
Econometrics I
(Thur., 8:50-10:20)

Room # 4 (法経講義棟)

• The prerequisite of this class is Basic Statistics (統計基礎) (by Prof. Fukushige,

Tue., 16:20-17:50, this semester) and Econometrics (エコノメトリックス) (under-

graduate level, next semester,『計量経済学』山本拓著，新世社).

• The class of Special Lectures in Economics (Statistical Analysis), 経済学特論

（統計解析） (by Prof. Oya, Wed., 10:30-12:00, this semester) should be registered.
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TA Session (by Mr. Yonekura and Mr.

Sakamoto):
Tue., 14:40 - 16:10

Room # 505 (法経大学院総合研究棟)

Content: Basic Statistics, Matrix Algebra, and etc.
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1 Regression Analysis (回帰分析)

1.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

yi = β1 + β2xi + ui, (1)

for i = 1, 2, · · · , n. xi and yi denote the ith observations.

−→ Single (or simple) regression model (単回帰モデル)

yi is called the dependent variable (従属変数) or the explained variable (被説明変

数), while xi is known as the independent variable (独立変数) or the explanatory

(or explaining) variable (説明変数).
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β1 = Intercept (切片), β2 = Slope (傾き)

β1 and β2 are unknown parameters (パラメータ，母数) to be estimated.

β1 and β2 are called the regression coefficients (回帰係数).

ui is the unobserved error term (誤差項) assumed to be a random variable with mean

zero and variance σ2.

σ2 is also a parameter to be estimated.

xi is assumed to be nonstochastic (非確率的), but yi is stochastic (確率的) because

yi depends on the error ui.

The error terms u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed, which is called iid. −→ discussed later.

It is assumed that ui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation of yi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi, (2)

for i = 1, 2, · · · , n. Using E(yi) we can rewrite (1) as yi = E(yi) + ui.

(2) represents the true regression line.

Let β̂1 and β̂2 be estimates of β1 and β2.

Replacing β1 and β2 by β̂1 and β̂2, (1) turns out to be:

yi = β̂1 + β̂2xi + ei, (3)

for i = 1, 2, · · · , n, where ei is called the residual (残差).

The residual ei is taken as the experimental value (or realization) of ui.
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We define ŷi as follows:

ŷi = β̂1 + β̂2xi, (4)

for i = 1, 2, · · · , n, which is interpreted as the predicted value (予測値) of yi.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ŷi we can rewrite (3) as yi = ŷi + ei.

(2) and (4) are displayed in Figure 1.

Consider the case of n = 6 for simplicity. × indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated re-

gression line (4) is drawn with the dotted line.

Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.
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Figure 1. True and Estimated Regression Lines (回帰直線)
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In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1 and

β̂2.
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1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (1), we consider estimating β1 and β2.

Replacing β1 and β2 by their estimates β̂1 and β̂2, remember that the residual ei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi.

The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =
n∑

i=1

e2
i =

n∑
i=1

(yi − β̂1 − β̂2xi)2.

It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared

residuals, i.e., S (β̂1, β̂2).

This method is called the ordinary least squares estimation (最小二乗法，OLS).
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To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial derivatives equal

to zero:

∂S (β̂1, β̂2)
∂β̂1

= −2
n∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S (β̂1, β̂2)
∂β̂2

= −2
n∑

i=1

xi(yi − β̂1 − β̂2xi) = 0.

The second order condition for minimization is:( ∂2S (β̂1,β̂2)
∂β̂2

1

∂2S (β̂1,β̂2)
∂β̂1∂β̂2

∂2S (β̂1,β̂2)
∂β̂2∂β̂1

∂2S (β̂1,β̂2)
∂β̂2

2

)
=

( 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

)
should be a positive definite matrix.

The diagonal elements 2n and 2
∑n

i=1 x2
i are positive.

The determinant:∣∣∣∣∣∣ 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

∣∣∣∣∣∣ = 4n
n∑

i=1

x2
i − 4(

n∑
i=1

xi)2 = 4n
n∑

i=1

(xi − x)2
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is positive. =⇒ The second-order condition is satisfied.

The first two equations yield the following two equations:

y = β̂1 + β̂2x, (5)
n∑

i=1

xiyi = nxβ̂1 + β̂2

n∑
i=1

x2
i , (6)

where y =
1
n

n∑
i=1

yi and x =
1
n

n∑
i=1

xi.

Multiplying (5) by nx and subtracting (6), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy∑n
i=1 x2

i − nx2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 . (7)

From (5), β̂1 is directly obtained as follows:

β̂1 = y − β̂2x. (8)
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When the observed values are taken for yi and xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares

estimates,最小二乗推定値) of β1 and β2.

When yi for i = 1, 2, · · · , n are regarded as the random sample, we say that β̂1 and β̂2

are called the ordinary least squares estimators (or the least squares estimators,

最小二乗推定量) of β1 and β2.

1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 =

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2 −

y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑
i=1

xi − x∑n
i=1(xi − x)2 yi =

n∑
i=1

ωiyi. (9)
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In the third equality,
n∑

i=1

(xi − x) = 0 is utilized because of x =
1
n

n∑
i=1

xi.

In the fourth equality, ωi is defined as: ωi =
xi − x∑n

i=1(xi − x)2 .

ωi is nonstochastic because xi is assumed to be nonstochastic.

ωi has the following properties:

n∑
i=1

ωi =

n∑
i=1

xi − x∑n
i=1(xi − x)2 =

∑n
i=1(xi − x)∑n

i=1(xi − x)2 = 0, (10)

n∑
i=1

ωixi =

n∑
i=1

ωi(xi − x) =
∑n

i=1(xi − x)2∑n
i=1(xi − x)2 = 1, (11)

n∑
i=1

ω2
i =

n∑
i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2(∑n

i=1(xi − x)2
)2 =

1∑n
i=1(xi − x)2 . (12)

The first equality of (11) comes from (10).
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From now on, we focus only on β̂2, because usually β2 is more important than β1 in

the regression model (1).

In order to obtain the properties of the least squares estimator β̂2, we rewrite (9) as:

β̂2 =

n∑
i=1

ωiyi =

n∑
i=1

ωi(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωixi +

n∑
i=1

ωiui = β2 +

n∑
i=1

ωiui. (13)

In the fourth equality of (13), (10) and (11) are utilized.
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[Review] Random Variables:

Let X1, X2, · · ·, Xn be n random variavles, which are mutually independently and

identically distributed.

mutually independent =⇒ f (xi, x j) = fi(xi) f j(x j) for i , j.

f (xi, x j) denotes a joint distribution of Xi and X j.

fi(x) indicates a marginal distribution of Xi.

identical =⇒ fi(x) = f j(x) for i , j.

[End of Review]

14



[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

• E(g(X)) =
∫

g(x) f (x)dx for a function g(·) and a density function f (·).

• V(X) = E((X − µ)2) =
∫

(x − µ)2 f (x)dx for µ = E(X).

• E(aX + b) = aE(X) + b and V(aX + b) = V(aX) = a2V(X) for constant a and b.

• E(X ± Y) = E(X) ± E(Y) and V(X ± Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and variance σ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (13), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑
i=1

ωiui) = β2 + E(
n∑

i=1

ωiui) = β2 +

n∑
i=1

ωiE(ui) = β2. (14)

It is shown from (14) that the ordinary least squares estimator β̂2 is an unbiased

estimator of β2.

From (13), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n∑
i=1

ωiui) = V(
n∑

i=1

ωiui) =
n∑

i=1

V(ωiui) =
n∑

i=1

ω2
i V(ui)
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= σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)2 . (15)

The third equality holds because u1, u2, · · ·, un are mutually independent.

The last equality comes from (12).

Thus, E(β̂2) and V(β̂2) are given by (14) and (15).
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[Review] Three Good Properties on Estimator:

θ : Parameter

θ̂ : Estimator of θ, i.e., θ̂ = θ̂(X1, X2, · · · , Xn),

where X1, X2, · · · , Xn are mutually independent random variables.

(*) Estimate of θ: θ̂ = θ̂(x1, x2, · · · , xn), where xi denotes the observed data of Xi.

• Unbiasedness (不偏性): E(θ̂) = θ.

• Efficiency (有効性):

The minimum variance estimator within all the unbiased estimators.

(*) It is not easy to check efficiency in general. Instead, consider the best linear

unbiased estimator (BLUE,最良線型不偏推定量).

• Consistency (一致性): θ̂ −→ θ as n −→ ∞. Note that θ̂ depends on # of obs.

[End of Review]
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Gauss-Markov Theorem (ガウス・マルコフ定理): It has been discussed above

that β̂2 is represented as (9), which implies that β̂2 is a linear estimator, i.e., linear in

yi.

In addition, (14) indicates that β̂2 is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that β̂2 is a linear unbiased

estimator (線形不偏推定量).

Furthermore, here we show that β̂2 has minimum variance within a class of the linear

unbiased estimators.

Consider the alternative linear unbiased estimator β̃2 as follows:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)yi,

where ci = ωi + di is defined and di is nonstochastic.
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Then, β̃2 is transformed into:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωixi +

n∑
i=1

ωiui + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

diui

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

ωiui +

n∑
i=1

diui.

Equations (10) and (11) are used in the forth equality.

Taking the expectation on both sides of the above equation, we obtain:

E(β̃2) = β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi +

n∑
i=1

ωiE(ui) +
n∑

i=1

diE(ui)

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

dixi.

Note that di is not a random variable and that E(ui) = 0.
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Since β̃2 is assumed to be unbiased, we need the following conditions:

n∑
i=1

di = 0,
n∑

i=1

dixi = 0.

When these conditions hold, we can rewrite β̃2 as:

β̃2 = β2 +

n∑
i=1

(ωi + di)ui.

The variance of β̃2 is derived as:

V(β̃2) = V
(
β2 +

n∑
i=1

(ωi + di)ui

)
= V

( n∑
i=1

(ωi + di)ui

)
=

n∑
i=1

V
(
(ωi + di)ui

)
=

n∑
i=1

(ωi + di)2V(ui) = σ2(
n∑

i=1

ω2
i + 2

n∑
i=1

ωidi +

n∑
i=1

d2
i )

= σ2(
n∑

i=1

ω2
i +

n∑
i=1

d2
i ).
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From unbiasedness of β̃2, using
∑n

i=1 di = 0 and
∑n

i=1 dixi = 0, we obtain:

n∑
i=1

ωidi =

∑n
i=1(xi − x)di∑n
i=1(xi − x)2 =

∑n
i=1 xidi − x

∑n
i=1 di∑n

i=1(xi − x)2 = 0,

which is utilized to obtain the variance of β̃2 in the third line of the above equation.

From (15), the variance of β̂2 is given by: V(β̂2) = σ2 ∑n
i=1 ω

2
i .

Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i ≥ 0.

When
∑n

i=1 d2
i = 0, i.e., when d1 = d2 = · · · = dn = 0,

we have the equality: V(β̃2) = V(β̂2).

Thus, in the case of d1 = d2 = · · · = dn = 0, β̂2 is equivalent to β̃2.

22



As shown above, the least squares estimator β̂2 gives us the minimum variance lin-

ear unbiased estimator (最小分散線形不偏推定量), or equivalently the best linear

unbiased estimator (最良線形不偏推定量，BLUE), which is called the Gauss-

Markov theorem (ガウス・マルコフ定理).
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Asymptotic Properties (
ぜん

漸
きん

近的性質) of β̂2: We assume that as n goes to infinity

we have the following:
1
n

n∑
i=1

(xi − x)2 −→ m < ∞,

where m is a constant value. From (12), we obtain:

n
n∑

i=1

ω2
i =

1
(1/n)

∑n
i=1(xi − x)

−→ 1
m
.

Note that f (xn) −→ f (m) when xn −→ m, called Slutsky’s theorem (スルツキー

定理), where m is a constant value and f (·) is a function.

We show both consistency (一致性) of β̂2 and asymptotic normality (漸近正規性)

of
√

n(β̂2 − β2).
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● First, we prove that β̂2 is a consistent estimator of β2.

[Review] Chebyshev’s inequality (チェビシェフの不等式) is given by:

P(|X − µ| > ε) ≤ σ
2

ε2
, where µ = E(X), σ2 = V(X) and any ε > 0.

[End of Review]

Replace X, E(X) and V(X) by:

β̂2, E(β̂2) = β2, and V(β̂2) = σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)

.

Then, when n −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2 ∑n

i=1 ω
2
i

ε2
=
σ2n

∑n
i=1 ω

2
i

nε2
−→ 0,

where
∑n

i=1 ω
2
i −→ 0 because n

∑n
i=1 ω

2
i −→

1
m

from the assumption.

Thus, we obtain the result that β̂2 −→ β2 as n −→ ∞.

Therefore, we can conclude that β̂2 is a consistent estimator (一致推定量) of β2.
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● Next, we want to show that
√

n(β̂2 − β2) is asymptotically normal.

[Review] The Central Limit Theorem (中心極限定理, CLT) is: for random vari-

ables X1, X2, · · ·, Xn,

X − E(X)√
V(X)

=

∑n
i=1 Xi − E(

∑n
i=1 Xi)√

V(
∑n

i=1 Xi)
−→ N(0, 1), as n −→ ∞,

where X =
1
n

n∑
i=1

Xi.

X1, X2, · · ·, Xn are not necesarily iid, if V(X) is finite as n goes to infinity.

[End of Review]
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Note that β̂2 = β2 +
∑n

i=1 ωiui as in (13), and Xi is replaced by ωiui.

From the central limit theorem, asymptotic normality is shown as follows:∑n
i=1 ωiui − E(

∑n
i=1 ωiui)√

V(
∑n

i=1 ωiui)
=

∑n
i=1 ωiui

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
−→ N(0, 1),

where

• E(
∑n

i=1 ωiui) = 0,

• V(
∑n

i=1 ωiui) = σ2 ∑n
i=1 ω

2
i , and

• ∑n
i=1 ωiui = β̂2 − β2

are substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

β̂2 − β2

σ/
√∑n

i=1(xi − x)2
=

√
n(β̂2 − β2)

σ/
√

(1/n)
∑n

i=1(xi − x)2
.

Replacing (1/n)
∑n

i=1(xi − x)2 by its converged value m, we have:
√

n(β̂2 − β2)
σ/
√

m
−→ N(0, 1),

which implies
√

n(β̂2 − β2) −→ N(0,
σ2

m
).

Thus, the asymptotic normality of
√

n(β̂2 − β2) is shown.
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Finally, replacing σ2 by its consistent estimator s2, it is known as follows:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
−→ N(0, 1), (16)

where s2 is defined as:

s2 =
1

n − 2

n∑
i=1

e2
i =

1
n − 2

n∑
i=1

(yi − β̂1 − β̂2xi)2, (17)

which is a consistent and unbiased estimator of σ2. −→ Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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[Review] Confidence Interval (信頼区間，区間推定)):

Suppose X1, X2, · · · , Xn are iid with mean µ and variance σ2. −→ No N assumption

From CLT,
X − E(X)√

V(X)
=

X − µ
σ/
√

n
−→ N(0, 1).

Replacing σ2 by S 2 =
1

n − 1

n∑
i=1

(Xi − X)2, we have:
X − µ
S/
√

n
−→ N(0, 1).

That is, for large n,

P
(
−1.96 <

X − µ
S/
√

n
< 1.96

)
= 0.95, i.e., P

(
X − 1.96

S
√

n
< µ < X + 1.96

S
√

n

)
= 0.95.

