
which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:

b = β + (X?′X?)−1X?′u? = β + (X′Ω−1X)−1X′Ω−1u

The mean and variance of b are given by:

E(b) = β,

V(b) = σ2(X?′X?)−1 = σ2(X′Ω−1X)−1.

6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u
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V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.

(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω

×
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Ω is the variance-covariance matrix of u, which is a positive definite ma-

trix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.

This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).
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Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rb ∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)
σ2 ∼ χ2(G)

8. Because (y? − X?b)′(y? − X?b)/σ2 ∼ χ2(n − k), we obtain:

(y − Xb)′Ω−1(y − Xb)
σ2 ∼ χ2(n − k)

9. Furthermore, from the fact that b is independent of y − Xb, the following F

distribution can be derived:
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(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)/G
(y − Xb)′Ω−1(y − Xb)/(n − k)

∼ F(G, n − k)

10. Let b be the unrestricted GLSE and b̃ be the restricted GLSE.

Their residuals are given by e and ũ, respectively.

e = y − Xb, ũ = y − Xb̃

Then, the F test statistic is written as follows:

(ũ′Ω−1ũ − e′Ω−1e)/G
e′Ω−1e/(n − k)

∼ F(G, n − k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,( y

r

)
=

( X

R

)
β +

( u

v

)
, E

( u

v

)
=

( 0

0

)
and V

( u

v

)
= σ2

( In 0

0 Ψ

)
For estimation, we do not need normality assumption.

Applying GLS, we obtain:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
=

(
X′X + R′Ψ−1R

)−1(
X′y + R′Ψ−1r

)
.
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Mean and Variance of b: b is rewritten as follows:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
= β +

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( u

v

)
Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1

= σ2
(
X′X + R′Ψ−1R

)−1
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9 Maximum Likelihood Estimation (MLE,
さ い ゆ う

最尤法)

−→ Review

1. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimator (MLE) of θ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

log L(θ; X).

MLE satisfies the following two conditions:

(a)
∂ log L(θ; X)
∂θ

= 0.

(b)
∂2 log L(θ; X)
∂θ∂θ′

is a negative definite matrix.

2. Fisher’s information matrix (フィッシャーの情報行列) is defined as:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)
= E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)
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