Homework (Due: July 28, 2016 AM10:20)

1 Let y, X, β and u be a $n \times 1$ vector, a $n \times k$ matrix, a $k \times 1$ vector and a $n \times 1$ vector, respectively, where X is nonstochastic, u is an error term, and β is a parameter.

Consider the regression model: $y = X\beta + u$, where E(u) = 0 and $V(u) = \sigma^2 I_n$ are assumed.

- (1) Let $\hat{\beta}$ be the OLS estimator. Show that $\hat{\beta}$ is a consistent estimator of β .
- (2) As n goes to infinity, derive the distribution of $\frac{1}{\sqrt{n}}X'u$. What is the assumption(s) for the derivation?
- (3) As n goes to infinity, derive the distribution of $\sqrt{n}(\hat{\beta} \beta)$.

2 Suppose that X_1, X_2, \dots, X_n are mutually independent. The density function of X_i is given by $f(x_i; \theta)$, where θ is the parameter to be estimated. For simplicity of discussion, suppose that θ is a scalar (i.e., 1×1).

- (4) Construct the likelihood function of θ , denoted by $L(\theta)$.
- (5) Let $\hat{\theta}$ be an unbiased estimator of θ . Show the following inequality:

$$\mathcal{V}(\hat{\theta}) \ge \frac{1}{I(\theta)},$$

where $I(\theta) = -E\left(\frac{\partial^2 \log L(\theta)}{\partial \theta^2}\right)$.

(6) Let $\tilde{\theta}$ be the maximum likelihood estimator of θ . Derive the distribution of $\sqrt{n}(\tilde{\theta} - \theta)$ as n goes to infinity. What is the assumption(s) for the derivation?