Note that 1.96 is obtained from the normal distribution table.

Then, replacing the estimators X and S 2 by the estimates x and s2, we obtain the 95%

confidence interval of µ as follows:

(x − 1.96
s
√

n
, x + 1.96

s
√

n
).

[End of Review]
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Going back to OLS, we have:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
−→ N(0, 1).

Therefore,

P
(
−2.576 <

β̂2 − β2

s/
√∑n

i=1(xi − x)2
< 2.576

)
= 0.99,

i.e.,

P
(
β̂2 − 2.576

s√∑n
i=1(xi − x)2

< β2 < β̂2 + 2.576
s√∑n

i=1(xi − x)2

)
= 0.99.

Note that 2.576 is 0.005 value of N(0, 1), which comes from the statistical table.

Thus, the 99% confidence interval of β2 is:(
β̂2 − 2.576

s√∑n
i=1(xi − x)2

, β̂2 + 2.576
s√∑n

i=1(xi − x)2

)
,

where β̂2 and s2 should be replaced by the observed data.
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[Review] Testing the Hypothesis (仮説検定):

Suppose that X1, X2, · · · , Xn are iid with mean µ and variance σ2.

From CLT,
X − µ
S/
√

n
−→ N(0, 1), where S 2 =

1
n − 1

n∑
i=1

(Xi − X)2, which is known as

the unbiased estimator of σ2.

• The null hypothesis H0 : µ = µ0, where µ0 is a fixed number.

• The alternative hypothesis H1 : µ , µ0

Under the null hypothesis, in large sample we have the following disribution:

X − µ0

S/
√

n
∼ N(0, 1).

Replacing X and S 2 by x and s2, compare
x − µ0

s/
√

n
and N(0, 1).

H0 is rejected at significance level 0.05 when
∣∣∣∣ x − µ0

s/
√

n

∣∣∣∣ > 1.96.

[End of Review]
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In the case of OLS, the hypotheses are as follows:

• The null hypothesis H0 : β2 = β
∗
2

• The alternative hypothesis H1 : β2 , β∗2

Under H0, in large sample,

β̂2 − β∗2
s/

√∑n
i=1(xi − x)2

∼ N(0, 1).

Replacing β̂2 and s2 by the observed data, compare
β̂2 − β∗2

s/
√∑n

i=1(xi − x)2
and N(0, 1).

H0 is rejected at significance level 0.05 when
∣∣∣∣ β̂2 − β∗2
s/

√∑n
i=1(xi − x)2

∣∣∣∣ > 1.96.
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Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2 − β2),

which is one of the large sample properties.

Now, we discuss the small sample properties of β̂2.

In order to obtain the distribution of β̂2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is that ui ∼ N(0, σ2).

Writing (13), again, β̂2 is represented as:

β̂2 = β2 +

n∑
i=1

ωiui.

First, we obtain the distribution of the second term in the above equation.
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[Review]　Content of Special Lectures in Economics (Statistical Analysis)

Note that the moment-generating function (積率母関数, MGF) is given by M(θ) ≡

E(exp(θX)) = exp(µθ + 1
2σ

2θ2) when X ∼ N(µ, σ2).

X1, X2, · · ·, Xn are mutually independently distributed as Xi ∼ N(µi, σ
2
i ) for i =

1, 2, · · · , n.

MGF of Xi is Mi(θ) ≡ E(exp(θXi)) = exp(µiθ +
1
2σ

2
i θ

2).

Consider the distribution of Y =
∑n

i=1(ai + biXi), where ai and bi are constant.

My(θ) ≡ E(exp(θY)) = E(exp(θ
∑n

i=1(ai + biXi)))

=
∏n

i=1 exp(θai)E(exp(θbiXi)) =
∏n

i=1 exp(θai)Mi(θbi)

=
∏n

i=1 exp(θai) exp(µiθbi+
1
2σ

2
i (θbi)2) = exp(θ

∑n
i=1(ai+biµi)+ 1

2θ
2 ∑n

i=1 b2
iσ

2
i ),

which implies that Y ∼ N(
∑n

i=1(ai + biµi),
∑n

i=1 b2
iσ

2
i ).

[End of Review]
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Substitute ai = 0, µi = 0, bi = ωi and σ2
i = σ

2.

Then, using the moment-generating function,
∑n

i=1 ωiui is distributed as:

n∑
i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ).

Therefore, β̂2 is distributed as:

β̂2 = β2 +

n∑
i=1

ωiui ∼ N(β2, σ
2

n∑
i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
∼ N(0, 1),

for any n.
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[Review 1]　 t Distribution:

Z ∼ N(0, 1), V ∼ χ2(k), and Z is independent of V . Then,
Z
√

V/k
∼ t(k).

[End of Review 1]

[Review 2]　 t Distribution:

Suppose that X1, X2. · · · , Xn are mutually independently, identically and normally dis-

tributed with mean µ and variance σ2.

X ∼ N(µ, σ2/n), i.e.,
X − µ
σ/
√

n
∼ N(0, 1).

Define S 2 =
1

n − 1

n∑
i=1

(Xi − X)2, which is an unbiased estimator of σ2.

It is known that
(n − 1)S 2

σ2 ∼ χ2(n − 1) and X is independesnt of S 2. (The proof is

skipped.)
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Then, we obtain

X − µ
σ/
√

n√√√√√ (n − 1)S 2

σ2

/
(n − 1)

=
X − µ
S/
√

n
∼ t(n − 1).

As a result, replacing σ2 by S 2,
X − µ
S/
√

n
∼ t(n − 1).

[End of Review 2]
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Back to OLS:

Replacing σ2 by its estimator s2 defined in (17), it is known that we have:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
∼ t(n − 2),

where t(n − 2) denotes t distribution with n − 2 degrees of freedom.

Thus, under normality assumption on the error term ui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√∑n

i=1(xi − x)2

)2
∼ F(1, n − 2),

which will be proved later.

Before going to multiple regression model (重回帰モデル),
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2 Some Formulas of Matrix Algebra

1. Let A =


a11 a12 · · · a1k

a21 a22 · · · a2k

...
...
. . .

...

al1 al2 · · · alk


= [ai j],

which is a l × k matrix, where ai j denotes ith row and jth column of A.

The transposed matrix (転置行列) of A, denoted by A′, is defined as:

A′ =


a11 a21 · · · al1

a12 a22 · · · al2
...

...
. . .

...

a1k a2k · · · alk


= [a ji],

where the ith row of A′ is the ith column of A.
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2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.

3. a′ = a,

where a denotes a scalar.

4.
∂a′x
∂x
= a,

where a and x are k × 1 vectors.

5.
∂x′Ax
∂x

= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.

Especially, when A is symmetric,

∂x′Ax
∂x

= 2Ax.
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6. Let A and B be k × k matrices, and Ik be a k × k identity matrix (単位行列)

(one in the diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse matrix (逆行列) of A, denoted by

B = A−1.

That is, AA−1 = A−1A = Ik.

7. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix (正値定符号行列), for any x except for x = 0

we have:

x′Ax > 0.

If A is a positive semidefinite matrix (非負値定符号行列), for any x except

for x = 0 we have:

x′Ax ≥ 0.
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If A is a negative definite matrix (負値定符号行列), for any x except for x = 0

we have:

x′Ax < 0.

If A is a negative semidefinite matrix (非正値定符号行列), for any x except

for x = 0 we have:

x′Ax ≤ 0.

Trace, Rank and etc.: A : k × k, B : n × k, C : k × n.

1. The trace (トレース) of A is: tr(A) =
k∑

i=1

aii, where A = [ai j] .

2. The rank (ランク，階数) of A is the maximum number of linearly independent

column (or row) vectors of A, which is denoted by rank(A).
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3. If A is an idempotent matrix (べき等行列), A = A2 .

4. If A is an idempotent and symmetric matrix, A = A2 = A′A .

5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

7. tr(BC) =tr(CB)

Distributions in Matrix Form:

1. Let X, µ and Σ be k × 1, k × 1 and k × k matrices.

When X ∼ N(µ,Σ), the density function of X is given by:

f (x) =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x − µ)′Σ−1(x − µ)

)
.
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E(X) = µ and V(X) = E
(
(X − µ)(X − µ)′

)
= Σ

The moment-generating function: φ(θ) = E
(
exp(θ′X)

)
= exp(θ′µ + 1

2θ
′Σθ)

(*) In the univariate case, when X ∼ N(µ, σ2), the density function of X is:

f (x) =
1

(2πσ2)1/2 exp
(
− 1

2σ2 (x − µ)2
)
.

2. If X ∼ N(µ,Σ), then (X − µ)′Σ−1(X − µ) ∼ χ2(k).

Note that X′X ∼ χ2(k) when X ∼ N(0, Ik).

3. X: n × 1, Y: m × 1, X ∼ N(µx,Σx), Y ∼ N(µy,Σy)

X is independent of Y , i.e., E
(
(X − µx)(Y − µy)′

)
= 0 in the case of normal

random variables.

(X − µx)′Σ−1
x (X − µx)/n

(Y − µy)′Σ−1
y (Y − µy)/m

∼ F(n,m)
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4. If X ∼ N(0, σ2In) and A is a symmetric idempotent n×n matrix of rank G, then

X′AX/σ2 ∼ χ2(G).

Note that X′AX = (AX)′(AX) and rank(A) = tr(A) because A is idempotent.

5. If X ∼ N(0, σ2In), A and B are symmetric idempotent n × n matrices of rank G

and K, and AB = 0, then

X′AX
Gσ2

/X′BX
Kσ2 =

X′AX/G
X′BX/K

∼ F(G,K).
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3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e., xi, is taken into the regression model.

We extend it to more independent variables, which is called the multiple regression

model (重回帰モデル).

We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui = (xi,1, xi,2, · · · , xi,k)


β1

β2
...

βk


+ ui = xiβ + ui,

for i = 1, 2, · · · , n, where xi and β denote a 1 × k vector of the independent variables
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and a k × 1 vector of the unknown parameters to be estimated, which are given by:

xi = (xi,1, xi,2, · · · , xi,k), β =


β1

β2
...

βk


.

xi, j denotes the ith observation of the jth independent variable.

The case of k = 2 and xi,1 = 1 for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).

Writing all the equations for i = 1, 2, · · · , n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,

...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,
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which is rewritten as:
y1

y2
...

yn


=


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k




β1

β2
...

βk


+


u1

u2
...

un



=


x1

x2
...

xn


β +


u1

u2
...

un


.

Again, the above equation is compactly rewritten as:

y = Xβ + u, (18)
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where y, X and u are denoted by:

y =


y1

y2
...

yn


, X =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...

xn,1 xn,2 · · · xn,k


=


x1

x2
...

xn


, u =


u1

u2
...

un


.

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β,

denoted by β̂.

In (18), replacing β by β̂, we have the following equation:

y = Xβ̂ + e,

where e denotes a n × 1 vector of the residuals.

The ith element of e is given by ei.
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The sum of squared residuals is written as follows:

S (β̂) =
n∑

i=1

e2
i = e′e = (y − Xβ̂)′(y − Xβ̂) = (y′ − β̂′X′)(y − Xβ̂)

= y′y − y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂ = y′y − 2y′Xβ̂ + β̂′X′Xβ̂.

In the last equality, note that β̂′X′y = y′Xβ̂ because both are scalars.

To minimize S (β̂) with respect to β̂, we set the first derivative of S (β̂) equal to zero,

i.e.,

∂S (β̂)
∂β̂

= −2X′y + 2X′Xβ̂ = 0.

Solving the equation above with respect to β̂, the ordinary least squares estimator

(OLS,最小自乗推定量) of β is given by:

β̂ = (X′X)−1X′y. (19)

Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

∂2S (β̂)
∂β̂∂β̂′

= 2X′X

is a positive definite matrix.

Set c = Xd.

For any d , 0, we have c′c = d′X′Xd > 0.
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Now, in order to obtain the properties of β̂ such as mean, variance, distribution and

so on, (19) is rewritten as follows:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (20)

Taking the expectation on both sides of (20), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error term ui.

Thus, unbiasedness of β̂ is shown.
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The variance of β̂ is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)
= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

The first equality is the definition of variance in the case of vector.

In the fifth equality, E(uu′) = σ2In is used, which implies that E(u2
i ) = σ2 for all i and

E(uiu j) = 0 for i , j.

Remember that u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed with mean zero and variance σ2.
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Under normality assumption on the error term u, it is known that the distribution of

β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:

First, when X ∼ N(µ,Σ), the moment-generating function, i.e., φ(θ), is given by:

φ(θ) ≡ E
(
exp(θ′X)

)
= exp

(
θ′µ +

1
2
θ′Σθ

)
θu: n × 1, u: n × 1, θβ: k × 1, β̂: k × 1

The moment-generating function of u, i.e., φu(θu), is:

φu(θu) ≡ E
(
exp(θ′uu)

)
= exp

(σ2

2
θ′uθu

)
,

which is N(0, σ2In).
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The moment-generating function of β̂, i.e., φβ(θβ), is:

φβ(θβ) ≡ E
(
exp(θ′ββ̂)

)
= E

(
exp(θ′ββ + θ

′
β(X

′X)−1X′u)
)

= exp(θ′ββ)E
(
exp(θ′β(X

′X)−1X′u)
)
= exp(θ′ββ)φu

(
θ′β(X

′X)−1X′
)

= exp(θ′ββ) exp
(σ2

2
θ′β(X

′X)−1θβ
)
= exp

(
θ′ββ +

σ2

2
θ′β(X

′X)−1θβ
)
,

which is equivalent to the normal distribution with mean β and variance σ2(X′X)−1.

Note that θu = X(X′X)−1θβ. QED

56



Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s√a j j
∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom.

57



[Review] Trace (トレース):

1. A: n× n, tr(A) =
∑n

i=1 aii, where ai j denotes an element in the ith row and the

jth column of a matrix A.

2. a: scalar (1 × 1), tr(a) = a

3. A: n × k, B: k × n, tr(AB) = tr(BA)

4. tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

5. When X is a square matrix of random variables, E(tr(AX)) = tr(AE(X))

End of Review
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s2 is taken as follows:

s2 =
1

n − k

n∑
i=1

e2
i =

1
n − k

e′e =
1

n − k
(y − Xβ̂)′(y − Xβ̂),

which leads to an unbiased estimator of σ2.

Proof:

Substitute y = Xβ + u and β̂ = β + (X′X)−1X′u into e = y − Xβ̂.

e = y − Xβ̂ = Xβ + u − X(β + (X′X)−1X′u)

= u − X(X′X)−1X′u = (In − X(X′X)−1X′)u

In − X(X′X)−1X′ is idempotent and symmetric, because we have:

(In − X(X′X)−1X′)(In − X(X′X)−1X′) = In − X(X′X)−1X,′

(In − X(X′X)−1X′)′ = In − X(X′X)−1X′.

59



s2 is rewritten as follows:

s2 =
1

n − k
e′e =

1
n − k

((In − X(X′X)−1X′)u)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)u

Take the expectation of u′(In − X(X′X)−1X′)u and note that tr(a) = a for a scalar a.

E(s2) =
1

n − k
E
(
tr
(
u′(In − X(X′X)−1X′)u

))
=

1
n − k

E
(
tr
(
(In − X(X′X)−1X′)uu′

))
=

1
n − k

tr
(
(In − X(X′X)−1X′)E(uu′)

)
=

1
n − k

σ2tr
(
(In − X(X′X)−1X′)In

)
=

1
n − k

σ2tr(In − X(X′X)−1X′) =
1

n − k
σ2(tr(In) − tr(X(X′X)−1X′))

=
1

n − k
σ2(tr(In) − tr((X′X)−1X′X)) =

1
n − k

σ2(tr(In) − tr(Ik))

=
1

n − k
σ2(n − k) = σ2
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−→ s2 is an unbiased estimator of σ2.

