Proof of the above equality:

$$
\int L(\theta ; x) \mathrm{d} x=1
$$

Take a derivative with respect to θ.

$$
\int \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=0
$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta ; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$
\int \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x=0
$$

i.e.,

$$
\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0
$$

Again，differentiating the above with respect to θ ，we obtain：

$$
\begin{aligned}
& \int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial L(\theta ; x)}{\partial^{\prime} \theta} \mathrm{d} x \\
& \quad=\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial \log L(\theta ; x)}{\partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x \\
& \quad=\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)+\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=0
\end{aligned}
$$

Therefore，we can derive the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

where the second equality utilizes $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$ ．
3．Cramer－Rao Lower Bound（クラメール・ラオの下限）：$(I(\theta))^{-1}$
Suppose that an estimator of θ is given by $s(X)$ ．

The expectation of $s(X)$ is:

$$
\mathrm{E}(s(X))=\int s(x) L(\theta ; x) \mathrm{d} x
$$

Differentiating the above with respect to θ,

$$
\begin{aligned}
\frac{\partial \mathrm{E}(s(X))}{\partial \theta} & =\int s(x) \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=\int s(x) \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

For simplicity, let $s(X)$ and θ be scalars.
Then,

$$
\begin{aligned}
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

where ρ denotes the correlation coefficient between $s(X)$ and $\frac{\partial \log L(\theta ; X)}{\partial \theta}$, i.e.,

$$
\rho=\frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}(s(X))} \sqrt{\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}}
$$

Note that $|\rho| \leq 1$.
Therefore, we have the following inequality:

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

i.e.,

$$
\mathrm{V}(s(X)) \geq \frac{\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2}}{\mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}
$$

Especially, when $\mathrm{E}(s(X))=\theta$,

$$
\mathrm{V}(s(X)) \geq \frac{1}{-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)}=(I(\theta))^{-1}
$$

Even in the case where $s(X)$ is a vector, the following inequality holds.

$$
\mathrm{V}(s(X)) \geq(I(\theta))^{-1}
$$

where $I(\theta)$ is defined as:

$$
\begin{aligned}
I(\theta) & =-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right) \\
& =\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.
4. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ.
As n goes to infinity, we have the following result:

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

where it is assumed that $\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)$ converges.
That is, when n is large, $\tilde{\theta}$ is approximately distributed as follows:

$$
\tilde{\theta} \sim N\left(\theta,(I(\theta))^{-1}\right)
$$

Suppose that $s(X)=\tilde{\theta}$.
When n is large, $\mathrm{V}(s(X))$ is approximately equal to $(I(\theta))^{-1}$.

5．Optimization（最適化）：

MLE of θ results in the following maximization problem：

$$
\max _{\theta} \log L(\theta ; x)
$$

We often have the case where the solution of θ is not derived in closed form．
\Longrightarrow Optimization procedure

$$
0=\frac{\partial \log L(\theta ; x)}{\partial \theta}=\frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}+\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\left(\theta-\theta^{*}\right) .
$$

Solving the above equation with respect to θ ，we obtain the following：

$$
\theta=\theta^{*}-\left(\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}
$$

Replace the variables as follows：

$$
\theta \longrightarrow \theta^{(i+1)}
$$

$$
\theta^{*} \longrightarrow \theta^{(i)}
$$

Then，we have：

$$
\theta^{(i+1)}=\theta^{(i)}-\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
$$

\Longrightarrow Newton－Raphson method（ニュートン・ラプソン法）
Replacing $\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}$ by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)$ ，we obtain the following op－ timization algorithm：

$$
\begin{aligned}
\theta^{(i+1)} & =\theta^{(i)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} \\
& =\theta^{(i)}+\left(I\left(\theta^{(i)}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
\end{aligned}
$$

\Longrightarrow Method of Scoring（スコア法）

9.1 MLE: The Case of Single Regression Model

The regression model:

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}
$$

1. $u_{i} \sim N\left(0, \sigma^{2}\right)$ is assumed.
2. The density function of u_{i} is:

$$
f\left(u_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} u_{i}^{2}\right)
$$

Because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independently distributed, the joint density function of $u_{1}, u_{2}, \cdots, u_{n}$ is written as:

$$
\begin{aligned}
f\left(u_{1}, u_{2}, \cdots, u_{n}\right) & =f\left(u_{1}\right) f\left(u_{2}\right) \cdots f\left(u_{n}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} u_{i}^{2}\right)
\end{aligned}
$$

3. Using the transformation of variable $\left(u_{i}=y_{i}-\beta_{1}-\beta_{2} x_{i}\right)$, the joint density function of $y_{1}, y_{2}, \cdots, y_{n}$ is given by:

