
Gauss-Markov Theorem (ガウス・マルコフ定理): It has been discussed above

that β̂2 is represented as (9), which implies that β̂2 is a linear estimator, i.e., linear in

yi.

In addition, (14) indicates that β̂2 is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that β̂2 is a linear unbiased

estimator (線形不偏推定量).

Furthermore, here we show that β̂2 has minimum variance within a class of the linear

unbiased estimators.

Consider the alternative linear unbiased estimator β̃2 as follows:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)yi,

where ci = ωi + di is defined and di is nonstochastic.
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Then, β̃2 is transformed into:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωixi +

n∑
i=1

ωiui + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

diui

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

ωiui +

n∑
i=1

diui.

Equations (10) and (11) are used in the forth equality.

Taking the expectation on both sides of the above equation, we obtain:

E(β̃2) = β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

ωiE(ui) +
n∑

i=1

diE(ui)

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi.

Note that di is not a random variable and that E(ui) = 0.
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Since β̃2 is assumed to be unbiased, we need the following conditions:

n∑
i=1

di = 0,
n∑

i=1

dixi = 0.

When these conditions hold, we can rewrite β̃2 as:

β̃2 = β2 +

n∑
i=1

(ωi + di)ui.

The variance of β̃2 is derived as:

V(β̃2) = V
(
β2 +

n∑
i=1

(ωi + di)ui

)
= V
( n∑

i=1

(ωi + di)ui

)
=

n∑
i=1

V
(
(ωi + di)ui

)
=

n∑
i=1

(ωi + di)2V(ui) = σ2(
n∑

i=1

ω2
i + 2

n∑
i=1

ωidi +

n∑
i=1

d2
i )

= σ2(
n∑

i=1

ω2
i +

n∑
i=1

d2
i ).
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From unbiasedness of β̃2, using
∑n

i=1 di = 0 and
∑n

i=1 dixi = 0, we obtain:

n∑
i=1

ωidi =

∑n
i=1(xi − x)di∑n
i=1(xi − x)2 =

∑n
i=1 xidi − x

∑n
i=1 di∑n

i=1(xi − x)2 = 0,

which is utilized to obtain the variance of β̃2 in the third line of the above equation.

From (15), the variance of β̂2 is given by: V(β̂2) = σ2∑n
i=1 ω

2
i .

Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i ≥ 0.

When
∑n

i=1 d2
i = 0, i.e., when d1 = d2 = · · · = dn = 0,

we have the equality: V(β̃2) = V(β̂2).

Thus, in the case of d1 = d2 = · · · = dn = 0, β̂2 is equivalent to β̃2.
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As shown above, the least squares estimator β̂2 gives us the minimum variance lin-

ear unbiased estimator (最小分散線形不偏推定量), or equivalently the best linear

unbiased estimator (最良線形不偏推定量，BLUE), which is called the Gauss-

Markov theorem (ガウス・マルコフ定理).
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Asymptotic Properties (
ぜん

漸
きん

近的性質) of β̂2: We assume that as n goes to infinity

we have the following:
1
n

n∑
i=1

(xi − x)2 −→ m < ∞,

where m is a constant value. From (12), we obtain:

n
n∑

i=1

ω2
i =

1
(1/n)

∑n
i=1(xi − x)

−→ 1
m
.

Note that f (xn) −→ f (m) when xn −→ m, called Slutsky’s theorem (スルツキー

定理), where m is a constant value and f (·) is a function.

We show both consistency (一致性) of β̂2 and asymptotic normality (漸近正規性)

of
√

n(β̂2 − β2).
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● First, we prove that β̂2 is a consistent estimator of β2.

[Review] Chebyshev’s inequality (チェビシェフの不等式) is given by:

P(|X − µ| > ε) ≤ σ
2

ε2
, where µ = E(X), σ2 = V(X) and any ε > 0.

[End of Review]

Replace X, E(X) and V(X) by:

β̂2, E(β̂2) = β2, and V(β̂2) = σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)

.

Then, when n −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2∑n

i=1 ω
2
i

ε2
=
σ2n
∑n

i=1 ω
2
i

nε2
−→ 0,

where
∑n

i=1 ω
2
i −→ 0 because n

∑n
i=1 ω

2
i −→

1
m

from the assumption.

Thus, we obtain the result that β̂2 −→ β2 as n −→ ∞.

Therefore, we can conclude that β̂2 is a consistent estimator (一致推定量) of β2.
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● Next, we want to show that
√

n(β̂2 − β2) is asymptotically normal.

[Review] The Central Limit Theorem (中心極限定理, CLT) is: for random vari-

ables X1, X2, · · ·, Xn,

X − E(X)√
V(X)

=

∑n
i=1 Xi − E(

∑n
i=1 Xi)√

V(
∑n

i=1 Xi)
−→ N(0, 1), as n −→ ∞,

where X =
1
n

n∑
i=1

Xi.

X1, X2, · · ·, Xn are not necesarily iid, if V(X) is finite as n goes to infinity.

[End of Review]
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Note that β̂2 = β2 +
∑n

i=1 ωiui as in (13), and Xi is replaced by ωiui.

From the central limit theorem, asymptotic normality is shown as follows:∑n
i=1 ωiui − E(

∑n
i=1 ωiui)√

V(
∑n

i=1 ωiui)
=

∑n
i=1 ωiui

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
−→ N(0, 1),

where

• E(
∑n

i=1 ωiui) = 0,

• V(
∑n

i=1 ωiui) = σ2∑n
i=1 ω

2
i , and

• ∑n
i=1 ωiui = β̂2 − β2

are substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

β̂2 − β2

σ/
√∑n

i=1(xi − x)2
=

√
n(β̂2 − β2)

σ/
√

(1/n)
∑n

i=1(xi − x)2
.

