7.3 Count Data Model (Gt#(7—4% T /L)

Poisson distribution:
e )*

PX=x) = fx) =
forx=0,1,2,---
In the case of Poisson random variable X, the expectation of X is:
00 —/l/lx—l

—/l/lx & e—/l/lx i e a e—/l/lx’
(X)= ) x—m = ) v L1 G- Z:;) 7

x=0 ! x=1

Remember that ), f(x) = 1, i.e., Yoo e *2%/x! = 1.
Therefore, the probability function of the count data y; is taken as the Poisson distri-

bution with parameter A;.

In the case where the explained variable y; takes 0, 1, 2, --- (discrete numbers),

assuming that the distribution of y; is Poisson, the logarithm of A; is specified as a
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linear function, i.e.,
E(y,) = /l,‘ = CXp(X,‘ﬂ).

Note that A; should be positive.

Therefore, it is better to avoid the specification: 1 = X;3.

The joint distribution of yy, y,, - - -, y, is:

n —A; Vi

fouya =] | fon=1] ey_,’ = L(pB),
i=1 ’

i=1 !

where 4; = exp(X;5).

The log-likelihood function is:

IOgL(ﬁ) = - Zn:/ll + zn:yilog/li - Zn:y,‘
i=1 i=1 i=1
== ZH: exp(XiB) + Zn: yiXiB — anyi!-
i=1 i=1 i=1
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The first-order condition is:

dlog L(B) < O L,
== X; exp(X;p) + Xiyi =0.
D) 2,

— Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization proce-

dures) is:

& log LB\ ™" 8log L(BY)

opop’ )
which comes from the first-order Taylor series expansion around 8 = 3*:
_ dlog L(B) _ dlog L(B") . 8% log L(B")
B B 0Bop’

and 3 and B* are replaced by SY*! and B, respectively.

B(j+1) :lB(j) _ (

0

B-=B)
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An alternative nonlinear optimization procedure is known as the method of scoring,

which is shown as:

,B(jH) :lg(j) _ (E(62 log L(,B(j))))—l 610g L(ﬁ(j))’

Ppop’ B
9”log L)\ . 0% log L(BY)
h _— 1 E(——————|
where ( B ) is replaced by ( B )
[End of Review]

In this case, we have the following iterative procedure:

n _1 n n
pUD = o — [— D XX, exp(x,-ﬁ<f>>) [— DX expXBD) + " Xy .
i=1 i=1 i=1

The Newton-Raphson method is equivalent to the scoring method in this count model,

because any random variable is not included in the expectation.
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Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have
to modify the estimation procedure.
Suppose that the probability of y; = j is decomposed of two regimes.

— We have the case of y; = j and Regime 1, and that of y; = j and Regime 2.

Consider P(y; = 0) and P(y; = j) separately as follows:

P(y; = 0) = P(y; = O|Regime 1)P(Regime 1) + P(y; = O|Regime 2)P(Regime 2)

P(y; = j) = P(y; = jlIRegime 1)P(Regime 1) + P(y; = jIRegime 2)P(Regime 2),

for j=1,2,---.
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Assume:
e P(y; = O|Regime 1) = 1 and P(y; = jl[Regime 1) =0for j=1,2,---,

e P(Regime 1) = F; and P(Regime 2) = 1 - F;,
—/1,’/1}"1

e P(y; = jIRegime 2) = ‘ ~ for j=0,1,2,---,

Yi:

1

where F; = F(Z;a) and A; = exp(X;8). = w; and X; are exogenous variables.

Under the first assumption, we have the following equations:

P(y; = 0) = P(Regime 1) + P(y; = O|Regime 2)P(Regime 2)

P(y; = j) = P(y; = jl[Regime 2)P(Regime 2),

for j=1,2,---.
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Combining the above two equations, we obtain the following:
P(y; = j) = P(Regime 1)I; + P(y; = jIRegime 2)P(Regime 2),

for j=0,1,2,---,

where the indicator function /; is given by I; = 1 for y; = O and I; = O for y; # 0.
F; denotes a cumulative distribution function of Z;&. = We have to assume F;.

