obtain the distribution of /3’2 in small sample, the distribution of the error
term has to be assumed.

Therefore, the extra assumption is that u; ~ N(0, o2).

Writing (13), again, 3, is represented as:
B =P+ Z will;.
i=1

First, we obtain the distribution of the second term in the above equation.

34



[Review] Content of Special Lectures in Economics (Statistical Analysis)
Note that the moment-generating function (FRZ %L, MGF) is given by M(6) =
E(exp(6X)) = exp(uf + 1026%) when X ~ N(u, o).

X1, X5, --+, X, are mutually independently distributed as X; ~ N(y,-,of) for i =
1,2,---,n.

MGF of X; is M;(6) = E(exp(6X;)) = exp(u;0 + 3076%).

Consider the distribution of Y = " | (a; + b;X;), where a; and b; are constant.

M, () = E(exp(8Y)) = E(exp(0 21, (a; + b;X))))
= [1}=; exp(6a;)E(exp(6b; X)) = [1;-, exp(6a;)M;(6b;)
= [1%, exp(6a;) exp(u;0b;+302(6b;)*) = exp(0 L (a;+byu) +36* XL, bio?),
which implies that Y ~ N(OL (a; + biwy), Yy bo?).
[End of Review]

35



