Substitute $a_{i}=0, \mu_{i}=0, b_{i}=\omega_{i}$ and $\sigma_{i}^{2}=\sigma^{2}$.

Then, using the moment-generating function, $\sum_{i=1}^{n} \omega_{i} u_{i}$ is distributed as:

$$
\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(0, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

Therefore, $\hat{\beta}_{2}$ is distributed as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(\beta_{2}, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right),
$$

or equivalently,

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1),
$$

for any n.
[Review 1] t Distribution:
$Z \sim N(0,1), V \sim \chi^{2}(k)$, and Z is independent of V. Then, $\frac{Z}{\sqrt{V / k}} \sim t(k)$.

[End of Review 1]

[Review 2] t Distribution:
Suppose that $X_{1}, X_{2} \cdots, X_{n}$ are mutually independently, identically and normally distributed with mean μ and variance σ^{2}.
$\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.
Define $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, which is an unbiased estimator of σ^{2}.
It is known that $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ and \bar{X} is independesnt of S^{2}. (The proof is skipped.)

Then, we obtain $\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$.
As a result, replacing σ^{2} by $S^{2}, \frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$.
[End of Review 2]

Back to OLS：

Replacing σ^{2} by its estimator s^{2} defined in（17），it is known that we have：

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2)
$$

where $t(n-2)$ denotes t distribution with $n-2$ degrees of freedom．

Thus，under normality assumption on the error term u_{i} ，the $t(n-2)$ distribution is used for the confidence interval and the testing hypothesis in small sample．

Or，taking the square on both sides，

$$
\left(\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)^{2} \sim F(1, n-2)
$$

which will be proved later．
Before going to multiple regression model（重回帰モデル），

2 Some Formulas of Matrix Algebra

1．Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 k} \\ a_{21} & a_{22} & \cdots & a_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l 1} & a_{l 2} & \cdots & a_{l k}\end{array}\right)=\left[a_{i j}\right]$ ，
which is a $l \times k$ matrix，where $a_{i j}$ denotes i th row and j th column of A ．
The transposed matrix（転置行列）of A ，denoted by A^{\prime} ，is defined as：
$A^{\prime}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{l 1} \\ a_{12} & a_{22} & \cdots & a_{l 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 k} & a_{2 k} & \cdots & a_{l k}\end{array}\right)=\left[a_{j i}\right]$,
where the i th row of A^{\prime} is the i th column of A ．
2. $(A x)^{\prime}=x^{\prime} A^{\prime}$,
where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.
3. $a^{\prime}=a$,
where a denotes a scalar.
4. $\frac{\partial a^{\prime} x}{\partial x}=a$,
where a and x are $k \times 1$ vectors.
5. $\frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x$,
where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.
Especially, when A is symmetric, $\frac{\partial x^{\prime} A x}{\partial x}=2 A x$.

6．Let A and B be $k \times k$ matrices，and I_{k} be a $k \times k$ identity matrix（単位行列） （one in the diagonal elements and zero in the other elements）．

When $A B=I_{k}, B$ is called the inverse matrix（逆行列）of A ，denoted by $B=A^{-1}$ ．

That is，$A A^{-1}=A^{-1} A=I_{k}$ ．

7．Let A be a $k \times k$ matrix and x be a $k \times 1$ vector．
If A is a positive definite matrix（正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x>0 .
$$

If A is a positive semidefinite matrix（非負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \geq 0
$$

If A is a negative definite matrix（負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x<0
$$

If A is a negative semidefinite matrix（非正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \leq 0 .
$$

Trace，Rank and etc．：$\quad A: k \times k, \quad B: n \times k, \quad C: k \times n$.
1．The trace（トレース）of A is： $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$ ，where $A=\left[a_{i j}\right]$ ．
2．The rank（ランク，階数）of A is the maximum number of linearly independent column（or row）vectors of A ，which is denoted by $\operatorname{rank}(A)$ ．

3．If A is an idempotent matrix（べき等行列），$A=A^{2}$ ．
4．If A is an idempotent and symmetric matrix，$A=A^{2}=A^{\prime} A$ ．
5．A is idempotent if and only if the eigen values of A consist of 1 and 0 ．
6．If A is idempotent， $\operatorname{rank}(A)=\operatorname{tr}(A)$ ．
7． $\operatorname{tr}(B C)=\operatorname{tr}(C B)$

