## [Review] Formulas - $F$ Distribution:

- $\frac{U / n}{V / m} \sim F(n, m)$ when $U$ $\operatorname{sim} \chi^{2}(n), V \sim \chi^{2}(m)$, and $U$ is independent of $V$.
- When $X \sim N\left(0, I_{n}\right), A$ and $B$ are $n \times n$ symmetric idempotent matrices, $\operatorname{Rank}(A)=\operatorname{tr}(A)=G, \operatorname{Rank}(B)=\operatorname{tr}(B)=K$ and $A B=0$, then $\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim$ $F(G, K)$.

Note that the covariance of $A X$ and $B X$ is zero, which implies that $A X$ is independent of $B X$ under normality of $X$.
[End of Review]
6. Therefore, we obtain the following distribution:

$$
\begin{aligned}
& \frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k) \\
& \frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}(n-k)
\end{aligned}
$$

$\hat{\beta}$ is independent of $e$, because $X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=0$.
Accordingly, we can derive:

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) / k}{s^{2}} \sim F(k, n-k)
$$

Under the null hypothesis $H_{0}: \beta=0, \frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}} \sim F(k, n-k)$.
Given data, $\frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}}$ is compared with $F(k, n-k)$.
If $\frac{\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} / k}{s^{2}}$ is in tha tail of the $F$ distribution, the null hypothesis is rejected.

Coefficient of Determination（決定係数）， $\boldsymbol{R}^{2}$ ：
1．Definition of the Coefficient of Determination，$R^{2}: \quad R^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
2．Numerator：$\quad \sum_{i=1}^{n} e_{i}^{2}=e^{\prime} e$
3．Denominator：$\quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y$
（＊）Remark

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{n}-\bar{y}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)-\left(\begin{array}{c}
\bar{y} \\
\bar{y} \\
\vdots \\
\bar{y}
\end{array}\right)=y-\frac{1}{n} i i^{\prime} y=\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y,
$$

where $i=(1,1, \cdots, 1)^{\prime}$ ．
4. In a matrix form, we can rewrite as: $\quad R^{2}=1-\frac{e^{\prime} e}{y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y}$

## $F$ Distribution and Coefficient of Determination:

$\Longrightarrow$ This will be discussed later.

## Testing Linear Restrictions (F Distribution):

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Consider testing the hypothesis $H_{0}: R \beta=r$.
$R: G \times k, \quad \operatorname{rank}(R)=G \leq k$.
$R \hat{\beta} \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)$.
Therefore, $\quad \frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{\sigma^{2}} \sim \chi^{2}(G)$.
Note that $R \beta=r$.
(a) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the mean of $R \hat{\beta}$ is:

$$
\mathrm{E}(R \hat{\beta})=R \mathrm{E}(\hat{\beta})=R \beta .
$$

(b) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the variance of $R \hat{\beta}$ is:

$$
\begin{aligned}
\mathrm{V}(R \hat{\beta}) & =\mathrm{E}\left((R \hat{\beta}-R \beta)(R \hat{\beta}-R \beta)^{\prime}\right)=\mathrm{E}\left(R(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} R^{\prime}\right) \\
& =R \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) R^{\prime}=R \mathrm{~V}(\hat{\beta}) R^{\prime}=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}
\end{aligned}
$$

2. We know that $\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{e^{\prime} e}{\sigma^{2}}=\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{\sigma^{2}} \sim \chi^{2}(n-k)$.
3. Under normality assumption on $u, \hat{\beta}$ is independent of $e$.
4. Therefore, we have the following distribution:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(n-k)} \sim F(G, n-k)
$$

## 5. Some Examples:

(a) $t$ Test:

The case of $G=1, r=0$ and $R=(0, \cdots, 1, \cdots, 0)$ (the $i$ th element of $R$ is one and the other elements are zero):

The test of $H_{0}: \beta_{i}=0$ is given by:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{s^{2}}=\frac{\hat{\beta}_{i}^{2}}{s^{2} a_{i i}} \sim F(1, n-k),
$$

where $s^{2}=e^{\prime} e /(n-k), R \hat{\beta}=\hat{\beta}_{i}$ and

$$
a_{i i}=R\left(X^{\prime} X\right)^{-1} R^{\prime}=\text { the } i \text { row and } i \text { th column of }\left(X^{\prime} X\right)^{-1}
$$

*) Recall that $Y \sim F(1, m)$ when $X \sim t(m)$ and $Y=X^{2}$.