Note that we do not need normality assumption for unbiasedness of s2.

[Review]

• X′X ∼ χ2(n) for X ∼ N(0, In).

• (X − µ)′Σ−1(X − µ) ∼ χ2(n) for X ∼ N(µ,Σ).

• X′X
σ2 ∼ χ

2(n) for X ∼ N(0, σ2In).

• X′AX
σ2 ∼ χ2(G), where X ∼ N(0, σ2In) and A is a symmetric idempotent n × n

matrix of rank G ≤ n.

Remember that G = Rank(A) = tr(A) when A is symmetric and idempotent.

[End of Review]
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Under normality assumption for u, the distribution of s2 is:

(n − k)s2

σ2 =
u′(In − X(X′X)−1X′)u

σ2 ∼ χ2(tr(In − X(X′X)−1X′))

Note that tr(In − X(X′X)−1X′) = n − k, because

tr(In) = n

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k
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Asymptotic Normality (without normality assumption on u): Using the central

limit theorem, without normality assumption we can show that as n −→ ∞, under the

condition of
1
n

X′X −→ M we have the following result:

β̂ j − β j

s√a j j
−→ N(0, 1),

where M denotes a k × k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the

t distribution under the normality assumption or the normal distribution without the

normality assumption.
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4 Properties of OLSE

1. Properties of β̂ : BLUE (best linear unbiased estimator，最良線形不偏推

定量), i.e., minimum variance within the class of linear unbiased estimators

(Gauss-Markov theorem，ガウス・マルコフの定理)

Proof:

Consider another linear unbiased estimator, which is denoted by β̃ = Cy.

β̃ = Cy = C(Xβ + u) = CXβ +Cu,

where C is a k × n matrix.

Taking the expectation of β̃, we obtain:

E(β̃) = CXβ +CE(u) = CXβ

Because we have assumed that β̃ = Cy is unbiased, E(β̃) = β holds.
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That is, we need the condition: CX = Ik.

Next, we obtain the variance of β̃ = Cy.

β̃ = C(Xβ + u) = β +Cu.

Therefore, we have:

V(β̃) = E((β̃ − β)(β̃ − β)′) = E(Cuu′C′) = σ2CC′

Defining C = D + (X′X)−1X′, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′.

Moreover, because β̂ is unbiased, we have the following:

CX = Ik = (D + (X′X)−1X′)X = DX + Ik.
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Therefore, we have the following condition:

DX = 0.

Accordingly, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′

= σ2(X′X)−1 + σ2DD′ = V(β̂) + σ2DD′

Thus, V(β̃) − V(β̂) is a positive definite matrix.

=⇒ V(β̃i) − V(β̂i) > 0

=⇒ β̂ is a minimum variance (i.e., best) linear unbiased estimator of β.
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Note as follows:

=⇒ A is positive definite when d′Ad > 0 except d = 0.

=⇒ The ith diagonal element of A, i.e., aii, is positive (choose d such that the

ith element of d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that U ∼ χ(n), V ∼ χ(m), and U is independent of V .

Then,
U/n
V/m

∼ F(n,m).

[End of Review]
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F Distribution (H0 : β = 0): Final Result in this Section:

(β̂ − β)X′X(β̂ − β)′/k
e′e/(n − k)

∼ F(k, n − k).

Consider the numerator and the denominator, separately.

1. If u ∼ N(0, σ2In), then β̂ ∼ N(β, σ2(X′X)−1) .

Therefore,
(β̂ − β)′X′X(β̂ − β)

σ2 ∼ χ2(k).

2. Proof:

Using β̂ − β = (X′X)−1X′u, we obtain:

(β̂ − β)′X′X(β̂ − β) = ((X′X)−1X′u)′X′X(X′X)−1X′u

= u′X(X′X)−1X′X(X′X)−1X′u = u′X(X′X)−1X′u
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Note that X(X′X)−1X′ is symmetric and idempotent, i.e., A′A = A.

u′X(X′X)−1X′u
σ2 ∼ χ2

(
tr(X(X′X)−1X′)

)
The degree of freedom is given by:

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

Therefore, we obtain:
u′X(X′X)−1X′u

σ2 ∼ χ2(k)

3. (*) Formula:

Suppose that X ∼ N(0, Ik).

If A is symmetric and idempotent, i.e., A′A = A, then X′AX ∼ χ2(tr(A)).

Here, X =
1
σ

u ∼ N(0, In) from u ∼ N(0, σ2In), and A = X(X′X)−1X′.
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4. Sum of Residuals: e is rewritten as:

e = (In − X(X′X)−1X′)u.

Therefore, the sum of residuals is given by:

e′e = u′(In − X(X′X)−1X′)u.

Note that In − X(X′X)−1X′ is symmetric and idempotent.

We obtain the following result:

e′e
σ2 =

u′(In − X(X′X)−1X′)u
σ2 ∼ χ2

(
tr(In − X(X′X)−1X′)

)
,

where the trace is:

tr(In − X(X′X)−1X′) = n − k.
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Therefore, we have the following result:

e′e
σ2 =

(n − k)s2

σ2 ∼ χ2(n − k),

where

s2 =
1

n − k
e′e.

5. We show that β̂ is independent of e.

Proof:

Because u ∼ N(0, σ2In), we show that Cov(e, β̂) = 0.

Cov(e, β̂) = E(e(β̂ − β)′) = E
(
(In − X(X′X)−1X′)u((X′X)−1X′u)′

)
= E

(
(In − X(X′X)−1X′)uu′X(X′X)−1

)
= (In − X(X′X)−1X′)E(uu′)X(X′X)−1

= (In − X(X′X)−1X′)(σ2In)X(X′X)−1 = σ2(In − X(X′X)−1X′)X(X′X)−1

= σ2(X(X′X)−1 − X(X′X)−1X′X(X′X)−1) = σ2(X(X′X)−1 − X(X′X)−1) = 0.
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β̂ is independent of e, because of normality assumption on u

[Review]

• Suppose that X is independent of Y . Then, Cov(X,Y) = 0. However,

Cov(X,Y) = 0 does not mean in general that X is independent of Y .

• In the case where X and Y are normal, Cov(X,Y) = 0 indicates that X is

independent of Y .

[End of Review]
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[Review] Formulas — F Distribution:

• U/n
V/m

∼ F(n,m) when U

simχ2(n), V ∼ χ2(m), and U is independent of V .

• When X ∼ N(0, In), A and B are n × n symmetric idempotent matrices,

Rank(A) = tr(A) = G, Rank(B) = tr(B) = K and AB = 0, then
X′AX/G
X′BX/K

∼

F(G,K).

Note that the covariance of AX and BX is zero, which implies that AX is inde-

pendent of BX under normality of X.

[End of Review]
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6. Therefore, we obtain the following distribution:

(β̂ − β)′X′X(β̂ − β)
σ2 =

u′X(X′X)−1X′u
σ2 ∼ χ2(k),

e′e
σ2 =

u′(In − X(X′X)−1X′)u
σ2 ∼ χ2(n − k)

β̂ is independent of e, because X(X′X)−1X′(In − X(X′X)−1X′) = 0.

Accordingly, we can derive:

(β̂ − β)′X′X(β̂ − β)
σ2

/
k

e′e
σ2

/
(n − k)

=
(β̂ − β)′X′X(β̂ − β)/k

s2 ∼ F(k, n − k)

Under the null hypothesis H0 : β = 0,
β̂′X′Xβ̂/k

s2 ∼ F(k, n − k).

Given data,
β̂′X′Xβ̂/k

s2 is compared with F(k, n − k).

If
β̂′X′Xβ̂/k

s2 is in tha tail of the F distribution, the null hypothesis is rejected.
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Coefficient of Determination (決定係数), R2:

1. Definition of the Coefficient of Determination, R2: R2 = 1 −
∑n

i=1 e2
i∑n

i=1(yi − y)2

2. Numerator:
n∑

i=1

e2
i = e′e

3. Denominator:
n∑

i=1

(yi − y)2 = y′(In −
1
n

ii′)′(In −
1
n

ii′)y = y′(In −
1
n

ii′)y

(*) Remark 
y1 − y

y2 − y
...

yn − y


=


y1

y2
...

yn


−


y

y
...

y


= y − 1

n
ii′y = (In −

1
n

ii′)y,

where i = (1, 1, · · · , 1)′.
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4. In a matrix form, we can rewrite as: R2 = 1 − e′e
y′(In − 1

n ii′)y

F Distribution and Coefficient of Determination:

=⇒ This will be discussed later.
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Testing Linear Restrictions (F Distribution):

1. If u ∼ N(0, σ2In), then β̂ ∼ N(β, σ2(X′X)−1) .

Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rβ̂ ∼ N(Rβ, σ2R(X′X)−1R′).

Therefore,
(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

σ2 ∼ χ2(G).

Note that Rβ = r .

(a) When β̂ ∼ N(β, σ2(X′X)−1), the mean of Rβ̂ is:

E(Rβ̂) = RE(β̂) = Rβ.

(b) When β̂ ∼ N(β, σ2(X′X)−1), the variance of Rβ̂ is:
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V(Rβ̂) = E((Rβ̂ − Rβ)(Rβ̂ − Rβ)′) = E(R(β̂ − β)(β̂ − β)′R′)

= RE((β̂ − β)(β̂ − β)′)R′ = RV(β̂)R′ = σ2R(X′X)−1R′.

2. We know that
(n − k)s2

σ2 =
e′e
σ2 =

(y − Xβ̂)′(y − Xβ̂)
σ2 ∼ χ2(n − k).

3. Under normality assumption on u, β̂ is independent of e.

4. Therefore, we have the following distribution:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G
(y − Xβ̂)′(y − Xβ̂)/(n − k)

∼ F(G, n − k)
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5. Some Examples:

(a) t Test:

The case of G = 1, r = 0 and R = (0, · · · , 1, · · · , 0) (the ith element of R

is one and the other elements are zero):

The test of H0 : βi = 0 is given by:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G
s2 =

β̂2
i

s2aii
∼ F(1, n − k),

where s2 = e′e/(n − k), Rβ̂ = β̂i and

aii = R(X′X)−1R′ = the i row and ith column of (X′X)−1.

*) Recall that Y ∼ F(1,m) when X ∼ t(m) and Y = X2.

Therefore, the test of H0 : βi = 0 is given by:

β̂i

s
√

aii
∼ t(n − k).
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(b) Test of structural change (Part 1):

yi =

 xiβ1 + ui, i = 1, 2, · · · ,m

xiβ2 + ui, i = m + 1,m + 2, · · · , n

Assume that ui ∼ N(0, σ2).

In a matrix form, 

y1

y2
...

ym

ym+1

ym+2
...

yn



=



x1 0

x2 0
...

...

xm 0

0 xm+1

0 xm+2
...

...

0 xn



(
β1

β2

)
+



u1

u2
...

um

um+1

um+2
...

un
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Moreover, rewriting, ( Y1

Y2

)
=

( X1 0

0 X2

) (
β1

β2

)
+ u

Again, rewriting,

Y = Xβ + u

The null hypothesis is H0 : β1 = β2.

Apply the F test, using R = (Ik − Ik) and r = 0.

In this case, G = rank(R) = k and β is a 2k × 1 vector.

The distribution is F(k, n − 2k).

(c) The hypothesis in which sum of the 1st and 2nd coefficients is equal to

one:

R = (1, 1, 0, · · · , 0), r = 1
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In this case, G = rank(R) = 1

The distribution of the test statistic is F(1, n − k).

(d) Testing seasonality:

In the case of quarterly data (四半期データ), the regression model is:

y = α + α1D1 + α2D2 + α3D3 + Xβ0 + u

D j = 1 in the jth quarter and 0 otherwise, i.e., D j, j = 1, 2, 3, are sea-

sonal dummy variables.

Testing seasonality =⇒ H0 : α1 = α2 = α3 = 0

β =



α

α1

α2

α3

β0


, R =


0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

 , r =


0

0

0
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In this case, G = rank(R) = 3, and β is a k × 1 vector.

The distribution of the test statistic is F(3, n − k).

(e) Cobb-Douglas Production Function:

Let Qi, Ki and Li be production, capital stock and labor.

We estimate the following production function:

log(Qi) = β1 + β2 log(Ki) + β3 log(Li) + ui.

We test a linear homogeneous (一次同次) production function.

The null and alternative hypotheses are:

H0 : β2 + β3 = 1,

H1 : β2 + β3 , 1.

Then, set as follows:

R = ( 0 1 1 ) , r = 1.

83



(f) Test of structural change (Part 2):

Test the structural change between time periods m and m + 1.

In the case where both the constant term and the slope are changed, the

regression model is as follows:

yi = α + βxi + γdi + δdixi + ui,

where

di =

0, for i = 1, 2, · · · ,m,

1, for i = m + 1,m + 2, · · · , n.

We consider testing the structural change at time m + 1.

The null and alternative hypotheses are as follows:

H0 : γ = δ = 0,

H1 : γ , 0, or, δ , 0.
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Then, set as follows:

R =
( 0 0 1 0

0 0 0 1

)
, r =

( 0

0

)
(g) Multiple regression model:

Consider the case of two explanatory variables:

yi = α + βxi + γzi + ui.

We want to test the hypothesis that neither xi nor zi depends on yi.

In this case, the null and alternative hypotheses are as follows:

H0 : β = γ = 0,

H1 : β , 0, or, γ , 0.

Then, set as follows:

R =
( 0 1 0

0 0 1

)
, r =

( 0

0

)
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Coefficient of Determination R2 and F distribution:

● The regression model:

yi = xiβ + ui = β1 + x2iβ2 + ui

where

xi = ( 1 x2i ) , β =

(
β1

β2

)
,

xi : 1 × k, x2i : 1 × (k − 1), β : k × 1, β2 : (k − 1) × 1

Define:

X2 =


x21

x22
...

x2n


Then,

y = Xβ + u = (i X2)
(
β1

β2

)
+ u = iβ1 + X2β2 + u,
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where the first column of X corresponds to a constant term, i.e.,

X = ( i X2 ) , i =


1

1
...

1


● Consider testing H0 : β2 = 0.

The F distribution is set as follows:

R = ( 0 Ik−1 ) , r = 0

where R is a (k − 1) × k matrix and r is a (k − 1) × 1 vector.

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/(k − 1)
e′e/(n − k)

∼ F(k − 1, n − k)

We are going to show:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r) = β̂′2X′2MX2β̂2,
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where M = In −
1
n

ii′.

Note that M is symmetric and idempotent, i.e., M′M = M.
y1 − y

y2 − y
...

yn − y


= My

R(X′X)−1R′ is given by:

R(X′X)−1R′ = ( 0 Ik−1 )
(( i′

X′2

)
( i X2 )

)−1 ( 0

Ik−1

)
= ( 0 Ik−1 )

( i′i i′X2

X′2i X′2X2

)−1 ( 0

Ik−1

)
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[Review] The inverse of a partitioned matrix:

A =
( A11 A12

A21 A22

)
,

where A11 and A22 are square nonsingular matrices.