Including the other two assumptions, we obtain the distribution of y; as follows:
—/l,'/l_yi
Py;=j)=Fili+ —L(1-F),  j=0,12,"
Yi:

where F; = F(Z;a), A; = exp(X;B), and the indicator function /; is given by I; = 1 for
yi=0and [; = 0fory; # 0.
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Therefore, the log-likelihood function is:

n n e—/l,’/l}.’i
log L(a, ) = ) log Py = j) = ) ,log (Fill- # - F»),
i=1 i=1 '

]

where F; = F(Z;a) and A; = exp(X;0).

log L(a, B) is maximized with respect to @ and 3.
— The Newton-Raphson method or the method of scoring is utilized for maximiza-

tion.
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Example of Poisson Regression:

bike B FHHRIEE L (2012 4F)
lowland {EMiEFRE (CEAGF0, 2012 4)
dwellings JE{EAEMMEE CFAF0, 2012 4F)

pop A (2010 )

pref bike lowland dwellings pop
JevE 1 11 9794 543 5504
H iR 2 6 1237 193 1374
=F 3 7 1261 216 1326
(=874 4 4 1757 259 2352
FKH 5 2 2453 170 1085
17 6 5 1393 163 1167
= 7 5 1437 255 2021
K 8 20 1647 454 2887
TN 9 17 752 289 1990
HE 10 17 585 272 2005
BE 11 42 1414 487 6373
T 12 30 1452 489 5560
W 13 34 274 421 15576
Mz 14 17 575 418 8254
iR 19 5 2775 274 2375
B 20 4 987 145 1091
Al 15 5 656 116 1172
v 16 2 932 93 807
17 4 343 115 855
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iy 21 7 751 307 2149

FE 22 12 1174 226 1998
e 23 22 1155 338 3760
T 24 44 1148 521 7521
= 18 8 1031 207 1820
w25 6 935 132 1363
HHES 26 15 820 149 2668
KB 27 47 610 318 9281
e 28 23 1604 346 5348
FeS 29 4 273 110 1260
ML 30 7 316 93 983
EE 31 4 411 70 589
BiE 32 3 495 94 718
ML 33 14 1141 216 1943
KE 34 12 559 232 2869
e 35 2 461 173 1444
e 36 7 551 88 783
HFN 37 17 474 117 998
EiE 38 9 557 146 1433
@A 39 6 327 70 763
e 40 18 1224 400 5078
2 41 6 645 103 852
Eli 42 1 339 141 1423
REAR 43 14 958 225 1810
R 44 6 595 140 1197
=R 45 6 764 163 1136
EIRE 46 5 771 258 1704
WHE 47 1 151 98 1392
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. poisson bike lowland dwellings pop

Iteration O: log likelihood = -156.83031
Iteration 1: log likelihood = -153.97721
Iteration 2: log likelihood = -153.97403
Iteration 3: log likelihood = -153.97403
Poisson regression Number of obs = 47
LR chi2(3) = 286.85
Prob > chi2 = 0.0000
Log likelihood = -153.97403 Pseudo R2 = 0.4823
bike | Coef. Std. Err z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
lowland | -.0001559 .0000368 -4.23  0.000 -.0002281 -.0000837
dwellings | .0042478 .000447 9.50 0.000 .0033716 .0051239
pop | .0000519 .0000146 3.56  0.000 .0000234 .0000804
_cons | 1.309844 .1051302 12.46  0.000 1.103793 1.515896

. gen llland=log(lowland)
. gen ldwellings=log(dwellings)

. gen lpop=log(pop)
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. poisson bike 1llland ldwellings lpop

Iteration O: log likelihood = -156.15686
Iteration 1: log likelihood = -155.6255
Iteration 2: log likelihood = -155.62489
Iteration 3: log likelihood = -155.62489
Poisson regression Number of obs = 47
LR chi2(3) = 283.54
Prob > chi2 = 0.0000
Log likelihood = -155.62489 Pseudo R2 = 0.4767
bike | Coef. Std. Err z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
1lland | -.1028579 .0800629 -1.28 0.199 -.2597784 .0540625
ldwellings | .4817018 .2171779 2.22  0.027 .056041 .9073626
lpop | .5715923 .1220733 4.68 0.000 .332333 .8108517
_cons | -3.93974 .559487 -7.04 0.000 -5.036315 -2.843166
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8 Panel Data

8.1 Some Formulas of Matrix Algebra — Review

ay dip - Ak
dy; dyp - Ay

I. LetA=| ) | = Laijl,
an Aap - A

which is a [ X k matrix, where a;; denotes ith row and jth column of A.

