which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:
b=B+X"X) ' X*"u* =+ X'Q' X)X Qu
The mean and variance of b are given by:
E(b) = .
V() =X XN = 22X Q X)L
6. Suppose that the regression model is given by:
y=XB+u, u ~ N, Q).
In this case, when we use OLS, what happens?
B=X'X)"'Xy=B+X'X)"'Xu
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VB =X’ X)X’ QX (X' X)™!

Compare GLS and OLS.

(a) Expectation:
E@B) =B, and E®)=p
Thus, both ﬁ and b are unbiased estimator.

(b) Variance:

VB = (X' X) ' X' QXX X)™!

V() = P (X'Q'x)!

Which is more efficient, OLS or GLS?.
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V(@B) - V(b) =X’ X) "' X' QXX X)) - 22X’ Q71X)7!
=((XX)7'X - x'Q'x)'xa ")
x(x'x)"'x - x ') 'xaly
= 0?AQA’
Q) is the variance-covariance matrix of u, which is a positive definite ma-

trix.

Therefore, except for Q = I,, AQA’ is also a positive definite matrix.

This implies that V(3;) — V(b;) > 0 for the ith element of j.
Accordingly, b is more efficient than j3.
7. If u ~ N(0,0*Q), then b ~ N(B, *(X’Q'X)71).
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Consider testing the hypothesis Hy : RB =r.
R: Gxk, rank(R)=G <k.
Rb ~ N(RB, 0’ R(X'Q7'X)"'R").
Therefore, the following quadratic form is distributed as:

(Rb—rY(RX'Q'X)'R) (R - r)
0-2

~X}(G)
8. Because (y* — X*b)' (y* — X*b)/o* ~ ¥*(n — k), we obtain:

- XbyQ'(y - Xb
(y ) . (y ) ~)(2(n —k)

g

9. Furthermore, from the fact that b is independent of y — Xb, the following F

distribution can be derived:
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(Rb—r)Y(RX'Q'X) 'R (Rb - 1)/G

— — ~ F(G,n —k)
(y—XbYQ '(y - Xb)/(n - k)

10. Let b be the unrestricted GLSE and b be the restricted GLSE.

Their residuals are given by e and i, respectively.

e=y—Xb, i=y-Xb

Then, the F test statistic is written as follows:

@Q ' —eQle)/G
eQle/(n—k)

~ F(G,n—-k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS = Stochastic linear restriction:

r=RB+v, E(v) =0 and V(v) = o*¥

y=XB+u, E(w) =0 and V() = o”I,
Using a matrix form,

o R W R R

For estimation, we do not need normality assumption.
I, 0 -l
b=|(X" K )( )

o) () [ (5 o) C)

= (XX + R¥R) (X'y+ R¥).

Applying GLS, we obtain:

-1 -1
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Mean and Variance of b: b is rewritten as follows:

-1

( I, 0\'/Xx\)" I 0\"(y
oz 3 G e oll 9C)
0 ¥ R 0 v r
[ I, 0\ /x\\ " (u
oo o) () ()
0 v R v
Therefore, the mean and variance are given by:

E(b) =p = b is unbiased.

I, 0\'/X
V(b):a'z[(X’ R')( ) ( )]
0 ¥ R

= (XX +R¥'R)

-1
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9 Maximum Likelihood Estimation (MLE, 5 lf.if)

—> Review

1. The distribution function of {X;}! | is f(x;6), where x = (x;,x2,---, x,) and
0=(u2).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(8; x) = f(x; ).

Note that f(x;0) = [], f(x;;6) when X;, X5, -+, X,, are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimator (MLE) of 6 is 6 such that:

max L(6; X). S max log L(6; X).
6 6

MLE satisfies the following two conditions:
a dlog L(6; X)

0.
() 50
9 log L(6; X
(b) % is a negative definite matrix.

2. Fisher’s information matrix (7 1 v ¥ + —D1E#H1T5) is defined as:

0% log L(6; X))

1) = E( 9006/

where we have the following equality:

P log L(6; X)\ _ _ 0log L(6; X) dlog L(6; X)\  Olog L(6; X)
—E( 9000’ ) =E( 90 o0 )=V 90 )
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