A−1 =

( B11 −B11A12A−1
22

−A−1
22 A21B11 A−1

22 + A−1
22 A21B11A12A−1

22

)
,

where B11 = (A11 − A12A−1
22 A21)−1, or alternatively,

A−1 =

( A−1
11 + A−1

11 A12B22A21A−1
11 −A−1

11 A12B22

−B22A21A−1
11 B22

)
,

where B22 = (A22 − A21A−1
11 A12)−1.

[End of Review]

89



Go back to the F distribution.( i′i i′X2

X′2i X′2X2

)−1

=

( · · · ·
... (X′2X2 − X′2i(i′i)−1i′X2)−1

)
=

( · · · ·
... (X′2(In − 1

n ii′)X2)−1

)
=

( · · · ·
... (X′2MX2)−1

)
Therefore, we obtain:

( 0 Ik−1 )
( i′i i′X2

X′2i X′2X2

)−1 ( 0

Ik−1

)
= ( 0 Ik−1 )

( · · · ·
... (X′2MX2)−1

) ( 0

Ik−1

)
= (X′2MX2)−1.

Thus, under H0 : β2 = 0, we obtain the following result:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/(k − 1)
e′e/(n − k)

=
β̂′2X′2MX2β̂2/(k − 1)

e′e/(n − k)
∼ F(k − 1, n − k).
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● Coefficient of Determination R2:

Define e as e = y − Xβ̂. The coefficient of determinant, R2, is

R2 = 1 − e′e
y′My

,

where M = In −
1
n

ii′, In is a n × n identity matrix and i is a n × 1 vector consisting of

1, i.e., i = (1, 1, · · · , 1)′.

Me = My − MXβ̂.

When X = ( i X2 ) and β̂ =
(
β̂1

β̂2

)
,

Me = e,

because i′e = 0, and

MX = M ( i X2 ) = ( Mi MX2 ) = ( 0 MX2 ) ,
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because Mi = 0.

MXβ̂ = ( 0 MX2 )
(
β̂1

β̂2

)
= MX2β̂2.

Thus,

My = MXβ̂ + Me =⇒ My = MX2β̂2 + e.

y′My is given by: y′My = β̂′2X′2MX2β̂2 + e′e, because X′2e = 0 and Me = e.

The coefficient of determinant, R2, is rewritten as:

R2 = 1 − e′e
y′My

=⇒ e′e = (1 − R2)y′My,

R2 =
y′My − e′e

y′My
=
β̂′2X′2MX2β̂2

y′My
=⇒ β̂′2X′2MX2β̂2 = R2y′My.

Therefore,

β̂′2X′2MX2β̂2/(k − 1)
e′e/(n − k)

=
R2y′My/(k − 1)

(1 − R2)y′My/(n − k)
=

R2/(k − 1)
(1 − R2)/(n − k)

∼ F(k − 1, n − k).

Thus, using R2, the null hypothesis H0 : β2 = 0 is easily tested.
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5 Restricted OLS (制約付き最小二乗法)

1. Let β̃ be the restricted estimator.

Consider the linear restriction: Rβ = r.

2. Minimize (y − Xβ̃)′(y − Xβ̃) subject to Rβ̃ = r.

Let L be the Lagrangian for the minimization problem.

L = (y − Xβ̃)′(y − Xβ̃) − 2λ̃′(Rβ̃ − r)

Because β̃ and λ̃ minimize the Lagrangian L,

∂L
∂β̃
= −2X′(y − Xβ̃) − 2R′λ̃ = 0

∂L
∂λ̃
= −2(Rβ̃ − r) = 0.
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(*) Remember that
∂a′x
∂x
= a and

∂x′Ax
∂x

= (A + A′)x.

From
∂L
∂β̃
= 0, we obtain:

β̃ = (X′X)−1X′y + (X′X)−1R′λ̃ = β̂ + (X′X)−1R′λ̃.

Multiplying R from the left, we have:

Rβ̃ = Rβ̂ + R(X′X)−1R′λ̃.

Because Rβ̃ = r has to be satisfied, we have the following expression:

r = Rβ̂ + R(X′X)−1R′λ̃.

Therefore, solving the above equation with respect to λ̃, we obtain:

λ̃ =
(
R(X′X)−1R′

)−1
(r − Rβ̂)
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Substituting λ̃ into β̃ = β̂ + (X′X)−1R′λ̃, the restricted OLSE is given by:

β̃ = β̂ + (X′X)−1R′
(
R(X′X)−1R′

)−1
(r − Rβ̂).

(a) The expectation of β̃ is:

E(β̃) = E(β̂) + (X′X)−1R′(R(X′X)−1R′)−1(r − RE(β̂))

= β + (X′X)−1R′(R(X′X)−1R′)−1(r − Rβ)

= β,

because of Rβ = r.

Thus, it is shown that β̃ is unbiased.
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(b) The variance of β̃ is as follows.

First, rewrite as follows:

(β̃ − β) = (β̂ − β) + (X′X)−1R′
(
R(X′X)−1R′

)−1
(Rβ − Rβ̂)

= (β̂ − β) − (X′X)−1R′
(
R(X′X)−1R′

)−1
(Rβ̂ − Rβ)

= (β̂ − β) − (X′X)−1R′
(
R(X′X)−1R′

)−1
R(β̂ − β)

=
(
Ik − (X′X)−1R′

(
R(X′X)−1R′

)−1
R
)
(β̂ − β)

= W(β̂ − β),

where W ≡ Ik − (X′X)−1R′
(
R(X′X)−1R′

)−1
R.

Then, we obtain the following variance:

V(β̃) ≡ E((β̃ − β)(β̃ − β)′) = E(W(β̂ − β)(β̂ − β)′W ′)

= WE((β̂ − β)(β̂ − β)′)W ′ = WV(β̂)W ′ = σ2W(X′X)−1W ′
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= σ2
(
I − (X′X)−1R′

(
R(X′X)−1R′

)−1
R
)
(X′X)−1

×
(
I − (X′X)−1R′

(
R(X′X)−1R′

)−1
R
)′

= σ2(X′X)−1 − σ2(X′X)−1R′
(
R(X′X)−1R′

)−1
R(X′X)−1

= V(β̂) − σ2(X′X)−1R′
(
R(X′X)−1R′

)−1
R(X′X)−1

Thus, V(β̂) − V(β̃) is positive definite.
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3. Another solution:

Again, write the first-order condition for minimization:

∂L
∂β̃
= −2X′(y − Xβ̃) − 2R′λ̃ = 0,

∂L
∂λ̃
= −2(Rβ̃ − r) = 0,

which can be written as:

X′Xβ̃ − R′λ̃ = X′y,

Rβ̃ = r.

Using the matrix form: ( X′X R′

R 0

) (
β̃

−λ̃

)
=

( X′y

r

)
.
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The solutions of β̃ and −λ̃ are given by:(
β̃

−λ̃

)
=

( X′X R′

R 0

)−1 ( X′y

r

)
.

(*) Formula to the inverse matrix:( A B

B′ D

)−1

=

( E F

F′ G

)
,

where E, F and G are given by:

E = (A − BD−1B′)−1 = A−1 + A−1B(D − B′A−1B)−1B′A−1

F = −(A − BD−1B′)−1BD−1 = −A−1B(D − B′A−1B)−1

G = (D − B′A−1B)−1 = D−1 + D−1B′(A − BD−1B′)−1BD−1
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In this case, E and F correspond to:

E = (X′X)−1 − (X′X)−1R′
(
R(X′X)−1R′

)−1
R(X′X)−1

F = (X′X)−1R′
(
R(X′X)−1R′

)−1
.

Therefore, β̃ is derived as follows:

β̃ = EX′y + Fr

= β̂ + (X′X)−1R′
(
R(X′X)−1R′

)−1
(r − Rβ̂).

The variance is:

V
(
β̃

−λ̃

)
= σ2

( X′X R′

R 0

)−1

.

Therefore, V(β̃) is:

V(β̃) = σ2E = σ2
(
(X′X)−1 − (X′X)−1R′

(
R(X′X)−1R′

)−1
R(X′X)−1

)
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Under the restriction: Rβ = r,

V(β̂) − V(β̃) = σ2(X′X)−1R′
(
R(X′X)−1R′

)−1
R(X′X)−1

is positive definite.

6 F Distribution (Restricted and Unrestricted OLSs)

1. As mentioned above, under the null hypothesis H0 : Rβ = r,

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G
(y − Xβ̂)′(y − Xβ̂)/(n − k)

∼ F(G, n − k),

where G = Rank(R).

Using β̃ = β̂+ (X′X)−1R′
(
R(X′X)−1R′

)−1
(r −Rβ̂), the numerator is rewritten as

follows:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r) = (β̂ − β̃)′X′X(β̂ − β̃).
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Moreover, the numerator is represented as follows:

(y − Xβ̃)′(y − Xβ̃)=(y − Xβ̂ − X(β̃ − β̂))′(y − Xβ̂ − X(β̃ − β̂))

=(y − Xβ̂)′(y − Xβ̂) + (β̃ − β̂)′X′X(β̃ − β̂)

−(y − Xβ̂)′X(β̃ − β̂) − (β̃ − β̂)′X′(y − Xβ̂)

=(y − Xβ̂)′(y − Xβ̂) + (β̃ − β̂)′X′X(β̃ − β̂).

X′(y − Xβ̂) = X′e = 0 is utilized.
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Summarizing, we have following representation:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)=(β̃ − β̂)′X′X(β̃ − β̂)

=(y − Xβ̃)′(y − Xβ̃) − (y − Xβ̂)′(y − Xβ̂)

=ũ′ũ − e′e,

where e and ũ are the restricted residual and the unrestricted residual, i.e.,

e = y − Xβ̂ and ũ = y − Xβ̃.

Therefore, we obtain the following result:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G
(y − Xβ̂)′(y − Xβ̂)/(n − k)

=
(ũ′ũ − e′e)/G

e′e/(n − k)
∼ F(G, n − k).
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7 Example: F Distribution (Restricted OLS and Un-

restricted OLS)

Date file =⇒ cons99.txt (Next slide)

Each column denotes year, nominal household expenditures (家計消費，10 billion

yen), household disposable income (家計可処分所得，10 billion yen) and household

expenditure deflator (家計消費デフレータ，1990=100) from the left.
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1955 5430.1 6135.0 18.1 1970 37784.1 45913.2 35.2 1985 185335.1 220655.6 93.9

1956 5974.2 6828.4 18.3 1971 42571.6 51944.3 37.5 1986 193069.6 229938.8 94.8

1957 6686.3 7619.5 19.0 1972 49124.1 60245.4 39.7 1987 202072.8 235924.0 95.3

1958 7169.7 8153.3 19.1 1973 59366.1 74924.8 44.1 1988 212939.9 247159.7 95.8

1959 8019.3 9274.3 19.7 1974 71782.1 93833.2 53.3 1989 227122.2 263940.5 97.7

1960 9234.9 10776.5 20.5 1975 83591.1 108712.8 59.4 1990 243035.7 280133.0 100.0

1961 10836.2 12869.4 21.8 1976 94443.7 123540.9 65.2 1991 255531.8 297512.9 102.5

1962 12430.8 14701.4 23.2 1977 105397.8 135318.4 70.1 1992 265701.6 309256.6 104.5

1963 14506.6 17042.7 24.9 1978 115960.3 147244.2 73.5 1993 272075.3 317021.6 105.9

1964 16674.9 19709.9 26.0 1979 127600.9 157071.1 76.0 1994 279538.7 325655.7 106.7

1965 18820.5 22337.4 27.8 1980 138585.0 169931.5 81.6 1995 283245.4 331967.5 106.2

1966 21680.6 25514.5 29.0 1981 147103.4 181349.2 85.4 1996 291458.5 340619.1 106.0

1967 24914.0 29012.6 30.1 1982 157994.0 190611.5 87.7 1997 298475.2 345522.7 107.3

1968 28452.7 34233.6 31.6 1983 166631.6 199587.8 89.5

1969 32705.2 39486.3 32.9 1984 175383.4 209451.9 91.8
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Estimate using TSP 5.0.

LINE ************************************************
| 1 freq a;
| 2 smpl 1955 1997;
| 3 read(file=’cons99.txt’) year cons yd price;
| 4 rcons=cons/(price/100);
| 5 ryd=yd/(price/100);
| 6 d1=0.0;
| 7 smpl 1974 1997;
| 8 d1=1.0;
| 9 smpl 1956 1997;
| 10 d1ryd=d1*ryd;
| 11 olsq rcons c ryd;
| 12 olsq rcons c d1 ryd d1ryd;
| 13 end;
******************************************************
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Equation 1
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .127951E+10
Variance of residuals = .319878E+08

Std. error of regression = 5655.77
R-squared = .994890

Adjusted R-squared = .994762
Durbin-Watson statistic = .116873

F-statistic (zero slopes) = 7787.70
Schwarz Bayes. Info. Crit. = 17.4101
Log of likelihood function = -421.469

Estimated Standard
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Variable Coefficient Error t-statistic
C -3317.80 1934.49 -1.71508
RYD .854577 .968382E-02 88.2480
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Equation 2
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .244501E+09
Variance of residuals = .643423E+07

Std. error of regression = 2536.58
R-squared = .999024

Adjusted R-squared = .998946
Durbin-Watson statistic = .420979

F-statistic (zero slopes) = 12959.1
Schwarz Bayes. Info. Crit. = 15.9330
Log of likelihood function = -386.714

Estimated Standard
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Variable Coefficient Error t-statistic
C 4204.11 1440.45 2.91861
D1 -39915.3 3154.24 -12.6545
RYD .786609 .015024 52.3561
D1RYD .194495 .018731 10.3839
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1. Equation 1

Significance test:

Equation 1 is:

RCONS = β1 + β2RYD

H0 : β2 = 0

(No.1) t Test =⇒ Compare 88.2480 and t(42 − 2).

(No.2) F Test =⇒ Compare
R2/G

(1 − R2)/(n − k)
=

.994890/1
(1 − .994890)/(42 − 2)

=

7787.8 and F(1, 40). Note that
√

7787.8 = 88.2485.

1% point of F(1, 40) = 7.31

H0 : β2 = 0 is rejected.
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2. Equation 2:

RCONS = β1 + β2D1 + β3RYD + β4RYD × D1

H0 : β2 = β3 = β4 = 0

F Test =⇒ Compare
R2/G

(1 − R2)/(n − k)
=

.999024/3
(1 − .999024)/(42 − 4)

= 12965.5

and F(3, 38).

1% point of F(3, 38) = 4.34

H0 : β2 = β3 = β4 = 0 is rejected.

3. Equation 1 vs. Equation 2

Test the structural change between 1973 and 1974.
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Equation 2 is:

RCONS = β1 + β2D1 + β3RYD + β4RYD × D1

H0 : β2 = β4 = 0

Restricted OLS =⇒ Equation 1

Unrestricted OLS =⇒ Equation 2

(ũ′ũ − e′e)/G
e′e/(n − k)

=
(.127951E + 10 − .244501E + 09)/2

.244501E + 09/(42 − 4)
= 80.43

which should be compared with F(2, 38).

1% point of F(2, 38) = 5.211 < 80.43

H0 : β2 = β4 = 0 is rejected.

=⇒ The structure was changed in 1974.
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8 Generalized Least Squares Method (GLS,一般化最

小自乗法)

1. Regression model: y = Xβ + u, u ∼ N(0, σ2Ω)

2. Heteroscedasticity (不等分散，不均一分散)

σ2Ω =


σ2

1 0 · · · 0

0 σ2
2
. . .

...
...
. . .