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \cdots, y_{n}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}\right) \\
& \equiv L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

$L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the likelihood function.
$\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the log-likelihood function.

$$
\begin{aligned}
& \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right) \\
& \quad=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{t}-\beta_{1}-\beta_{2} x_{i}\right)^{2}
\end{aligned}
$$

4．Transformation of Variable（変数変換）— Review：

Suppose that the density function of a random variable X is $f_{x}(x)$ ．

Defining $X=g(Y)$ ，the density function of $Y, f_{y}(y)$ ，is given by：

$$
f_{y}(y)=f_{x}(g(y))\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right| .
$$

In the case where X and $g(Y)$ are $n \times 1$ vectors，$\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right|$ should be replaced by $\left|\frac{\partial g(y)}{\partial y^{\prime}}\right|$ ，which is an absolute value of a determinant of the matrix $\frac{\partial g(y)}{\partial y^{\prime}}$ ．

Example: When $X \sim U(0,1)$, derive the density function of $Y=-\log (X)$.

$$
f_{x}(x)=1
$$

$X=\exp (-Y)$ is obtained.

Therefore, the density function of $Y, f_{y}(y)$, is given by:

$$
f_{y}(y)=\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right| f_{x}(g(y))=|-\exp (-y)|=\exp (-y)
$$

5. Given the observed data $y_{1}, y_{2}, \cdots, y_{n}$, the likelihood function $L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}\right.$, $\left.y_{2}, \cdots, y_{n}\right)$, or the \log-likelihood function $\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is maximized with respect to $\left(\beta_{1}, \beta_{2}, \sigma^{2}\right)$.

Solve the following three simultaneous equations:

$$
\begin{aligned}
& \frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \beta_{1}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)=0 \\
& \frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \beta_{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right) x_{i}=0 \\
& \frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \sigma^{2}}=-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}=0 .
\end{aligned}
$$

The solutions of $\left(\beta_{1}, \beta_{2}, \sigma^{2}\right)$ are called the maximum likelihood estimates, denoted by $\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}, \tilde{\sigma}^{2}\right)$.

The maximum likelihood estimates are:
$\tilde{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \tilde{\beta}_{1}=\bar{y}-\tilde{\beta}_{2} \bar{x}, \quad \tilde{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{\beta}_{1}-\tilde{\beta}_{2} x_{i}\right)^{2}$.
The MLE of σ^{2} is divided by n, not $n-2$.

9.2 MLE: The Case of Multiple Regression Model I

1. Multivariate Normal Distribution: $\quad X: n \times 1$ and $X \sim N(\mu, \Sigma)$

The density function of X is:

$$
f(x)=(2 \pi)^{n / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) .
$$

2. Regression model: $y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I_{n}\right)$

Transformation of Variables from u to y :

$$
\begin{aligned}
& f_{u}(u)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} u^{\prime} u\right) \\
f_{y}(y)= & f_{u}(y-X \beta)\left|\frac{\partial u}{\partial y^{\prime}}\right| \\
= & \left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right) \\
= & L(\theta ; y, X),
\end{aligned}
$$

where $\theta=\left(\beta, \sigma^{2}\right)$, because of $\frac{\partial u}{\partial y^{\prime}}=I_{n}$.
Therefore, the log-likelihood function is:

$$
\log L(\theta ; y, X)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)
$$

Note that $|\Sigma|^{-1 / 2}=\left|\sigma^{2} I_{n}\right|^{-1 / 2}=\sigma^{-n / 2}$.
3. $\max \log L(\theta ; y, X)$
θ
(FOC) $\frac{\partial \log L(\theta ; y, X)}{\partial \theta}=0$
(SOC) $\frac{\partial^{2} \log L(\theta ; y, X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.

We obtain MLE of β and σ^{2} :

$$
\tilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y, \quad \tilde{\sigma}^{2}=\frac{(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})}{n}
$$

where $\tilde{\sigma}^{2}$ is divided by n, not $n-k$.
4. Fisher's information matrix is:

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; y, X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

The inverse of the information matrix, $I(\theta)^{-1}$, provides a lower bound of the variance - covariance matrix for unbiased estimators of θ.

$$
I(\theta)^{-1}=\left(\begin{array}{cc}
\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right)
$$

For large n, we approximately obtain: $\binom{\tilde{\beta}}{\tilde{\sigma}^{2}} \sim N\left(\binom{\beta}{\sigma^{2}},\left(\begin{array}{cc}\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\ 0 & \frac{2 \sigma^{4}}{n}\end{array}\right)\right)$.

