The sum of squared residuals is written as follows：

$$
\begin{aligned}
S(\hat{\beta}) & =\sum_{i=1}^{n} e_{i}^{2}=e^{\prime} e=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=\left(y^{\prime}-\hat{\beta}^{\prime} X^{\prime}\right)(y-X \hat{\beta}) \\
& =y^{\prime} y-y^{\prime} X \hat{\beta}-\hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}=y^{\prime} y-2 y^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} .
\end{aligned}
$$

In the last equality，note that $\hat{\beta}^{\prime} X^{\prime} y=y^{\prime} X \hat{\beta}$ because both are scalars．
To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$ ，we set the first derivative of $S(\hat{\beta})$ equal to zero， i．e．，

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

Solving the equation above with respect to $\hat{\beta}$ ，the ordinary least squares estimator
（OLS，最小自乗推定量）of β is given by：

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y . \tag{19}
\end{equation*}
$$

Thus，the ordinary least squares estimator is derived in the matrix form．
(*) Remark

The second order condition for minimization:

$$
\frac{\partial^{2} S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{\prime}}=2 X^{\prime} X
$$

is a positive definite matrix.
Set $c=X d$.

For any $d \neq 0$, we have $c^{\prime} c=d^{\prime} X^{\prime} X d>0$.

Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$
\begin{align*}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \tag{20}
\end{align*}
$$

Taking the expectation on both sides of (20), we have the following:

$$
\mathrm{E}(\hat{\beta})=\mathrm{E}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}(u)=\beta
$$

because of $\mathrm{E}(u)=0$ by the assumption of the error term u_{i}.

Thus, unbiasedness of $\hat{\beta}$ is shown.

The variance of $\hat{\beta}$ is obtained as:

$$
\begin{aligned}
\mathrm{V}(\hat{\beta}) & =\mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1} .
\end{aligned}
$$

The first equality is the definition of variance in the case of vector.
In the fifth equality, $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} I_{n}$ is used, which implies that $\mathrm{E}\left(u_{i}^{2}\right)=\sigma^{2}$ for all i and
$\mathrm{E}\left(u_{i} u_{j}\right)=0$ for $i \neq j$.
Remember that $u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identically distributed with mean zero and variance σ^{2}.

Under normality assumption on the error term u, it is known that the distribution of $\hat{\beta}$ is given by:

$$
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) .
$$

Proof:

First, when $X \sim N(\mu, \Sigma)$, the moment-generating function, i.e., $\phi(\theta)$, is given by:

$$
\phi(\theta) \equiv \mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)
$$

$\theta_{u}: n \times 1, \quad u: n \times 1, \quad \theta_{\beta}: k \times 1, \quad \hat{\beta}: k \times 1$
The moment-generating function of u, i.e., $\phi_{u}\left(\theta_{u}\right)$, is:

$$
\phi_{u}\left(\theta_{u}\right) \equiv \mathrm{E}\left(\exp \left(\theta_{u}^{\prime} u\right)\right)=\exp \left(\frac{\sigma^{2}}{2} \theta_{u}^{\prime} \theta_{u}\right),
$$

which is $N\left(0, \sigma^{2} I_{n}\right)$.

The moment-generating function of $\hat{\beta}$, i.e., $\phi_{\beta}\left(\theta_{\beta}\right)$, is:

$$
\begin{aligned}
\phi_{\beta}\left(\theta_{\beta}\right) & \equiv \mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \hat{\beta}\right)\right)=\mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \beta+\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right)=\exp \left(\theta_{\beta}^{\prime} \beta\right) \phi_{u}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)=\exp \left(\theta_{\beta}^{\prime} \beta+\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right),
\end{aligned}
$$

which is equivalent to the normal distribution with mean β and variance $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
Note that $\quad \theta_{u}=X\left(X^{\prime} X\right)^{-1} \theta_{\beta}$.

Taking the j th element of $\hat{\beta}$, its distribution is given by:

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} a_{j j}\right), \quad \text { i.e., } \quad \frac{\hat{\beta}_{j}-\beta_{j}}{\sigma \sqrt{a_{j j}}} \sim N(0,1),
$$

where $a_{j j}$ denotes the j th diagonal element of $\left(X^{\prime} X\right)^{-1}$.

Replacing σ^{2} by its estimator s^{2}, we have the following t distribution:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s \sqrt{a_{j j}}} \sim t(n-k),
$$

where $t(n-k)$ denotes the t distribution with $n-k$ degrees of freedom.
［Review］Trace（トレース）：
1．$A: n \times n, \quad \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ ，where $a_{i j}$ denotes an element in the i th row and the j th column of a matrix A ．

2．a ：scalar $(1 \times 1), \quad \operatorname{tr}(a)=a$

3．$A: n \times k, B: k \times n, \quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$
4． $\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k$
5．When X is a square matrix of random variables， $\mathrm{E}(\operatorname{tr}(A X))=\operatorname{tr}(A \mathrm{E}(X))$

End of Review

s^{2} is taken as follows:

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})
$$

which leads to an unbiased estimator of σ^{2}.

Proof:

Substitute $y=X \beta+u$ and $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ into $e=y-X \hat{\beta}$.

$$
\begin{aligned}
e & =y-X \hat{\beta}=X \beta+u-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =u-X\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

$I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent and symmetric, because we have:

$$
\begin{aligned}
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=I_{n}-X\left(X^{\prime} X\right)^{-1} X,,^{\prime} \\
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime} .
\end{aligned}
$$