Distributions in Matrix Form：

1．Let X, μ and Σ be $k \times 1, k \times 1$ and $k \times k$ matrices．
When $X \sim N(\mu, \Sigma)$ ，the density function of X is given by：

$$
f(x)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) .
$$

$\mathrm{E}(X)=\mu$ and $\mathrm{V}(X)=\mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right)=\Sigma$
The moment-generating function: $\phi(\theta)=\mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)$
${ }^{(*)}$ In the univariate case, when $X \sim N\left(\mu, \sigma^{2}\right)$, the density function of X is:

$$
f(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

2. If $X \sim N(\mu, \Sigma)$, then $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(k)$.

Note that $\quad X^{\prime} X \sim \chi^{2}(k)$ when $X \sim N\left(0, I_{k}\right)$.
3. $X: n \times 1, \quad Y: m \times 1, \quad X \sim N\left(\mu_{x}, \Sigma_{x}\right), \quad Y \sim N\left(\mu_{y}, \Sigma_{y}\right)$
X is independent of Y, i.e., $\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)^{\prime}\right)=0$ in the case of normal random variables.

$$
\frac{\left(X-\mu_{x}\right)^{\prime} \Sigma_{x}^{-1}\left(X-\mu_{x}\right) / n}{\left(Y-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(Y-\mu_{y}\right) / m} \sim F(n, m)
$$

4. If $X \sim N\left(0, \sigma^{2} I_{n}\right)$ and A is a symmetric idempotent $n \times n$ matrix of rank G, then $X^{\prime} A X / \sigma^{2} \sim \chi^{2}(G)$.

Note that $X^{\prime} A X=(A X)^{\prime}(A X)$ and $\operatorname{rank}(A)=\operatorname{tr}(A)$ because A is idempotent.
5. If $X \sim N\left(0, \sigma^{2} I_{n}\right), A$ and B are symmetric idempotent $n \times n$ matrices of rank G and K, and $A B=0$, then

$$
\frac{X^{\prime} A X}{G \sigma^{2}} / \frac{X^{\prime} B X}{K \sigma^{2}}=\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K)
$$

3 Multiple Regression Model（重回帰モデル）

Up to now，only one independent variable，i．e．，x_{i} ，is taken into the regression model． We extend it to more independent variables，which is called the multiple regression model（重回帰モデル）．

We consider the following regression model：

$$
y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\cdots+\beta_{k} x_{i, k}+u_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+u_{i}=x_{i} \beta+u_{i},\right.
$$

for $i=1,2, \cdots, n$ ，where x_{i} and β denote a $1 \times k$ vector of the independent variables
and a $k \times 1$ vector of the unknown parameters to be estimated, which are given by:

$$
x_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\right), \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right) .
$$

$x_{i, j}$ denotes the i th observation of the j th independent variable.
The case of $k=2$ and $x_{i, 1}=1$ for all i is exactly equivalent to (1).
Therefore, the matrix form above is a generalization of (1).
Writing all the equations for $i=1,2, \cdots, n$, we have:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{1,1}+\beta_{2} x_{1,2}+\cdots+\beta_{k} x_{1, k}+u_{1}=x_{1} \beta+u_{1}, \\
y_{2}=\beta_{1} x_{2,1}+\beta_{2} x_{2,2}+\cdots+\beta_{k} x_{2, k}+u_{2}=x_{2} \beta+u_{2}, \\
\vdots \\
y_{n}=\beta_{1} x_{n, 1}+\beta_{2} x_{n, 2}+\cdots+\beta_{k} x_{n, k}+u_{n}=x_{n} \beta+u_{n}
\end{gathered}
$$

which is rewritten as:

$$
\begin{aligned}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) & =\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) .
\end{aligned}
$$

Again, the above equation is compactly rewritten as:

$$
\begin{equation*}
y=X \beta+u \tag{18}
\end{equation*}
$$

where y, X and u are denoted by:

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) .
$$

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β, denoted by $\hat{\beta}$.
In (18), replacing β by $\hat{\beta}$, we have the following equation:

$$
y=X \hat{\beta}+e,
$$

where e denotes a $n \times 1$ vector of the residuals.
The i th element of e is given by e_{i}.