Therefore, the test of $H_{0}: \beta_{i}=0$ is given by:

$$
\frac{\hat{\beta}_{i}}{s \sqrt{a_{i i}}} \sim t(n-k) .
$$

(b) Test of structural change (Part 1):

$$
y_{i}= \begin{cases}x_{i} \beta_{1}+u_{i}, & i=1,2, \cdots, m \\ x_{i} \beta_{2}+u_{i}, & i=m+1, m+2, \cdots, n\end{cases}
$$

Assume that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
In a matrix form,

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m} \\
y_{m+1} \\
y_{m+2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & 0 \\
x_{2} & 0 \\
\vdots & \vdots \\
x_{m} & 0 \\
0 & x_{m+1} \\
0 & x_{m+2} \\
\vdots & \vdots \\
0 & x_{n}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m} \\
u_{m+1} \\
u_{m+2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

Moreover, rewriting,

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+u
$$

Again, rewriting,

$$
Y=X \beta+u
$$

The null hypothesis is $H_{0}: \beta_{1}=\beta_{2}$.
Apply the $F$ test, using $R=\left(\begin{array}{ll}I_{k} & -I_{k}\end{array}\right)$ and $r=0$.
In this case, $G=\operatorname{rank}(R)=k$ and $\beta$ is a $2 k \times 1$ vector.
The distribution is $F(k, n-2 k)$.
(c) The hypothesis in which sum of the 1 st and 2 nd coefficients is equal to one:
$R=(1,1,0, \cdots, 0), r=1$

In this case，$G=\operatorname{rank}(R)=1$
The distribution of the test statistic is $F(1, n-k)$ ．
（d）Testing seasonality：
In the case of quarterly data（四半期データ），the regression model is：

$$
y=\alpha+\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+X \beta_{0}+u
$$

$D_{j}=1$ in the $j$ th quarter and 0 otherwise，i．e．，$D_{j}, j=1,2,3$ ，are sea－ sonal dummy variables．

Testing seasonality $\Longrightarrow H_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}=0$

$$
\beta=\left(\begin{array}{l}
\alpha \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\beta_{0}
\end{array}\right), \quad R=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right), \quad r=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

In this case，$G=\operatorname{rank}(R)=3$ ，and $\beta$ is a $k \times 1$ vector．
The distribution of the test statistic is $F(3, n-k)$ ．
（e）Cobb－Douglas Production Function：
Let $Q_{i}, K_{i}$ and $L_{i}$ be production，capital stock and labor．
We estimate the following production function：

$$
\log \left(Q_{i}\right)=\beta_{1}+\beta_{2} \log \left(K_{i}\right)+\beta_{3} \log \left(L_{i}\right)+u_{i}
$$

We test a linear homogeneous（一次同次）production function．
The null and alternative hypotheses are：

$$
\begin{aligned}
& H_{0}: \beta_{2}+\beta_{3}=1 \\
& H_{1}: \beta_{2}+\beta_{3} \neq 1
\end{aligned}
$$

Then，set as follows：

$$
R=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right), \quad r=1
$$

(f) Test of structural change (Part 2):

Test the structural change between time periods $m$ and $m+1$.
In the case where both the constant term and the slope are changed, the regression model is as follows:

$$
y_{i}=\alpha+\beta x_{i}+\gamma d_{i}+\delta d_{i} x_{i}+u_{i}
$$

where

$$
d_{i}= \begin{cases}0, & \text { for } i=1,2, \cdots, m \\ 1, & \text { for } i=m+1, m+2, \cdots, n\end{cases}
$$

We consider testing the structural change at time $m+1$.
The null and alternative hypotheses are as follows:

$$
\begin{aligned}
& H_{0}: \gamma=\delta=0 \\
& H_{1}: \gamma \neq 0, \text { or, } \delta \neq 0
\end{aligned}
$$

Then, set as follows:

$$
R=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

(g) Multiple regression model:

Consider the case of two explanatory variables:

$$
y_{i}=\alpha+\beta x_{i}+\gamma z_{i}+u_{i}
$$

We want to test the hypothesis that neither $x_{i}$ nor $z_{i}$ depends on $y_{i}$.
In this case, the null and alternative hypotheses are as follows:

$$
\begin{aligned}
& H_{0}: \beta=\gamma=0 \\
& H_{1}: \beta \neq 0, \text { or, } \gamma \neq 0
\end{aligned}
$$

Then, set as follows:

$$
R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