. . . 0

0 · · · 0 σ2
n
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First-Order Autocorrelation (一階の自己相関，系列相関)

In the case of time series data, the subscript is conventionally given by t, not i .

ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

σ2Ω =
σ2
ε

1 − ρ2



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1


V(ut) = σ2 =

σ2
ε

1 − ρ2

3. The Generalized Least Squares (GLS，一般化最小二乗法) estimator of β,
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denoted by b, solves the following minimization problem:

min
b

(y − Xb)′Ω−1(y − Xb)

The GLSE of β is:

b = (X′Ω−1X)−1X′Ω−1y

4. In general, when Ω is symmetric, Ω is decomposed as follows.

Ω = A′ΛA

Λ is a diagonal matrix, where the diagonal elements ofΛ are given by the eigen

values.

A is a matrix consisting of eigen vectors.

WhenΩ is a positive definite matrix, all the diagonal elements ofΛ are positive.
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5. There exists P such that Ω = PP′ (i.e., take P = A′Λ1/2). =⇒ P−1ΩP′−1 = In

Multiply P−1 on both sides of y = Xβ + u.

We have:

y? = X?β + u?,

where y? = P−1y, X? = P−1X, and u? = P−1u.

The variance of u? is:

V(u?) = V(P−1u) = P−1V(u)P′−1 = σ2P−1ΩP′−1 = σ2In.

because Ω = PP′, i.e., P−1ΩP′−1 = In.

Accordingly, the regression model is rewritten as:

y? = X?β + u?, u? ∼ (0, σ2In)
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Apply OLS to the above model.

Let b be as estimator of β from the above model.

That is, the minimization problem is given by:

min
b

(y? − X?b)′(y? − X?b),

which is equivalent to:

min
b

(y − Xb)′Ω−1(y − Xb).

Solving the minimization problem above, we have the following estimator:

b = (X?′X?)−1X?′y?

= (X′Ω−1X)−1X′Ω−1y,
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which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:

b = β + (X?′X?)−1X?′u? = β + (X′Ω−1X)−1X′Ω−1u

The mean and variance of b are given by:

E(b) = β,

V(b) = σ2(X?′X?)−1 = σ2(X′Ω−1X)−1.

6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u
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V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.

(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω

×
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Ω is the variance-covariance matrix of u, which is a positive definite ma-

trix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.

This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).
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Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rb ∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)
σ2 ∼ χ2(G)

8. Because (y? − X?b)′(y? − X?b)/σ2 ∼ χ2(n − k), we obtain:

(y − Xb)′Ω−1(y − Xb)
σ2 ∼ χ2(n − k)

9. Furthermore, from the fact that b is independent of y − Xb, the following F

distribution can be derived:
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(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)/G
(y − Xb)′Ω−1(y − Xb)/(n − k)

∼ F(G, n − k)

10. Let b be the unrestricted GLSE and b̃ be the restricted GLSE.

Their residuals are given by e and ũ, respectively.

e = y − Xb, ũ = y − Xb̃

Then, the F test statistic is written as follows:

(ũ′Ω−1ũ − e′Ω−1e)/G
e′Ω−1e/(n − k)

∼ F(G, n − k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,( y

r

)
=

( X

R

)
β +

( u

v

)
, E

( u

v

)
=

( 0

0

)
and V

( u

v

)
= σ2

( In 0

0 Ψ

)
For estimation, we do not need normality assumption.

Applying GLS, we obtain:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
=

(
X′X + R′Ψ−1R

)−1(
X′y + R′Ψ−1r

)
.
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Mean and Variance of b: b is rewritten as follows:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
= β +

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( u

v

)
Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1

= σ2
(
X′X + R′Ψ−1R

)−1
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9 Maximum Likelihood Estimation (MLE,
さ い ゆ う

最尤法)

−→ Review

1. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.

126



The maximum likelihood estimator (MLE) of θ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

log L(θ; X).

MLE satisfies the following two conditions:

(a)
∂ log L(θ; X)
∂θ

= 0.

(b)
∂2 log L(θ; X)
∂θ∂θ′

is a negative definite matrix.

2. Fisher’s information matrix (フィッシャーの情報行列) is defined as:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)
= E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)
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Proof of the above equality: ∫
L(θ; x)dx = 1

Take a derivative with respect to θ.∫
∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

Rewriting the above equation, we obtain:∫
∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)
∂θ

)
= 0.
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Again, differentiating the above with respect to θ, we obtain:∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′

)
+ E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)
∂θ∂θ′

)
= E

(
∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)
∂θ

)
,

where the second equality utilizes E
(
∂ log L(θ; X)
∂θ

)
= 0.

3. Cramer-Rao Lower Bound (クラメール・ラオの下限): (I(θ))−1

Suppose that an estimator of θ is given by s(X).
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The expectation of s(X) is:

E(s(X)) =
∫

s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ

=

∫
s(x)
∂L(θ; x)
∂θ

dx =
∫

s(x)
∂ log L(θ; x)
∂θ

L(θ; x)dx

= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
For simplicity, let s(X) and θ be scalars.

Then,(
∂E(s(X))
∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)
∂θ

)
≤ V (s(X)) V

(
∂ log L(θ; X)
∂θ

)
,
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where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)
∂θ

, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
√

V (s(X))

√
V

(
∂ log L(θ; X)
∂θ

) .

Note that |ρ| ≤ 1.

Therefore, we have the following inequality:(
∂E(s(X))
∂θ

)2

≤ V(s(X)) V
(
∂ log L(θ; X)
∂θ

)
,

i.e.,

V(s(X)) ≥

(
∂E(s(X))
∂θ

)2

V
(
∂ log L(θ; X)
∂θ

)
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Especially, when E(s(X)) = θ,

V(s(X)) ≥ 1

−E
(
∂2 log L(θ; X)
∂θ2

) = (I(θ))−1.

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,

where I(θ) is defined as:

I(θ) = −E
(
∂2 log L(θ; X)
∂θ∂θ′

)
= E

(
∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)
∂θ

)
.

The variance of any unbiased estimator of θ is larger than or equal to (I(θ))−1.
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4. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,
where it is assumed that lim

n→∞

(
I(θ)
n

)
converges.

That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.
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5. Optimization (最適化):

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

We often have the case where the solution of θ is not derived in closed form.

=⇒ Optimization procedure

0 =
∂ log L(θ; x)
∂θ

=
∂ log L(θ∗; x)

∂θ
+
∂2 log L(θ∗; x)
∂θ∂θ′

(θ − θ∗).

Solving the above equation with respect to θ, we obtain the following:

θ = θ∗ −
(
∂2 log L(θ∗; x)
∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.

Replace the variables as follows:

θ −→ θ(i+1)
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θ∗ −→ θ(i)

Then, we have:

θ(i+1) = θ(i) −
(
∂2 log L(θ(i); x)
∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
∂2 log L(θ(i); x)
∂θ∂θ′

by E
(
∂2 log L(θ(i); x)
∂θ∂θ′

)
, we obtain the following op-

timization algorithm:

θ(i+1) = θ(i) −
(
E

(
∂2 log L(θ(i); x)
∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(
I(θ(i))

)−1 ∂ log L(θ(i); x)
∂θ

=⇒Method of Scoring (スコア法)
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9.1 MLE: The Case of Single Regression Model

The regression model:

yi = β1 + β2xi + ui,

1. ui ∼ N(0, σ2) is assumed.

2. The density function of ui is:

f (ui) =
1

√
2πσ2

exp
(
− 1

2σ2 u2
i

)
.

Because u1, u2, · · · , un are mutually independently distributed, the joint density

function of u1, u2, · · · , un is written as:

f (u1, u2, · · · , un) = f (u1) f (u2) · · · f (un)

=
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

u2
i
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3. Using the transformation of variable (ui = yi − β1 − β2xi), the joint density

function of y1, y2, · · · , yn is given by:

f (y1, y2, · · · , yn) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(yi − β1 − β2xi)2


≡ L(β1, β2, σ

2|y1, y2, · · · , yn).

L(β1, β2, σ
2|y1, y2, · · · , yn) is called the likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn) is called the log-likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn)

= −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑
i=1

(yt − β1 − β2xi)2
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4. Transformation of Variable (変数変換) — Review:

Suppose that the density function of a random variable X is fx(x).

Defining X = g(Y), the density function of Y , fy(y), is given by:

fy(y) = fx(g(y))
∣∣∣∣∣dg(y)

dy

∣∣∣∣∣ .
In the case where X and g(Y) are n × 1 vectors,

∣∣∣∣∣dg(y)
dy

∣∣∣∣∣ should be replaced by∣∣∣∣∣∂g(y)
∂y′

∣∣∣∣∣, which is an absolute value of a determinant of the matrix
∂g(y)
∂y′

.
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Example: When X ∼ U(0, 1), derive the density function of Y = − log(X).

fx(x) = 1

X = exp(−Y) is obtained.

Therefore, the density function of Y , fy(y), is given by:

fy(y) =
∣∣∣∣∣dx
dy

∣∣∣∣∣ fx(g(y)) = | − exp(−y)| = exp(−y)
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5. Given the observed data y1, y2, · · · , yn, the likelihood function L(β1, β2, σ2|y1,

y2, · · ·, yn), or the log-likelihood function log L(β1, β2, σ2|y1, y2, · · ·, yn) is

maximized with respect to (β1, β2, σ2).

Solve the following three simultaneous equations:

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)
∂β1

=
1
σ2

n∑
i=1

(yi − β1 − β2xi) = 0,

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)
∂β2

=
1
σ2

n∑
i=1

(yi − β1 − β2xi)xi = 0,

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂σ2 = −n
2

1
σ2 +

1
2σ4

n∑
i=1

(yi − β1 − β2xi)2 = 0.

The solutions of (β1, β2, σ2) are called the maximum likelihood estimates,

denoted by (β̃1, β̃2, σ̃2).
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The maximum likelihood estimates are:

β̃2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 , β̃1 = y − β̃2x, σ̃2 =
1
n

n∑
i=1

(yi − β̃1 − β̃2xi)2.

The MLE of σ2 is divided by n, not n − 2.
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9.2 MLE: The Case of Multiple Regression Model I

1. Multivariate Normal Distribution: X : n × 1 and X ∼ N(µ,Σ)

The density function of X is:

f (x) = (2π)n/2|Σ|−1/2 exp
(
−1

2
(x − µ)′Σ−1(x − µ)

)
.

2. Regression model: y = Xβ + u, u ∼ N(0, σ2In)

Transformation of Variables from u to y:

fu(u) = (2πσ2)−n/2 exp
(
− 1

2σ2 u′u
)

fy(y) = fu(y − Xβ)
∣∣∣∣∣ ∂u∂y′

∣∣∣∣∣
= (2πσ2)−n/2 exp

(
− 1

2σ2 (y − Xβ)′(y − Xβ)
)

= L(θ; y, X),
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where θ = (β, σ2), because of
∂u
∂y′
= In.

Therefore, the log-likelihood function is:

log L(θ; y, X) = −n
2

log(2πσ2) − 1
2σ2 (y − Xβ)′(y − Xβ),

Note that |Σ|−1/2 = |σ2In|−1/2 = σ−n/2.

3. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)
∂θ∂θ′

is a negative definite matrix.
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We obtain MLE of β and σ2:

β̃ = (X′X)−1X′y, σ̃2 =
(y − Xβ̃)′(y − Xβ̃)

n
,

where σ̃2 is divided by n, not n − k.

4. Fisher’s information matrix is:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)
The inverse of the information matrix, I(θ)−1, provides a lower bound of the

variance - covariance matrix for unbiased estimators of θ .

I(θ)−1 =

(
σ2(X′X)−1 0

0
2σ4

n

)

For large n, we approximately obtain:
(
β̃

σ̃2

)
∼ N

((
β

σ2

)
,

(
σ2(X′X)−1 0

0
2σ4

n

))
.
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9.3 MLE: The Case of Multiple Regression Model II

1. Regression model: y = Xβ + u, u ∼ N(0, σ2Ω)

Transformation of Variables from u to y:

fu(u) = (2πσ2)−n/2|Ω|−1/2 exp
(
− 1

2σ2 u′Ω−1u
)

fy(y) = fu(y − Xβ)
∣∣∣∣∣ ∂u∂y′

∣∣∣∣∣
= (2πσ2)−n/2|Ω|−1/2 exp

(
− 1

2σ2 (y − Xβ)′Ω−1(y − Xβ)
)

= L(θ; y, X),

where θ = (β, σ2), because of
∂u
∂y′
= In.

The log-likelihood function is:

log L(θ; y, X) = −n
2

log(2πσ2) − 1
2

log |Ω| − 1
2σ2 (y − Xβ)′Ω−1(y − Xβ),
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where θ = (β, σ2).

2. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)
∂θ∂θ′

is a negative definite matrix.

Then, we obtain MLE of β and σ2:

β̃ = (X′Ω−1X)−1X′Ω−1y, σ̃2 =
(y − Xβ̃)′Ω−1(y − Xβ̃)

n

3. Fisher’s information matrix is defined as:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)
The inverse of the information matrix, I(θ)−1, provides a lower bound of the
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variance - covariance matrix for unbiased estimators of θ, which is given by:

I(θ)−1 =

(
σ2(X′Ω−1X)−1 0

0
2σ4

n

)
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9.4 MLE: AR(1) Model

The pth-order Autoregressive Model, i.e., AR(p) Model (p次の自己回帰モデル):

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + ut

AR(1) Model: t = 2, 3, · · · , n,

yt = φ1yt−1 + ut, ut ∼ N(0, σ2)

where |φ1| < 1 is assumed for now.

To obtain the joint density function of y1, y2, · · · , yn, f (yn, yn−1, · · · , y1) is decomposed

as follows:

f (yn, yn−1, · · · , y1) = f (y1)
n∏

t=2

f (yt|yt−1, · · · , y1).
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From yt = φ1yt−1 + ut, we can obtain:

E(yt|yt−1, · · · , y1) = φ1yt−1, and V(yt|yt−1, · · · , y1) = σ2.

Therefore, the conditional distribution f (yt|yt−1, · · · , y1) is:

f (yt|yt−1, · · · , y1) =
1

√
2πσ2

exp
(
− 1

2σ2 (yt − φ1yt−1)2
)
.

149



To obtain the unconditional distribution f (yt), yt is rewritten as follows:

yt = φ1yt−1 + ut

= φ2
1yt−2 + ut + φ1ut−1

...

= φ
j
1yt− j + ut + φ1ut−1 + · · · + φ j

1ut− j

...

= ut + φ1ut−1 + φ
2
1ut−2 + · · · , when j goes to infinity.
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The unconditional expectation and variance of yt is:

E(yt) = 0, and V(yt) = σ2(1 + φ2
1 + φ

4
1 + · · ·) =

σ2

1 − φ2
1

.

Therefore, the unconditional distribution of yt is given by:

f (yt) =
1√

2πσ2/(1 − φ2
1)

exp
(
− 1

2σ2/(1 − φ2
1)

y2
t

)
.
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Finally, the joint distribution of y1, y2, · · · , yn is given by:

f (yn, yn−1, · · · , y1) = f (y1)
n∏

t=2

f (yt|yt−1, · · · , y1)

=
1√

2πσ2/(1 − φ2
1)

exp
(
− 1

2σ2/(1 − φ2
1)

y2
1

)

×
n∏

t=2

1
√

2πσ2
exp

(
− 1

2σ2 (yt − φ1yt−1)2
)
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The log-likelihood function is:

log L(φ1, σ
2; yn, yn−1, · · · , y1) = −1

2
log(2πσ2/(1 − φ2

1)) − 1
2σ2/(1 − φ2

1)
y2

1

−n − 1
2

log(2πσ2) − 1
2σ2

n∑
t=2

(yt − φ1yt−1)2.