Replacing (1/n)
∑n

i=1(xi − x)2 by its converged value m, we have:
√

n(β̂2 − β2)
σ/
√

m
−→ N(0, 1),

which implies
√

n(β̂2 − β2) −→ N(0,
σ2

m
).

Thus, the asymptotic normality of
√

n(β̂2 − β2) is shown.
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Finally, replacing σ2 by its consistent estimator s2, it is known as follows:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
−→ N(0, 1), (16)

where s2 is defined as:

s2 =
1

n − 2

n∑
i=1

e2
i =

1
n − 2

n∑
i=1

(yi − β̂1 − β̂2xi)2, (17)

which is a consistent and unbiased estimator of σ2. −→ Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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[Review] Confidence Interval (信頼区間，区間推定)):

Suppose X1, X2, · · · , Xn are iid with mean µ and variance σ2. −→ No N assumption

From CLT,
X − E(X)√

V(X)
=

X − µ
σ/
√

n
−→ N(0, 1).

Replacing σ2 by S 2 =
1

n − 1

n∑
i=1

(Xi − X)2, we have:
X − µ
S/
√

n
−→ N(0, 1).

That is, for large n,

P
(
−1.96 <

X − µ
S/
√

n
< 1.96

)
= 0.95, i.e., P

(
X − 1.96

S
√

n
< µ < X + 1.96

S
√

n

)
= 0.95.

Note that 1.96 is obtained from the normal distribution table.

Then, replacing the estimators X and S 2 by the estimates x and s2, we obtain the 95%

confidence interval of µ as follows:

(x − 1.96
s
√

n
, x + 1.96

s
√

n
).

[End of Review]
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Going back to OLS, we have:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
−→ N(0, 1).

Therefore,

P
(
−2.576 <

β̂2 − β2

s/
√∑n

i=1(xi − x)2
< 2.576

)
= 0.99,

i.e.,

P
(
β̂2 − 2.576

s√∑n
i=1(xi − x)2

< β2 < β̂2 + 2.576
s√∑n

i=1(xi − x)2

)
= 0.99.

Note that 2.576 is 0.005 value of N(0, 1), which comes from the statistical table.

Thus, the 99% confidence interval of β2 is:(
β̂2 − 2.576

s√∑n
i=1(xi − x)2

, β̂2 + 2.576
s√∑n

i=1(xi − x)2

)
,

where β̂2 and s2 should be replaced by the observed data.
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[Review] Testing the Hypothesis (仮説検定):

Suppose that X1, X2, · · · , Xn are iid with mean µ and variance σ2.

From CLT,
X − µ
S/
√

n
−→ N(0, 1), where S 2 =

1
n − 1

n∑
i=1

(Xi − X)2, which is known as

the unbiased estimator of σ2.

• The null hypothesis H0 : µ = µ0, where µ0 is a fixed number.

• The alternative hypothesis H1 : µ , µ0

Under the null hypothesis, in large sample we have the following disribution:

X − µ0

S/
√

n
∼ N(0, 1).

Replacing X and S 2 by x and s2, compare
x − µ0

s/
√

n
and N(0, 1).

H0 is rejected at significance level 0.05 when
∣∣∣∣ x − µ0

s/
√

n

∣∣∣∣ > 1.96.

[End of Review]
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In the case of OLS, the hypotheses are as follows:

• The null hypothesis H0 : β2 = β
∗
2

• The alternative hypothesis H1 : β2 , β∗2

Under H0, in large sample,

β̂2 − β∗2
s/
√∑n

i=1(xi − x)2
∼ N(0, 1).

Replacing β̂2 and s2 by the observed data, compare
β̂2 − β∗2

s/
√∑n

i=1(xi − x)2
and N(0, 1).

H0 is rejected at significance level 0.05 when
∣∣∣∣ β̂2 − β∗2
s/
√∑n

i=1(xi − x)2

∣∣∣∣ > 1.96.
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Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2 − β2),

which is one of the large sample properties.

Now, we discuss the small sample properties of β̂2.

In order to obtain the distribution of β̂2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is that ui ∼ N(0, σ2).

Writing (13), again, β̂2 is represented as:

β̂2 = β2 +

n∑
i=1

ωiui.

First, we obtain the distribution of the second term in the above equation.
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[Review]　Content of Special Lectures in Economics (Statistical Analysis)

Note that the moment-generating function (積率母関数, MGF) is given by M(θ) ≡

E(exp(θX)) = exp(µθ + 1
2σ

2θ2) when X ∼ N(µ, σ2).

X1, X2, · · ·, Xn are mutually independently distributed as Xi ∼ N(µi, σ
2
i ) for i =

1, 2, · · · , n.

MGF of Xi is Mi(θ) ≡ E(exp(θXi)) = exp(µiθ +
1
2σ

2
i θ

2).

Consider the distribution of Y =
∑n

i=1(ai + biXi), where ai and bi are constant.

My(θ) ≡ E(exp(θY)) = E(exp(θ
∑n

i=1(ai + biXi)))

=
∏n

i=1 exp(θai)E(exp(θbiXi)) =
∏n

i=1 exp(θai)Mi(θbi)

=
∏n

i=1 exp(θai) exp(µiθbi+
1
2σ

2
i (θbi)2) = exp(θ

∑n
i=1(ai+biµi)+ 1

2θ
2∑n

i=1 b2
iσ

2
i ),

which implies that Y ∼ N(
∑n

i=1(ai + biµi),
∑n

i=1 b2
iσ

2
i ).

[End of Review]
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