
Substitute ai = 0, µi = 0, bi = ωi and σ2
i = σ

2.

Then, using the moment-generating function,
∑n

i=1 ωiui is distributed as:

n∑
i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ).

Therefore, β̂2 is distributed as:

β̂2 = β2 +

n∑
i=1

ωiui ∼ N(β2, σ
2

n∑
i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
∼ N(0, 1),

for any n.
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[Review 1]　 t Distribution:

Z ∼ N(0, 1), V ∼ χ2(k), and Z is independent of V . Then,
Z
√

V/k
∼ t(k).

[End of Review 1]

[Review 2]　 t Distribution:

Suppose that X1, X2. · · · , Xn are mutually independently, identically and normally dis-

tributed with mean µ and variance σ2.

X ∼ N(µ, σ2/n), i.e.,
X − µ
σ/
√

n
∼ N(0, 1).

Define S 2 =
1

n − 1

n∑
i=1

(Xi − X)2, which is an unbiased estimator of σ2.

It is known that
(n − 1)S 2

σ2 ∼ χ2(n − 1) and X is independesnt of S 2. (The proof is

skipped.)
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Then, we obtain

X − µ
σ/
√

n√√√√√ (n − 1)S 2

σ2

/
(n − 1)

=
X − µ
S/
√

n
∼ t(n − 1).

As a result, replacing σ2 by S 2,
X − µ
S/
√

n
∼ t(n − 1).

[End of Review 2]
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Back to OLS:

Replacing σ2 by its estimator s2 defined in (17), it is known that we have:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
∼ t(n − 2),

where t(n − 2) denotes t distribution with n − 2 degrees of freedom.

Thus, under normality assumption on the error term ui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√∑n

i=1(xi − x)2

)2
∼ F(1, n − 2),

which will be proved later.

Before going to multiple regression model (重回帰モデル),
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2 Some Formulas of Matrix Algebra

1. Let A =


a11 a12 · · · a1k

a21 a22 · · · a2k

...
...
. . .

...

al1 al2 · · · alk


= [ai j],

which is a l × k matrix, where ai j denotes ith row and jth column of A.

The transposed matrix (転置行列) of A, denoted by A′, is defined as:

A′ =


a11 a21 · · · al1

a12 a22 · · · al2
...

...
. . .

...

a1k a2k · · · alk


= [a ji],

where the ith row of A′ is the ith column of A.
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2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.

3. a′ = a,

where a denotes a scalar.

4.
∂a′x
∂x
= a,

where a and x are k × 1 vectors.

5.
∂x′Ax
∂x

= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.

Especially, when A is symmetric,

∂x′Ax
∂x

= 2Ax.
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6. Let A and B be k × k matrices, and Ik be a k × k identity matrix (単位行列)

(one in the diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse matrix (逆行列) of A, denoted by

B = A−1.

That is, AA−1 = A−1A = Ik.

7. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix (正値定符号行列), for any x except for x = 0

we have:

x′Ax > 0.

If A is a positive semidefinite matrix (非負値定符号行列), for any x except

for x = 0 we have:

x′Ax ≥ 0.
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If A is a negative definite matrix (負値定符号行列), for any x except for x = 0

we have:

x′Ax < 0.

If A is a negative semidefinite matrix (非正値定符号行列), for any x except

for x = 0 we have:

x′Ax ≤ 0.

Trace, Rank and etc.: A : k × k, B : n × k, C : k × n.

1. The trace (トレース) of A is: tr(A) =
k∑

i=1

aii, where A = [ai j] .

2. The rank (ランク，階数) of A is the maximum number of linearly independent

column (or row) vectors of A, which is denoted by rank(A).
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3. If A is an idempotent matrix (べき等行列), A = A2 .

4. If A is an idempotent and symmetric matrix, A = A2 = A′A .

5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

7. tr(BC) =tr(CB)

Distributions in Matrix Form:

1. Let X, µ and Σ be k × 1, k × 1 and k × k matrices.

When X ∼ N(µ,Σ), the density function of X is given by:

f (x) =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x − µ)′Σ−1(x − µ)

)
.
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E(X) = µ and V(X) = E
(
(X − µ)(X − µ)′

)
= Σ

The moment-generating function: φ(θ) = E
(
exp(θ′X)

)
= exp(θ′µ + 1

2θ
′Σθ)

(*) In the univariate case, when X ∼ N(µ, σ2), the density function of X is:

f (x) =
1

(2πσ2)1/2 exp
(
− 1

2σ2 (x − µ)2
)
.

2. If X ∼ N(µ,Σ), then (X − µ)′Σ−1(X − µ) ∼ χ2(k).

Note that X′X ∼ χ2(k) when X ∼ N(0, Ik).

3. X: n × 1, Y: m × 1, X ∼ N(µx,Σx), Y ∼ N(µy,Σy)

X is independent of Y , i.e., E
(
(X − µx)(Y − µy)′

)
= 0 in the case of normal

random variables.

(X − µx)′Σ−1
x (X − µx)/n

(Y − µy)′Σ−1
y (Y − µy)/m

∼ F(n,m)
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4. If X ∼ N(0, σ2In) and A is a symmetric idempotent n×n matrix of rank G, then

X′AX/σ2 ∼ χ2(G).

Note that X′AX = (AX)′(AX) and rank(A) = tr(A) because A is idempotent.

5. If X ∼ N(0, σ2In), A and B are symmetric idempotent n × n matrices of rank G

and K, and AB = 0, then

X′AX
Gσ2

/X′BX
Kσ2 =

X′AX/G
X′BX/K

∼ F(G,K).
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3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., xi, is taken into the regression model.

We extend it to more independent variables, which is called the multiple regression

model (重回帰モデル).

We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui = (xi,1, xi,2, · · · , xi,k)


β1

β2
...

βk


+ ui = xiβ + ui,

for i = 1, 2, · · · , n, where xi and β denote a 1 × k vector of the independent variables
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and a k × 1 vector of the unknown parameters to be estimated, which are given by:

xi = (xi,1, xi,2, · · · , xi,k), β =


β1

β2
...

βk


.

xi, j denotes the ith observation of the jth independent variable.

The case of k = 2 and xi,1 = 1 for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).

Writing all the equations for i = 1, 2, · · · , n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,

...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,
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which is rewritten as:
y1

y2
...

yn


=


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k




β1

β2
...

βk


+


u1

u2
...

un



=


x1

x2
...

xn


β +


u1

u2
...

un


.

Again, the above equation is compactly rewritten as:

y = Xβ + u, (18)
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where y, X and u are denoted by:

y =


y1

y2
...

yn


, X =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k


=


x1

x2
...

xn


, u =


u1

u2
...

un


.

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β,

denoted by β̂.

In (18), replacing β by β̂, we have the following equation:

y = Xβ̂ + e,

where e denotes a n × 1 vector of the residuals.

The ith element of e is given by ei.
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