Substitute $a_i = 0$, $\mu_i = 0$, $b_i = \omega_i$ and $\sigma_i^2 = \sigma^2$.

Then, using the moment-generating function, $\sum_{i=1}^{n} \omega_i u_i$ is distributed as:

$$\sum_{i=1}^n \omega_i u_i \sim N(0, \ \sigma^2 \sum_{i=1}^n \omega_i^2).$$

Therefore, $\hat{\beta}_2$ is distributed as:

$$\hat{\beta}_2 = \beta_2 + \sum_{i=1}^n \omega_i u_i \sim N(\beta_2, \ \sigma^2 \sum_{i=1}^n \omega_i^2),$$

or equivalently,

$$\frac{\hat{\beta}_2 - \beta_2}{\sigma \sqrt{\sum_{i=1}^n \omega_i^2}} = \frac{\hat{\beta}_2 - \beta_2}{\sigma / \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim N(0, 1),$$

for any *n*.

[Review 1] *t* Distribution:

 $Z \sim N(0, 1), V \sim \chi^2(k)$, and Z is independent of V. Then, $\frac{Z}{\sqrt{V/k}} \sim t(k)$. [End of Review 1]

[Review 2] *t* Distribution:

Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

$$\overline{X} \sim N(\mu, \sigma^2/n)$$
, i.e., $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.
Define $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, which is an unbiased estimator of σ^2 .
It is known that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ and \overline{X} is independent of S^2 . (The proof is skipped.)

Then, we obtain
$$\frac{\overline{X} - \mu}{\sqrt{\frac{\sigma}{\sqrt{n}}}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

As a result, replacing σ^2 by S^2 , $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$
[End of Review 2]

Back to OLS:

Replacing σ^2 by its estimator s^2 defined in (17), it is known that we have:

$$\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} \sim t(n-2),$$

where t(n-2) denotes t distribution with n-2 degrees of freedom.

Thus, under normality assumption on the error term u_i , the t(n - 2) distribution is used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

$$\left(\frac{\hat{\beta}_2 - \beta_2}{s/\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)^2 \sim F(1, n-2),$$

which will be proved later.

Before going to multiple regression model (重回帰モデル),

2 Some Formulas of Matrix Algebra

1. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lk} \end{pmatrix} = [a_{ij}],$$

which is a $l \times k$ matrix, where a_{ij} denotes *i*th row and *j*th column of A.

The transposed matrix (転置行列) of A, denoted by A', is defined as:

$$A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{l1} \\ a_{12} & a_{22} & \cdots & a_{l2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{lk} \end{pmatrix} = [a_{ji}],$$

where the *i*th row of A' is the *i*th column of A.

2. (Ax)' = x'A',

where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.

3. a' = a,

where *a* denotes a scalar.

4.
$$\frac{\partial a'x}{\partial x} = a$$
,

where *a* and *x* are $k \times 1$ vectors.

5.
$$\frac{\partial x'Ax}{\partial x} = (A + A')x,$$

where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.

Especially, when A is symmetric,

$$\frac{\partial x'Ax}{\partial x} = 2Ax.$$

6. Let *A* and *B* be $k \times k$ matrices, and I_k be a $k \times k$ identity matrix (単位行列) (one in the diagonal elements and zero in the other elements).

When $AB = I_k$, B is called the **inverse matrix** (逆行列) of A, denoted by $B = A^{-1}$.

That is, $AA^{-1} = A^{-1}A = I_k$.

7. Let *A* be a $k \times k$ matrix and *x* be a $k \times 1$ vector.

If *A* is a **positive definite matrix** (正値定符号行列), for any *x* except for x = 0 we have:

If *A* is a **positive semidefinite matrix** (非負値定符号行列), for any *x* except for x = 0 we have:

$$x'Ax \ge 0$$

If *A* is a **negative definite matrix** (負値定符号行列), for any *x* except for x = 0 we have:

If *A* is a **negative semidefinite matrix** (非正値定符号行列), for any *x* except for x = 0 we have:

 $x'Ax \leq 0.$

Trace, Rank and etc.: $A: k \times k$, $B: n \times k$, $C: k \times n$.

1. The trace
$$(\vdash \lor \neg \neg)$$
 of A is: tr(A) = $\sum_{i=1}^{k} a_{ii}$, where $A = [a_{ij}]$.

2. The **rank** (ランク, 階数) of *A* is the maximum number of linearly independent column (or row) vectors of *A*, which is denoted by rank(A).