The transposed matrix (25 E1T75!) of A, denoted by A’, is defined as:

apy dazy - an

, ap dxp -+ ap
A= . . . [aji],

aix Ao - Ak
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where the ith row of A’ is the ith column of A.
. (Ax) = X'A’,

where A and x are a [ X k matrix and a k X 1 vector, respectively.

. d =a,

where a denotes a scalar.

da’'x
=a,
Ox
where a and x are k X 1 vectors.
ox'A
R A A
ox

where A and x are a k X k matrix and a k X 1 vector, respectively.

Especially, when A is symmetric,
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. Let A and B be k x k matrices, and I; be a k x k identity matrix (BE{I1T51)

(one in the diagonal elements and zero in the other elements).

When AB = I, B is called the inverse matrix (3¥17%1) of A, denoted by
B=A"

Thatis, AA™' = A7'A = I,.
. Let A be a k X k matrix and x be a k X 1 vector.

If A is a positive definite matrix (IE{&E &F51751), for any x except for x = 0

we have:

xX'Ax > 0.
If A is a positive semidefinite matrix (GE&{EE RFS1T5!), for any x except
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for x = 0 we have:

x'Ax > 0.

If A is a negative definite matrix (R{EZEfFS1751), for any x except for x = 0
we have:

xX'Ax < 0.

If A is a negative semidefinite matrix (3E1E{EE RF=1751), for any x except
for x = 0 we have:

x'Ax <0.
Trace, Rank and etc.: A:kxk, B:nxk, C:kxn.

k
I. The trace (kL' —2) of A is: tr(4) = > a;;, where A = [a;] .

i=1
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2. Therank (T > 7, FE#7) of A is the maximum number of linearly independent

column (or row) vectors of A, which is denoted by rank(A).
3. If A is an idempotent matrix (X ZF1T71), A = A%.
4. If A is an idempotent and symmetric matrix, A = A> = A’A .
5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

B

. tr(BC) =tr(CB)

Distributions in Matrix Form:

1. Let X, uand £ be k x 1, k X 1 and k X k matrices.

165



When X ~ N(u, X), the density function of X is given by:

1
f(x) = xp(—5 (= /=7 (x - ).

Qr)k2|z|12 €
E(X) = pand V(X) = B((X - )(X - p)') =X
The moment-generating function: ¢(6) = E(exp(G’X)) =exp(@'u + %9’29)

(*) In the univariate case, when X ~ N(u, 0%), the density function of X is:

1 1
f0 = G exp(~5—(x— 7).

CIFX ~ N, T), then (X — )=~ 1 (X — p) ~ x2(k).

Note that  X’X ~ y?(k) when X ~ N(0, I).

3. X:nx1,  Yimxl, X ~Np,2), Y~N,Z,)
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X is independent of Y, i.e., E((X — )Y - ,uy)’) = 0 in the case of normal

random variables.

X — ) 5 (X = p)/n
(Y = i) 1Y = py)/m

~ F(n,m)

. If X ~ N(0, 0*1,) and A is a symmetric idempotent 7 X n matrix of rank G, then
X'AX/0? ~ Y*(G).
Note that X’AX = (AX)'(AX) and rank(A) = tr(A) because A is idempotent.

. If X ~ N(0,0?1I,), A and B are symmetric idempotent n X n matrices of rank G

and K, and AB = 0, then

X'AX X'BX X'AX/G
/ = /G F(G,K).

Go? ! Ko  X'BX/K
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