Maximize log L with respect to φ1 and σ2.

Maximization Procedure:

• Newton-Raphson Method, or Method of Scoring

• Simple Grid Search (search maximization within the range −1 < φ1 < 1, chang-

ing the value of φ1 by 0.01)
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9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

yt = xtβ + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε ).

The joint distribution of un, un−1, · · · , u1 is:

fu(un, un−1, · · · , u1; ρ, σ2
ε ) = fu(u1; ρ, σ2

ε )
n∏

t=2

fu(ut|ut−1, · · · , u1; ρ, σ2
ε )

= (2πσ2
ε/(1 − ρ2))−1/2 exp

(
− 1

2σ2
ε/(1 − ρ2)

u2
1

)
×(2πσ2

ε )
−(n−1)/2 exp

− 1
2σ2
ε

n∑
t=2

(ut − ρut−1)2

 .
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By transformation of variables from un, un−1, · · · , u1 to yn, yn−1, · · · , y1, the joint dis-

tribution of yn, yn−1, · · · , y1 is:

fy(yn, yn−1, · · · , y1; ρ, σ2
ε , β)

= fu(yn − xnβ, yn−1 − xn−1β, · · · , y1 − x1β; ρ, σ2
ε )

∣∣∣∣∣ ∂u∂y′
∣∣∣∣∣

= (2πσ2
ε/(1 − ρ2))−1/2 exp

(
− 1

2σ2
ε/(1 − ρ2)

(y1 − x1β)2
)

×(2πσ2
ε )
−(n−1)/2 exp

− 1
2σ2
ε

n∑
t=2

(
(yt − ρyt−1) − (xt − ρxt−1)β

)2


= (2πσ2
ε )
−1/2(1 − ρ2)1/2 exp

(
− 1

2σ2
ε

(
√

1 − ρ2y1 −
√

1 − ρ2x1β)2
)

×(2πσ2
ε )
−(n−1)/2 exp

− 1
2σ2
ε

n∑
t=2

(
(yt − ρyt−1) − (xt − ρxt−1)β

)2


= (2πσ2
ε )
−n/2(1 − ρ2)1/2 exp

(
− 1

2σ2
ε

(y∗1 − x∗1β)
2
)
× exp

− 1
2σ2
ε

n∑
t=2

(y∗t − x∗t β)
2
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= (2π)−n/2(σ2
ε )
−n/2(1 − ρ2)1/2 exp

− 1
2σ2
ε

n∑
t=1

(y∗t − x∗t β)
2


= L(ρ, σ2

ε , β; yn, yn−1, · · · , y1),

where y∗t and x∗t are given by:

y∗t =


√

1 − ρ2yt, for t = 1,

yt − ρyt−1, for t = 2, 3, · · · , n,

x∗t =


√

1 − ρ2xt, for t = 1,

xt − ρxt−1, for t = 2, 3, · · · , n,
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◎ For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect to

β should be zero.

β̃ = (
T∑

t=1

x∗t
′x∗t )−1(

T∑
t=1

x∗t
′y∗t )

= (X∗′X∗)−1X∗′y∗

=⇒ This is equivalent to OLS from the regression model: y∗ = X∗β + ε and ε ∼

N(0, σ2In), where σ2 = σ2
ε/(1 − ρ2).
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◎ For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect to

σ2
ε should be zero.

σ̃2
ε =

1
n

n∑
t=1

(y∗t − x∗t β)
2 =

1
n

(y∗ − X∗β)′(y∗ − X∗β),

where

y∗ =


y∗1

y∗2
...

y∗n


=



√
1 − ρ2y1

y2 − ρy1
...

yn − ρyn−1


, X∗ =


x∗1

x∗2
...

x∗n


=



√
1 − ρ2x1

x2 − ρx1
...

xn − ρxn−1


.
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◎ For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect to

ρ should be zero.

max
β,σ2
ε ,ρ

L(ρ, σ2
ε , β; y) is equivalent to max

ρ
L(ρ, σ̃2

ε , β̃; y).

L(ρ, σ̃2
ε , β̃; y) is called the concentrated log-likelihood function (集約対数尤度関数

), which is a function of ρ, i.e., both σ̃2
ε and β̃ depend only on ρ.
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The log-likelihood function is written as:

log L(ρ, σ̃2
ε , β̃; y) = −n

2
log(2π) − n

2
log(σ̃2

ε ) +
1
2

log(1 − ρ2) − n
2

= −n
2

log(2π) − n
2
− n

2
log

(
σ̃2
ε (ρ)

)
+

1
2

log(1 − ρ2)

For maximization of log L, use Newton-Raphson method, method of scoring or sim-

ple grid search

Note that σ̃2
ε = σ̃

2
ε (ρ) =

1
n

(y∗ − X∗β̃)′(y∗ − X∗β̃) for β̃ = (X∗′X∗)−1X∗′y∗.
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Remark: The regression model with AR(1) error is:

yt = xtβ + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε ).

V(u) = σ2



1 ρ ρ2 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

ρ2 ρ 1 ρ · · · ρn−3

ρ3 ρ2 . . .
. . .

. . .
...

...
...

. . .
. . .

. . . ρ

ρn−1 ρn−2 · · · ρ2 ρ 1


= σ2Ω, where σ2 =

σ2
ε

1 − ρ2 .

where Cov(ui, u j) = E(uiu j) = σ2ρ|i− j|, i.e., the ith row and jth column of Ω is ρ|i− j|.
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The regression model with AR(1) error is: y = Xβ + u, u ∼ N(0, σ2Ω).

There exists P which satisfies that Ω = PP′, because Ω is a positive definite matrix.

Multiply P−1 on both sides from the left.

P−1y = P−1Xβ + P−1u =⇒ y∗ = X∗β + u∗ and u∗ ∼ N(0, σ2In)

=⇒ Apply OLS.
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y∗ =


y∗1

y∗2
...

y∗n


=



√
1 − ρ2y1

y2 − ρy1
...

yn − ρyn−1


=



√
1 − ρ2 0 · · · · · · 0

−ρ 1 0 · · · 0

0 −ρ 1 . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −ρ 1




y1

y2
...

yn


= P−1y

X∗ =


x∗1

x∗2
...

x∗n


=



√
1 − ρ2x1

x2 − ρx1
...

xn − ρxn−1


= P−1X =⇒ Check P−1ΩP−1′ = aIn,

where a is constant.
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9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the re-

gression model is written as follows:

yi = xiβ + ui, ui ∼ id N(0, σ2
i ), σ2

i = (ziα)2.

The joint distribution of un, un−1, · · · , u1, denoted by fu(·; ·), is given by:

log fu(un, un−1, · · · , u1;σ2
1, · · · , σ2

n) =
n∑

i=1

log fu(ut;σ2
i )

= −n
2

log(2π) − 1
2

n∑
i=1

log(σ2
i ) − 1

2

n∑
i=1

(
ui

σi

)2

= −n
2

log(2π) − 1
2

n∑
i=1

log(ziα)2 − 1
2

n∑
i=1

(
ui

ziα

)2

By the transformation of variables from un, un−1, · · · , u1 to yn, yn−1, · · · , y1, the log-
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likelihood function is:

L(α, β; yn, yn−1, · · · , y1) = log fy(yn, yn−1, · · · , y1;α, β)

= log fu(yn − xnβ, yn−1 − xn−1β, · · · , y1 − x1β;σ2
i )

∣∣∣∣∣ ∂u∂y′
∣∣∣∣∣

= −n
2

log(2π) − 1
2

n∑
i=1

log(ziα)2 − 1
2

n∑
i=1

(
yi − xiβ

ziα

)2

=⇒Maximize the above log-likelihood function with respect to β and α.
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10 Asymptotic Theory

1. Definition: Convergence in Distribution (分布収束)

A series of random variables X1, X2, · · ·, Xn, · · · have distribution functions F1,

F2, · · ·, respectively.

If

lim
n→∞

Fn = F,

then we say that a series of random variables X1, X2, · · · converges to F in

distribution.

2. Consistency (一致性):

(a) Definition: Convergence in Probability (確率収束)

Let {Zn : n = 1, 2, · · ·} be a series of random variables.

166



If the following holds,

lim
n→∞

P(|Zn − θ| < ε) = 1,

for any positive ε, then we say that Zn converges to θ in probability.

θ is called a probability limit (確率極限) of Zn.

plim Zn = θ.

(b) Let θ̂n be an estimator of parameter θ.

If θ̂n converges to θ in probability, we say that θ̂n is a consistent estimator

of θ.

3. A General Case of Chebyshev’s Inequality:

For g(X) ≥ 0,

P(g(X) ≥ k) ≤ E(g(X))
k
,
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where k is a positive constant.

4. Example: For a random variable X, set g(X) = (X − µ)′(X − µ), E(X) = µ and

Var(X) = Σ.

Then, we have the following inequality:

P((X − µ)′(X − µ) ≥ k) ≤ tr(Σ)
k
.

Note as follows:

E((X − µ)′(X − µ)) = E
(
tr((X − µ)′(X − µ))

)
= E

(
tr((X − µ)(X − µ)′)

)
= tr

(
E((X − µ)(X − µ)′)

)
= tr(Σ).
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5. Example 1 (Univariate Case):

Suppose that Xi ∼ (µ, σ2), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)2, ε2 = k, E(g(X)) = V(X) =
σ2

n
.

Use Chebyshev’s inequality.

If n −→ ∞,

P(|X − µ| ≥ ε) ≤ σ
2

nε2
−→ 0, for any ε.

That is. for any ε,

lim
n→∞

P(|X − µ| < ε) = 1.

=⇒ Chebyshev’s inequality
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6. Example 2 (Multivariate Case):

Suppose that Xi ∼ (µ,Σ), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)′(X − µ), ε2 = k, E(g(X)) = tr
(
V(X)

)
= tr

(1
n
Σ
)
.

Use Chebyshev’s inequality.

If n −→ ∞,

P((X − µ)′(X − µ) ≥ k) = P(|X − µ| ≥ ε) ≤ tr(Σ)
nε2
−→ 0, for any positive ε.

That is. for any positive ε, limn→∞ P((X − µ)′(X − µ) < k) = 1.

Note that |X − µ| =
√

(X − µ)′(X − µ), which is the distance between X and µ.

=⇒ Chebyshev’s inequality
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7. Some Formulas:

Let Xn and Yn be the random variables which satisfy plim Xn = c and plim Yn =

d. Then,

(a) plim (Xn + Yn) = c + d

(b) plim XnYn = cd

(c) plim Xn/Yn = c/d for d , 0

(d) plim g(Xn) = g(c) for a function g(·)

=⇒ Slutsky’s Theorem (スルツキー定理)
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8. Central Limit Theorem (中心極限定理)

Univariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed as Xi ∼ (µ, σ2).

Then,
X − E(X)√

V(X)
=

X − µ
σ/
√

n
−→ N(0, 1),

which implies

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0, σ2).
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Multivariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed as Xi ∼ (µ, Σ).

Then,
1
√

n

n∑
i=1

(Xi − µ) −→ N(0,Σ)

9. Central Limit Theorem (Generalization)

X1, X2, · · ·, Xn are mutually independently and identically distributed as Xi ∼

(µ, Σi).

Then,
1
√

n

n∑
i=1

(Xi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞

1
n

n∑
i=1

Σi

 .
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10. Definition: Let θ̂n be a consistent estimator of θ.

Suppose that
√

n(θ̂n − θ) converges to N(0,Σ) in distribution.

Then, we say that θ̂n has an asymptotic distribution (漸近分布): N(θ,Σ/n).

11. X1, X2, · · · , Xn are random variables with density function f (x; θ).

Let θ̂n be a maximum likelihood estimator of θ.

Then, under some regularity conditions. θ̂n is a consistent estimator of θ and

the asymptotic distribution of
√

n(θ̂ − θ) is given by: N
0, lim (

I(θ)
n

)−1.
12. Regularity Conditions:

(a) The domain of Xi does not depend on θ.

(b) There exists at least third-order derivative of f (x; θ) with respect to θ, and

their derivatives are finite.
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13. Thus, MLE is

(i) consistent，

(ii) asymptotically normal，and

(iii) asymptotically efficient.
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y = Xβ + u, u ∼ (0, σ2In).

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample size n.

Consistency: As n is large, β̂n converges to β.

2. Assume the stationarity assumption for X, i.e.,

1
n

X′X −→ Mxx.

Then, we have the following result:

1
n

X′u −→ 0.
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Proof:

According to Chebyshev’s inequality, for g(Z) ≥ 0,

P(g(Z) ≥ k) ≤ E(g(Z))
k
,

where k is a positive constant.

Set g(Z) = Z′Z, and Z =
1
n

X′u.

Apply Chebyshev’s inequality.

E
(
(
1
n

X′u)′
1
n

X′u
)
=

1
n2 E

(
u′XX′u

)
=

1
n2 E

(
tr(u′XX′u)

)
=

1
n2 E

(
tr(XX′uu′)

)
=

1
n2 tr

(
XX′E(uu′)

)
=
σ2

n2 tr(XX′) =
σ2

n2 tr(X′X) =
σ2

n
tr(

1
n

X′X).

Therefore,

P
(
(
1
n

X′u)′
1
n

X′u ≥ k
)
≤ σ

2

nk
tr(

1
n

X′X) −→ 0 × tr(Mxx) = 0.
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Note that from the assumption,

1
n

X′X −→ Mxx.

Therefore, we have:

(
1
n

X′u)′
1
n

X′u −→ 0,

which implies:
1
n

X′u −→ 0,

because (
1
n

X′u)′
1
n

X′u indicates a quadratic form.

3. Note that
1
n

X′X −→ Mxx results in (
1
n

X′X)−1 −→ M−1
xx .

=⇒ Slutsky’s Theorem

(*) Slutsky’s Theorem g(θ̂) −→ g(θ), when θ̂ −→ θ.

178



4. OLS is given by:

β̂n = β + (X′X)−1X′u = β + (
1
n

X′X)−1(
1
n

X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consitent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE
√

n(β̂n − β) −→ N(0.σ2M−1
xx ), when n −→ ∞.
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2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually indelendently distributed with mean µ and variance

Σi.

Then, we have the following result:

1
√

n

n∑
i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞

1
n

n∑
i=1

Σi

 .
The distribution of Zi is not assumed.

3. Define Zi = x′iui. Then, Σi = Var(Zi) = σ2x′i xi.
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4. Σ is defined as:

Σ = lim
n→∞

1
n

n∑
i=1

σ2x′i xi

 = σ2 lim
n→∞

(
1
n

X′X
)
= σ2Mxx,

where

X =


x1

x2
...

xn


5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1
√

n

n∑
i=1

x′iui =
1
√

n
X′u −→ N(0, σ2Mxx).

On the other hand, from β̂n = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1
n

X′X
)−1 1
√

n
X′u.
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Var
((1

n
X′X

)−1 1
√

n
X′u

)
= E

((1
n

X′X
)−1 1
√

n
X′u

((1
n

X′X
)−1 1
√

n
X′u

)′)
=

(1
n

X′X
)−1(1

n
X′E(uu′)X

)(1
n

X′X
)−1

= σ2
(1
n

X′X
)−1
−→ σ2M−1

xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of ui is not assumed.
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12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

y = X̃β + u

2. Observed variable:

X = X̃ + V

V: is called the measurement error (測定誤差 or観測誤差).