- 3. If A is an **idempotent matrix** (べき等行列), $A = A^2$.
- 4. If *A* is an idempotent and symmetric matrix, $A = A^2 = A'A$.
- 5. *A* is idempotent if and only if the eigen values of *A* consist of 1 and 0.
- 6. If A is idempotent, rank(A) = tr(A).
- 7. tr(BC) = tr(CB)

Distributions in Matrix Form:

1. Let *X*, μ and Σ be $k \times 1$, $k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$f(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right)$$

$$E(X) = \mu$$
 and $V(X) = E((X - \mu)(X - \mu)') = \Sigma$

The moment-generating function: $\phi(\theta) = E(\exp(\theta' X)) = \exp(\theta' \mu + \frac{1}{2}\theta' \Sigma \theta)$

(*) In the univariate case, when $X \sim N(\mu, \sigma^2)$, the density function of X is:

$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

2. If $X \sim N(\mu, \Sigma)$, then $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi^2(k)$.

Note that $X'X \sim \chi^2(k)$ when $X \sim N(0, I_k)$.

3. X: $n \times 1$, Y: $m \times 1$, X ~ $N(\mu_x, \Sigma_x)$, Y ~ $N(\mu_y, \Sigma_y)$

X is independent of Y, i.e., $E((X - \mu_x)(Y - \mu_y)') = 0$ in the case of normal random variables.

$$\frac{(X - \mu_x)' \Sigma_x^{-1} (X - \mu_x)/n}{(Y - \mu_y)' \Sigma_y^{-1} (Y - \mu_y)/m} \sim F(n, m)$$

4. If $X \sim N(0, \sigma^2 I_n)$ and *A* is a symmetric idempotent $n \times n$ matrix of rank *G*, then $X'AX/\sigma^2 \sim \chi^2(G)$.

Note that X'AX = (AX)'(AX) and rank(A) = tr(A) because A is idempotent.

5. If $X \sim N(0, \sigma^2 I_n)$, *A* and *B* are symmetric idempotent $n \times n$ matrices of rank *G* and *K*, and AB = 0, then

$$\frac{X'AX}{G\sigma^2} \Big| \frac{X'BX}{K\sigma^2} = \frac{X'AX/G}{X'BX/K} \sim F(G, K).$$

3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., x_i , is taken into the regression model. We extend it to more independent variables, which is called the **multiple regression model** (重回帰モデル).

We consider the following regression model:

$$y_{i} = \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \dots + \beta_{k}x_{i,k} + u_{i} = (x_{i,1}, x_{i,2}, \dots, x_{i,k}) \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{k} \end{pmatrix} + u_{i} = x_{i}\beta + u_{i},$$

for $i = 1, 2, \dots, n$, where x_i and β denote a $1 \times k$ vector of the independent variables

and a $k \times 1$ vector of the unknown parameters to be estimated, which are given by:

$$x_i = (x_{i,1}, x_{i,2}, \cdots, x_{i,k}), \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}.$$

 $x_{i,j}$ denotes the *i*th observation of the *j*th independent variable. The case of k = 2 and $x_{i,1} = 1$ for all *i* is exactly equivalent to (1). Therefore, the matrix form above is a generalization of (1). Writing all the equations for $i = 1, 2, \dots, n$, we have:

$$y_{1} = \beta_{1}x_{1,1} + \beta_{2}x_{1,2} + \dots + \beta_{k}x_{1,k} + u_{1} = x_{1}\beta + u_{1},$$

$$y_{2} = \beta_{1}x_{2,1} + \beta_{2}x_{2,2} + \dots + \beta_{k}x_{2,k} + u_{2} = x_{2}\beta + u_{2},$$

$$\vdots$$

$$y_{n} = \beta_{1}x_{n,1} + \beta_{2}x_{n,2} + \dots + \beta_{k}x_{n,k} + u_{n} = x_{n}\beta + u_{n},$$

which is rewritten as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Again, the above equation is compactly rewritten as:

$$y = X\beta + u, \tag{18}$$

where *y*, *X* and *u* are denoted by:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \qquad X = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β , denoted by $\hat{\beta}$.

In (18), replacing β by $\hat{\beta}$, we have the following equation:

$$y = X\hat{\beta} + e,$$

where *e* denotes a $n \times 1$ vector of the residuals.

The *i*th element of *e* is given by e_i .