1. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ.
As n goes to infinity, we have the following result:

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

where it is assumed that $\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)$ converges.
That is, when n is large, $\tilde{\theta}$ is approximately distributed as follows:

$$
\tilde{\theta} \sim N\left(\theta,(I(\theta))^{-1}\right) .
$$

Suppose that $s(X)=\tilde{\theta}$.
When n is large, $\mathrm{V}(s(X))$ is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$
\tilde{\theta} \sim N\left(\theta,(I(\tilde{\theta}))^{-1}\right) .
$$

Then, we can obtain the significance test and the confidence interval for θ
2. Central Limit Theorem: Let $X_{1}, X_{2}, \cdots, X_{n}$ be mutually independently distributed random variables with mean $\mathrm{E}\left(X_{i}\right)=\mu$ and variance $\mathrm{V}\left(X_{i}\right)=\sigma^{2}<\infty$ for $i=1,2, \cdots, n$.

Define $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$.
Then, the central limit theorem is given by:

$$
\frac{\bar{X}-\mathrm{E}(\bar{X})}{\sqrt{\mathrm{V}(\bar{X})}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

Note that $\mathrm{E}(\bar{X})=\mu$ and $\mathrm{V}(\bar{X})=\sigma^{2} / n$.

That is,

$$
\sqrt{n}(\bar{X}-\mu)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N\left(0, \sigma^{2}\right)
$$

Note that $\mathrm{E}(\bar{X})=\mu$ and $n \mathrm{~V}(\bar{X})=\sigma^{2}$.

In the case where X_{i} is a vector of random variable with mean μ and variance $\Sigma<\infty$, the central limit theorem is given by:

$$
\sqrt{n}(\bar{X}-\mu)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

Note that $\mathrm{E}(\bar{X})=\mu$ and $n \mathrm{~V}(\bar{X})=\Sigma$.
3. Central Limit Theorem II: Let $X_{1}, X_{2}, \cdots, X_{n}$ be mutually independently distributed random variables with mean $\mathrm{E}\left(X_{i}\right)=\mu$ and variance $\mathrm{V}\left(X_{i}\right)=\sigma_{i}^{2}$ for $i=1,2, \cdots, n$.

Assume:

$$
\sigma^{2}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}<\infty .
$$

Define $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$.

The central limit theorem is given by:

$$
\sqrt{n}(\bar{X}-\mu)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N\left(0, \sigma^{2}\right) .
$$

Note that $\mathrm{E}(\bar{X})=\mu$ and $n \mathrm{~V}(\bar{X}) \longrightarrow \sigma^{2}$.

In the case where X_{i} is a vector of random variable with mean μ and variance Σ_{i} ，the central limit theorem is given by：

$$
\sqrt{n}(\bar{X}-\mu)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

where $\Sigma=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_{i}<\infty$ ．
Note that $\mathrm{E}(\bar{X})=\mu$ and $n \mathrm{~V}(\bar{X}) \longrightarrow \Sigma$ ．

［Review of Asymptotic Theories］

－Convergence in Probability（確率収束）$X_{n} \longrightarrow a$ ，i．e．，X converges in probability to a ，where a is a fixed number．
－Convergence in Distribution（分布収束）$X_{n} \longrightarrow X$ ，i．e．，X converges in distribution to X ．The distribution of X_{n} converges to the distribution of X as n goes to infinity．

Some Formulas

X_{n} and Y_{n} ：Convergence in Probability
Z_{n} ：Convergence in Distribution
－If $X_{n} \longrightarrow a$ ，then $f\left(X_{n}\right) \longrightarrow f(a)$ ．
－If $X_{n} \longrightarrow a$ and $Y_{n} \longrightarrow b$ ，then $f\left(X_{n} Y_{n}\right) \longrightarrow f(a b)$ ．
－If $X_{n} \longrightarrow a$ and $Z_{n} \longrightarrow Z$ ，then $X_{n} Z_{n} \longrightarrow a Z$ ，i．e．，$a Z$ is distributed with mean $\mathrm{E}(a Z)=a \mathrm{E}(Z)$ and variance $\mathrm{V}(a Z)=a^{2} \mathrm{~V}(Z)$ ．
［End of Review］

4. Asymptotic Normality of MLE - Proof:

The density (or probability) function of X_{i} is given by $f\left(x_{i} ; \theta\right)$.
The likelihood function is: $L(\theta ; x) \equiv f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$, where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

MLE of θ results in the following maximization problem:

$$
\max _{\theta} \log L(\theta ; x)
$$

A solution of the above problem is given by MLE of θ, denoted by $\tilde{\theta}$.
That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$
\frac{\partial \log L(\theta ; x)}{\partial \theta}=\sum_{i=1}^{n} \frac{\partial \log f\left(x_{i} ; \theta\right)}{\partial \theta}=0 .
$$

Replacing x_{i} by the underlying random variable $X_{i}, \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}$ is taken as the i th random variable, i.e., X_{i} in the Central Limit Theorem II.

Consider applying Central Limit Theorem II.

In this case, we need the following expectation and variance:

$$
\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right) \quad \text { and } \quad \mathrm{V}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)
$$

Defining the variance:

$$
\mathrm{V}\left(\frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\Sigma_{i}
$$

we can rewrite the information matrix as follows:

$$
\begin{aligned}
I(\theta) & =\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right) \\
& =\sum_{i=1}^{n} \mathrm{~V}\left(\frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\sum_{i=1}^{n} \Sigma_{i}
\end{aligned}
$$

The third equality holds when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independent.

Note that $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$ and $\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=I(\theta)$.

$$
\begin{gathered}
\frac{1}{n} \frac{\partial \log L(\theta ; X)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \\
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}-\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)\right) \rightarrow N(0, \Sigma),
\end{gathered}
$$

where

$$
\begin{aligned}
& n \mathrm{~V}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\frac{1}{n} \mathrm{~V}\left(\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\frac{1}{n} \mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
= & \frac{1}{n} I(\theta) \longrightarrow \Sigma
\end{aligned}
$$

That is,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta} \longrightarrow N(0, \Sigma),
$$

where $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.

Now, consider replacing θ by $\tilde{\theta}$, i.e.,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta} ; X)}{\partial \theta},
$$

which is expanded around $\tilde{\theta}=\theta$ as follows:

$$
0=\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta} ; X)}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}+\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta) .
$$

Therefore,

$$
\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta) \approx-\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta} \longrightarrow N(0, \Sigma) .
$$

The left-hand side is rewritten as:

$$
\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}=\sqrt{n} \frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta) .
$$

Then,

$$
\begin{aligned}
\sqrt{n}(\tilde{\theta}-\theta) & \approx-\left(\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \longrightarrow N\left(0, \Sigma^{-1} \Sigma \Sigma^{-1}\right)=N\left(0, \Sigma^{-1}\right) .
\end{aligned}
$$

Note that

$$
\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}} \longrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\Sigma
$$

and $\left(\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$ has the same asymptotic distribution as $\Sigma^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$.

Exam－Aug．4， 2016 （AM8：50－10：20）

－60－70\％from two homeworks including optional an additional questions（2 つの宿題から 60－70\％）
－30－40\％of new questions（30－40\％の新しい問題）
－Questions are written in English，and answers should be in English or Japanese． （出題は英語，解答は英語または日本語）
－With no carrying in（持ち込みなし）