3. For the elements which do not include measurement errors in X, the corre-

sponding elements in V are zeros.
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4. Regression using observed variable:

y = Xβ + (u − Vβ)

OLS of β is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′(u − Vβ)

5. Assumptions:

(a) The measurement error in X is uncorrelated with X̃ in the limit. i.e.,

plim
(1
n

X̃′V
)
= 0.

Therefore, we obtain the following:

plim
(1
n

X′X
)
= plim

(1
n

X̃′X̃
)
+ plim

(1
n

V ′V
)
= Σ + Ω
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(b) u is not correlated with V .

u is not correlated with X̃.

That is,

plim
(1
n

V ′u
)
= 0, plim

(1
n

X̃′u
)
= 0.

6. OLSE of β is:

β̂ = β + (X′X)−1X′(u − Vβ) = β + (X′X)−1(X̃ + V)′(u − Vβ).

Therefore, we obtain the following:

plim β̂ = β − (Σ + Ω)−1Ωβ
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7. Example: The Case of Two Variables:

The regression model is given by:

yt = α + βx̃t + ut, xt = x̃t + vt.

Under the above model,

Σ = plim
(1
n

X̃′X̃
)
= plim

 1
1
n

∑
x̃i

1
n

∑
x̃i

1
n

∑
x̃2

i

 = ( 1 µ

µ µ2 + σ2

)
,

where µ and σ2 represent the mean and variance of x̃i.

Ω = plim
(1
n

V ′V
)
= plim

( 0 0

0
1
n

∑
v2

i

)
=

( 0 0

0 σ2
v

)
.

Therefore,

plim
(
α̂

β̂

)
=

(
α

β

)
−

(( 1 µ

µ µ2 + σ2

)
+

( 0 0

0 σ2
v

))−1 ( 0 0

0 σ2
v

) (
α

β

)
=

(
α

β

)
− 1
σ2 + σ2

v

(−µσ2
vβ

σ2
vβ

)
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Now we focus on β.

β̂ is not consistent. because of:

plim(β̂) = β − σ2
vβ

σ2 + σ2
v
=

β

1 + σ2
v/σ

2 < β
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12.2 Instrumental Variable (IV) Method (操作変数法 or IV法)

Instrumental Variable (IV)

1. Consider the regression model: y = Xβ + u and u ∼ N(0, σ2In).

In the case of E(X′u) , 0, OLSE of β is inconsistent.

2. Proof:

β̂ = β + (
1
n

X′X)−1 1
n

X′u −→ β + M−1
xx Mxu,

where

1
n

X′X −→ Mxx,
1
n

X′u −→ Mxu , 0

3. Find the Z which satisfies
1
n

Z′u −→ Mzu = 0.
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Multiplying Z′ on both sides of the regression model: y = Xβ + u,

Z′y = Z′Xβ + Z′u

Dividing n on both sides of the above equation, we take plim on both sides.

Then, we obtain the following:

plim
(
1
n

Z′y
)
= plim

(
1
n

Z′X
)
β + plim

(
1
n

Z′u
)
= plim

(
1
n

Z′X
)
β.

Accordingly, we obtain:

β =

(
plim

(
1
n

Z′X
))−1

plim
(
1
n

Z′y
)
.

Therefore, we consider the following estimator:

βIV = (Z′X)−1Z′y,
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which is taken as an estimator of β.

=⇒ Instrumental Variable Method (操作変数法 or IV法)

4. Assume the followings:

1
n

Z′X −→ Mzx,
1
n

Z′Z −→ Mzz,
1
n

Z′u −→ 0

5. Asymptotic Distribution of βIV:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u,

which is rewritten as:

√
n(βIV − β) =

(1
n

Z′X
)−1( 1
√

n
Z′u

)
Applying the Central Limit Theorem to

( 1
√

n
Z′u

)
, we have the following result:

1
√

n
Z′u −→ N(0, σ2Mzz).
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Therefore,

√
n(βIV − β) =

(1
n

Z′X
)−1( 1
√

n
Z′u

)
−→ N(0, σ2M−1

zx MzzM′zx
−1)

=⇒ Consistency and Asymptotic Normality

6. The variance of βIV is given by:

V(βIV) = s2(Z′X)−1Z′Z(X′Z)−1,

where

s2 =
(y − XβIV)′(y − XβIV)

n − k
.
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12.3 Two-Stage Least Squares Method (2段階最小二乗法, 2SLS

or TSLS)

1. Regression Model:

y = Xβ + u, u ∼ N(0, σ2I),

In the case of E(X′u) , 0, OLSE is not consistent.

2. Find the variable Z which satisfies
1
n

Z′u −→ Mzu = 0.

3. Use Z = X̂ for the instrumental variable.

X̂ is the predicted value which regresses X on the other exogenous variables,

say W.

That is, consider the following regression model:

X = WB + V.
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Estimate B by OLS.

Then, we obtain the prediction:

X̂ = WB̂,

where B̂ = (W ′W)−1W ′X.

Or, equivalently,

X̂ = W(W ′W)−1W ′X.

X̂ is used for the instrumental variable of X.

4. The IV method is rewritten as:

βIV = (X̂′X)−1X̂′y = (X′W(W ′W)−1W ′X)−1X′W(W ′W)−1W ′y.

Furthermore, βIV is written as follows:

βIV = β + (X′W(W ′W)−1W ′X)−1X′W(W ′W)−1W ′u.
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Therefore, we obtain the following expression:

√
n(βIV − β) =

((1
n

X′W
)(1

n
W ′W

)−1(1
n

XW ′
)′)−1 (1

n
X′W

)(1
n

W ′W
)−1( 1
√

n
W ′u

)
−→ N

(
0, σ2(MxwM−1

wwM′xw)−1
)
.

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

plim
(1
n

W ′u
)
= 0.

6. Remark:

X̂′X = X′W(W ′W)−1W ′X = X′W(W ′W)−1W ′W(W ′W)−1W ′X = X̂′X̂.

Therefore,

βIV = (X̂′X)−1X̂′y = (X̂′X̂)−1X̂′y,
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which implies the OLS estimator of β in the regression model: y = X̂β + u and

u ∼ N(0, σ2In).

Example:

yt = αxt + βzt + ut, ut ∼ (0, σ2).

Suppose that xt is correlated with ut but zt is not correlated with ut.

• 1st Step:

Estimate the following regression model:

xt = γwt + δzt + · · · + vt,

by OLS. =⇒ Obtain x̂t through OLS.
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• 2nd Step:

Estimate the following regression model:

yt = αx̂t + βzt + ut,

by OLS. =⇒ αiv and βiv

Note as follows. Estimate the following regression model:

zt = γ2wt + δ2zt + · · · + v2t,

by OLS.

=⇒ γ̂2 = 0, δ̂2 = 1, and the other coefficient estimates are zeros. i.e., ẑt = zt.

Eviews Command:

tsls y x z @ w z ...
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13 Large Sample Tests

13.1 Wald, LM and LR Tests

Parameter θ : k × 1, h(θ) : G × 1 vector function, G ≤ k

The null hypothesis H0 : h(θ) = 0 =⇒ G restrictions

θ̃ : k × 1, restricted maximum likelihood estimate

θ̂ : k × 1, unrestricted maximum likelihood estimate

I(θ) : k × k, information matrix, i.e., I(θ) = −E
(∂2 log L(θ)
∂θ∂θ′

)
.

log L(θ) : log-likelihood function

Rθ =
∂h(θ)
∂θ′

: G × k, Fθ =
∂ log L(θ)
∂θ

: k × 1

1. Wald Test (ワルド検定): W = h(θ̂)′
(
Rθ̂(I(θ̂))−1R′

θ̂

)−1
h(θ̂)

(a) h(θ̂) ≈ h(θ) +
∂h(θ)
∂θ′

(θ̂ − θ) ⇐= h(θ̂) is linearized around θ̂ = θ.

197



Under the null hypothesis h(θ) = 0,

h(θ̂) ≈ ∂h(θ)
∂θ′

(θ̂ − θ) = Rθ(θ̂ − θ)

(b) θ̂ is MLE.

From the properties of MLE,

√
n(θ̂ − θ) −→ N

(
0, lim

n→∞

( I(θ)
n

)−1)
,

That is, approximately, we have the following result:

θ̂ − θ ∼ N
(
0, (I(θ))−1

)
.

(c) The distribution of h(θ̂) is approximately given by:

h(θ̂) ∼ N
(
0,Rθ(I(θ))−1R′θ

)
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(d) Therefore, the χ2(G) distribution is derived as follows:

h(θ̂)
(
Rθ(I(θ))−1R′θ

)−1
h(θ̂)′ −→ χ2(G).

Furthermore, from the fact that Rθ̂ −→ Rθ and I(θ̂) −→ I(θ) as n −→ ∞

(i.e., convergence in probability, 確率収束), we can replace θ by θ̂ as

follows:

h(θ̂)
(
Rθ̂(I(θ̂))−1R′

θ̂

)−1
h(θ̂)′ −→ χ2(G).

2. Lagrange Multiplier Test (ラグランジェ乗数検定): LM = F′
θ̃
(I(θ̃))−1Fθ̃

(a) MLE with the constraint h(θ) = 0:

max
θ

log L(θ), subject to h(θ) = 0

The Lagrangian function is: L = log L(θ) + λh(θ).
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(b) For maximization, we have the following two equations:

∂L
∂θ
=
∂ log L(θ)
∂θ

+ λ
∂h(θ)
∂θ
= 0,

∂L
∂λ
= h(θ) = 0.

The restricted MLE θ̃ satisfies h(θ̃) = 0.

(c) Mean and variance of
∂ log L(θ)
∂θ

are given by:

E
(∂ log L(θ)
∂θ

)
= 0, V

(∂ log L(θ)
∂θ

)
= −E

(∂2 log L(θ)
∂θ∂θ′

)
= I(θ).

(d) Therefore, using the central limit theorem,

1
√

n
∂ log L(θ)
∂θ

=
1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

−→ N
(
0, lim

n→∞

(1
n

I(θ)
))

(e) Therefore,
∂ log L(θ)
∂θ

(I(θ))−1∂ log L(θ)
∂θ′

−→ χ2(G).

Under H0 : h(θ) = 0, replacing θ by θ̃ we have the result:

F′
θ̃
(I(θ̃))−1Fθ̃ −→ χ2(G).
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3. Likelihood Ratio Test (尤度比検定): LR = −2 log λ −→ χ2(G)

λ =
L(θ̃)
L(θ̂)

(a) By Taylor series expansion evaluated at θ = θ̂, log L(θ) is given by:

log L(θ) = log L(θ̂) +
∂ log L(θ̂)
∂θ

(θ − θ̂) + 1
2

(θ − θ̂)′∂
2 log L(θ̂)
∂θ∂θ′

(θ − θ̂) + · · ·

= log L(θ̂) +
1
2

(θ − θ̂)′∂
2 log L(θ̂)
∂θ∂θ′

(θ − θ̂) + · · ·

Note that
∂ log L(θ̂)
∂θ

= 0 because θ̂ is MLE.

−2(log L(θ) − log L(θ̂)) ≈ −(θ − θ̂)′
(∂2 log L(θ̂)
∂θ∂θ′

)
(θ − θ̂)

=
√

n(θ̂ − θ)′
(
−1

n
∂2 log L(θ̂)
∂θ∂θ′

)√
n(θ̂ − θ)

−→ χ2(G)
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Note:

(1) θ̂ −→ θ,

(2) −1
n
∂2 log L(θ̂)
∂θ∂θ′

−→ − lim
n→∞

(1
n

E
(∂2 log L(θ̂)
∂θ∂θ′

))
= lim

n→∞

(1
n

I(θ)
)
,

(3)
√

n(θ̂ − θ) −→ N
(
0, lim

n→∞

(1
n

I(θ)
))

.

(b) Under H0 : h(θ) = 0,

−2(log L(θ̃) − log L(θ̂)) −→ χ2(G).

Remember that h(θ̃) = 0 is always satisfied.

For proof, see Theil (1971, p.396).

4. All of W, LM and LR are asymptotically distributed as χ2(G) random variables

under the null hypothesis H0 : h(θ) = 0 .
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5. Under some comditions, we have W ≥ LR ≥ LM. See Engle (1981) “Wald,

Likelihood and Lagrange Multiplier Tests in Econometrics,” Chap. 13 in Hand-

book of Econometrics, Vol.2, Grilliches and Intriligator eds, North-Holland.

13.2 Example: W, LM and LR Tests

Date file =⇒ cons99.txt (same data as before)

Each column denotes year, nominal household expenditures (家計消費，10 billion

yen), household disposable income (家計可処分所得，10 billion yen) and household

expenditure deflator (家計消費デフレータ，1990=100) from the left.
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1955 5430.1 6135.0 18.1 1970 37784.1 45913.2 35.2 1985 185335.1 220655.6 93.9

1956 5974.2 6828.4 18.3 1971 42571.6 51944.3 37.5 1986 193069.6 229938.8 94.8

1957 6686.3 7619.5 19.0 1972 49124.1 60245.4 39.7 1987 202072.8 235924.0 95.3

1958 7169.7 8153.3 19.1 1973 59366.1 74924.8 44.1 1988 212939.9 247159.7 95.8

1959 8019.3 9274.3 19.7 1974 71782.1 93833.2 53.3 1989 227122.2 263940.5 97.7

1960 9234.9 10776.5 20.5 1975 83591.1 108712.8 59.4 1990 243035.7 280133.0 100.0

1961 10836.2 12869.4 21.8 1976 94443.7 123540.9 65.2 1991 255531.8 297512.9 102.5

1962 12430.8 14701.4 23.2 1977 105397.8 135318.4 70.1 1992 265701.6 309256.6 104.5

1963 14506.6 17042.7 24.9 1978 115960.3 147244.2 73.5 1993 272075.3 317021.6 105.9

1964 16674.9 19709.9 26.0 1979 127600.9 157071.1 76.0 1994 279538.7 325655.7 106.7

1965 18820.5 22337.4 27.8 1980 138585.0 169931.5 81.6 1995 283245.4 331967.5 106.2

1966 21680.6 25514.5 29.0 1981 147103.4 181349.2 85.4 1996 291458.5 340619.1 106.0

1967 24914.0 29012.6 30.1 1982 157994.0 190611.5 87.7 1997 298475.2 345522.7 107.3

1968 28452.7 34233.6 31.6 1983 166631.6 199587.8 89.5

1969 32705.2 39486.3 32.9 1984 175383.4 209451.9 91.8
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PROGRAM
LINE ***********************************************
| 1 freq a;
| 2 smpl 1955 1997;
| 3 read(file=’cons99.txt’) year cons yd price;
| 4 rcons=cons/(price/100);
| 5 ryd=yd/(price/100);
| 6 lyd=log(ryd);
| 7 olsq rcons c ryd;
| 8 olsq @res @res(-1);
| 9 ar1 rcons c ryd;
| 10 olsq rcons c lyd;
| 11 param a1 0 a2 0 a3 1;
| 12 frml eq rcons=a1+a2*((ryd**a3)-1.)/a3;
| 13 lsq(tol=0.00001,maxit=100) eq;
| 14 a3=1.15;
| 15 rryd=((ryd**a3)-1.)/a3;
| 16 ar1 rcons c rryd;
| 17 end;
*****************************************************
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Equation 1
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = .207443 [.649]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .115101 [.000,.000]

Sum of squared residuals = .129697E+10 Jarque-Bera test = 9.47539 [.009]
Variance of residuals = .316335E+08 Ramsey’s RESET2 = 53.6424 [.000]

Std. error of regression = 5624.36 F (zero slopes) = 8311.90 [.000]
R-squared = .995092 Schwarz B.I.C. = 435.051

Adjusted R-squared = .994972 Log likelihood = -431.289

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -2919.54 1847.55 -1.58022 [.122]
RYD .852879 .935486E-02 91.1696 [.000]
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Equation 2
============

Method of estimation = Ordinary Least Squares

Dependent variable: @RES
Current sample: 1956 to 1997
Number of observations: 42

Mean of dep. var. = -95.5174
Std. dev. of dep. var. = 5588.52

Sum of squared residuals = .146231E+09
Variance of residuals = .356662E+07

Std. error of regression = 1888.55
R-squared = .885884

Adjusted R-squared = .885884
LM het. test = .760256 [.383]
Durbin-Watson = 1.40409 [.023,.023]
Durbin’s h = 1.97732 [.048]

Durbin’s h alt. = 1.91077 [.056]
Jarque-Bera test = 6.49360 [.039]
Ramsey’s RESET2 = .186107 [.668]
Schwarz B.I.C. = 377.788
Log likelihood = -375.919

Estimated Standard
Variable Coefficient Error t-statistic P-value
@RES(-1) .950693 .053301 17.8362 [.000]
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Equation 3
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999480
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999454

Sum of squared residuals = .145826E+09 Durbin-Watson = 1.38714
Variance of residuals = .364564E+07 Schwarz B.I.C. = 391.061

Std. error of regression = 1909.36 Log likelihood = -385.419

Standard
Parameter Estimate Error t-statistic P-value
C 1672.42 6587.40 .253881 [.800]
RYD .840011 .027182 30.9032 [.000]
RHO .945025 .045843 20.6143 [.000]
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Equation 4
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = 2.21031 [.137]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .029725 [.000,.000]

Sum of squared residuals = .256040E+11 Jarque-Bera test = 3.72023 [.156]
Variance of residuals = .624487E+09 Ramsey’s RESET2 = 344.855 [.000]

Std. error of regression = 24989.7 F (zero slopes) = 382.117 [.000]
R-squared = .903100 Schwarz B.I.C. = 499.179

Adjusted R-squared = .900737 Log likelihood = -495.418

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -.115228E+07 66538.5 -17.3175 [.000]
LYD 109305. 5591.69 19.5478 [.000]
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NONLINEAR LEAST SQUARES
=======================

CONVERGENCE ACHIEVED AFTER 84 ITERATIONS

Number of observations = 43 Log likelihood = -414.362
Schwarz B.I.C. = 420.004

Standard
Parameter Estimate Error t-statistic P-value
A1 16544.5 2615.60 6.32530 [.000]
A2 .063304 .024133 2.62307 [.009]
A3 1.21694 .031705 38.3839 [.000]

Standard Errors computed from quadratic form of analytic first derivatives
(Gauss)

Equation: EQ
Dependent variable: RCONS

Mean of dep. var. = 146270.
Std. dev. of dep. var. = 79317.2

Sum of squared residuals = .590213E+09
Variance of residuals = .147553E+08

Std. error of regression = 3841.27
R-squared = .997766

Adjusted R-squared = .997655
LM het. test = .174943 [.676]
Durbin-Watson = .253234 [.000,.000]
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Equation 5
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999470
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999443

Sum of squared residuals = .140391E+09 Durbin-Watson = 1.43657
Variance of residuals = .350977E+07 Schwarz B.I.C. = 389.449

Std. error of regression = 1873.44 Log likelihood = -383.807

Standard
Parameter Estimate Error t-statistic P-value
C 12034.8 3346.47 3.59628 [.000]
RRYD .140723 .282614E-02 49.7933 [.000]
RHO .876924 .068199 12.8583 [.000]
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1. Equation 1 vs. Equation 3 (Test of Serial Correlation)

Equation 1 is:

RCONSt = β1 + β2RYDt + ut, εt ∼ iid N(0, σ2
ε )

Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0
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Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 3

The log-likelihood function of Equation 3 is:

log L(β, σ2
ε , ρ) = −

n
2

log(2π) − n
2

log(σ2
ε ) +

1
2

log(1 − ρ2)

− 1
2σ2
ε

n∑
t=1

(RCONS∗t − β1CONST
∗
t − β2RYD

∗
t )2,

where

RCONS∗t =


√

1 − ρ2RCONSt, for t = 1,

RCONSt − ρRCONSt−1, for t = 2, 3, · · · , n,

CONST∗t =


√

1 − ρ2, for t = 1,

1 − ρ, for t = 2, 3, · · · , n,
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RYD∗t =


√

1 − ρ2RYDt, for t = 1,

RYDt − ρRYDt−1, for t = 2, 3, · · · , n.

• MLE with the restriction ρ = 0 (Equation 1) solves:

max
β,σ2
ε

log L(β, σ2
ε , 0)

Restricted MLE =⇒ β̃, σ̃2
ε

Log of likelihood function = -431.289

• MLE without the restriction ρ = 0 (Equation 3) solves:

max
β,σ2
ε ,ρ

log L(β, σ2
ε , ρ)

Unrestricted MLE =⇒ β̂, σ̂2
ε , ρ̂

Log of likelihood function = -385.419
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The likelihood ratio test statistic is:

−2 log(λ) = −2 log
(L(β̃, σ̃2

ε , 0)

L(β̂, σ̂2
ε , ρ̂)

)
= −2

(
log L(β̃, σ̃2

ε , 0) − log L(β̂, σ̂2
ε , ρ̂)

)
= −2

(
−431.289 − (−385.419)

)
= 91.74.

The asymptotic distribution is given by:

−2 log(λ) ∼ χ2(G),

where G is the number of the restrictions, i.e., G = 1 in this case.

The 1% upper probability point of χ2(1) is 6.635.

91.74 > 6.635

Therefore, H0 : ρ = 0 is rejected.

There is serial correlation in the error term.
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2. Equation 1 (Test of Serial Correlation −→ Lagrange Multiplier Test)

Equation 2 is:

@RESt = ρ@RESt−1 + εt, εt ∼ N(0, σ2
ε ),

where @RESt = RCONSt − β̂1 − β̂2RYDt, and β̂1 and β̂2 are OLSEs.

The null hypothesis is H0 : ρ = 0

@RES(-1) .950693 .053301 17.8362 [.000]

Therefore, the Lagrange multiplier test statistic is 17.83622 = 318.13 > 6.635.

H0 : ρ = 0 is rejected.

3. Equation 3 (Test of Serial Correlation −→ Wald Test)
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Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0

RHO .945025 .045843 20.6143 [.000]

The Wald test statistics is 20.61432 = 424.95, which is compared with χ2(1).

4. Equation 1 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form –

linear):

NONLINEAR LEAST SQUARES estimates:

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut.

217



When a3 = 1, we have:

RCONSt = (a1 − a2) + a2RYDt + ut,

which is equivalent to Equation 1.

The null hypothesis is H0 : a3 = 1, where G = 1.

• MLE with a3 = 1 MLE (Equation 1)

Log of likelihood function = -431.289

• MLE without a3 = 1 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is given by:

−2 log(λ) = −2
(
−431.289 − (−414.362)

)
= 33.854.
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The 1% upper probability point of χ2(1) is 6.635.

33.854 > 6.635

H0 : a3 = 1 is rejected.

Therefore, the functional form of the regression model is not linear.

5. Equation 4 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form –

log-linear):

In NONLINEAR LEAST SQUARES, i.e.,

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut,

if a3 = 0, we have:

RCONSt = a1 + a2 log(RYDt) + ut,
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which is equivalent to Equation 3.

The null hypothesis is H0 : a3 = 0, where G = 1.

• MLE with a3 = 0 (Equation 3)

Log of likelihood function = -495.418

• MLE without a3 = 0 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is:

−2 log(λ) = −2
(
−495.418 − (−414.362)

)
= 162.112 > 6.635.

Therefore, H0 : a3 = 0 is rejected.

As a result, the functional form of the regression model is not log-linear, either.
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6. Equation 1 vs. Equation 5 (Simultaneous Test of Serial Correlation and

Linear Function):

Equation 5 is:

RCONSt = a1 + a2
RYDa3

t − 1
a3

+ ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : a3 = 1, ρ = 0

Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 4

Remark: In Lines 14–16 of PROGRAM, we have estimated Equation 4, given

a3 = 0.00, 0.01, 0.02, · · ·.

As a result, a3 = 1.15 gives us the maximum log-likelihood.
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The likelihood ratio test statistic is:

−2 log(λ) = −2
(
−431.289 − (−383.807)

)
= 94.964.

−2 log(λ) ∼ χ2(2) in this case.

The 1% upper probability point of χ2(2) is 9.210.

94.964 > 9.210

H0 : a3 = 1, ρ = 0 is rejected.
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Equation 3 vs. Equation 5 vs. (Taking into account serially correlated

errors, Choice of Functional Form – linear):

The null hypothesis is H0 : a3 = 1, ρ = 0

From Equation 3,

Log likelihood = -385.419

From Equation 5,

Log likelihood = -383.807

2(−383.807 − (−385.419)) = 3.224 < 6.635.

H0 : a3 = 1 is not rejected, given ρ , 0.

Thus, if serial correlation is taken into account, the regression model is linear.
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1. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,
where it is assumed that lim

n→∞

(
I(θ)
n

)
converges.

That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.
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Practically, we utilize the following approximated distribution:

θ̃ ∼ N
(
θ, (I(θ̃))−1

)
.

Then, we can obtain the significance test and the confidence interval for θ

2. Central Limit Theorem: Let X1, X2, · · ·, Xn be mutually independently dis-

tributed random variables with mean E(Xi) = µ and variance V(Xi) = σ2 < ∞

for i = 1, 2, · · · , n.

Define X = (1/n)
∑n

i=1 Xi.

Then, the central limit theorem is given by:

X − E(X)√
V(X)

=
X − µ
σ/
√

n
−→ N(0, 1).

Note that E(X) = µ and V(X) = σ2/n.
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That is,
√

n(X − µ) = 1
√

n

n∑
i=1

(Xi − µ) −→ N(0, σ2).

Note that E(X) = µ and nV(X) = σ2.

In the case where Xi is a vector of random variable with mean µ and variance

Σ < ∞, the central limit theorem is given by:

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0,Σ).

Note that E(X) = µ and nV(X) = Σ.
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3. Central Limit Theorem II: Let X1, X2, · · ·, Xn be mutually independently

distributed random variables with mean E(Xi) = µ and variance V(Xi) = σ2
i for

i = 1, 2, · · · , n.

Assume:

σ2 = lim
n→∞

1
n

n∑
i=1

σ2
i < ∞.

Define X = (1/n)
∑n

i=1 Xi.

The central limit theorem is given by:

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0, σ2).

Note that E(X) = µ and nV(X) −→ σ2.
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In the case where Xi is a vector of random variable with mean µ and variance

Σi, the central limit theorem is given by:

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0,Σ),

where Σ = lim
n→∞

1
n

n∑
i=1

Σi < ∞.

Note that E(X) = µ and nV(X) −→ Σ.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) Xn −→ a, i.e., X converges in

probability to a, where a is a fixed number.
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• Convergence in Distribution (分布収束) Xn −→ X, i.e., X converges in

distribution to X. The distribution of Xn converges to the distribution of X as n

goes to infinity.

Some Formulas

Xn and Yn : Convergence in Probability

Zn : Convergence in Distribution

• If Xn −→ a, then f (Xn) −→ f (a).

• If Xn −→ a and Yn −→ b, then f (XnYn) −→ f (ab).

• If Xn −→ a and Zn −→ Z, then XnZn −→ aZ, i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a2V(Z).

[End of Review]
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4. Asymptotic Normality of MLE — Proof:

The density (or probability) function of Xi is given by f (xi; θ).

The likelihood function is: L(θ; x) ≡ f (x; θ) =
∏n

i=1 f (xi; θ),

where x = (x1, x2, · · · , xn).

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

A solution of the above problem is given by MLE of θ, denoted by θ̃.

That is, θ̃ is given by the θ which satisfies the following equation:

∂ log L(θ; x)
∂θ

=

n∑
i=1

∂ log f (xi; θ)
∂θ

= 0.
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Replacing xi by the underlying random variable Xi,
∂ log f (Xi; θ)

∂θ
is taken as

the ith random variable, i.e., Xi in the Central Limit Theorem II.

Consider applying Central Limit Theorem II.

In this case, we need the following expectation and variance:

E
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
and V

(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
.

Defining the variance:

V
(∂ log f (Xi; θ)

∂θ

)
= Σi,

we can rewrite the information matrix as follows:

I(θ) = V
(∂ log L(θ; X)

∂θ

)
= V

( n∑
i=1

∂ log f (Xi; θ)
∂θ

)
=

n∑
i=1

V
(∂ log f (Xi; θ)

∂θ

)
=

n∑
i=1

Σi
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The third equality holds when X1, X2, · · · , Xn are mutually independent.

Note that E
(∂ log L(θ; X)

∂θ

)
= 0 and V

(∂ log L(θ; X)
∂θ

)
= I(θ).

1
n
∂ log L(θ; X)
∂θ

=
1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

√
n

1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

− E
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

) −→ N(0,Σ),

where

nV
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
( n∑

i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
(∂ log L(θ; X)

∂θ

)
=

1
n

I(θ) −→ Σ.
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That is,
1
√

n
∂ log L(θ; X)
∂θ

−→ N(0,Σ),

where X = (X1, X2, · · · , Xn).

Now, consider replacing θ by θ̃, i.e.,

1
√

n
∂ log L(θ̃; X)
∂θ

,

which is expanded around θ̃ = θ as follows:

0 =
1
√

n
∂ log L(θ̃; X)
∂θ

≈ 1
√

n
∂ log L(θ; X)
∂θ

+
1
√

n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ).

Therefore,

1
√

n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ) ≈ − 1
√

n
∂ log L(θ; X)
∂θ

−→ N(0,Σ).
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The left-hand side is rewritten as:

1
√

n
∂2 log L(θ; X)
∂θ∂θ′

=
√

n
1
n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ).

Then,

√
n(θ̃ − θ) ≈ −

(1
n
∂2 log L(θ; X)
∂θ∂θ′

)−1( 1
√

n
∂ log L(θ; X)
∂θ

)
−→ N(0,Σ−1ΣΣ−1) = N(0,Σ−1).

Note that

1
n
∂2 log L(θ; X)
∂θ∂θ′

−→ lim
n→∞

1
n

E
(∂2 log L(θ; X)

∂θ∂θ′

)
= Σ,

and
(1
n
∂2 log L(θ; X)
∂θ∂θ′

)−1( 1
√

n
∂ log L(θ; X)
∂θ

)
has the same asymptotic distribu-

tion as Σ−1
( 1
√

n
∂ log L(θ; X)
∂θ

)
.
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Exam — Aug. 4, 2016 (AM8:50-10:20)
• 60 - 70% from two homeworks including optional an additional questions (2つの

宿題から 60 - 70%)

• 30 - 40% of new questions (30 - 40%の新しい問題)

• Questions are written in English, and answers should be in English or Japanese.

(出題は英語，解答は英語または日本語)

• With no carrying in (持ち込みなし)

235


