7.3 Count Data Model (計数データモデル)

Poisson distribution:

$$P(X = x) = f(x) = \frac{e^{-\lambda} \lambda^x}{x!},$$

for $x = 0, 1, 2, \cdots$.

In the case of Poisson random variable X, the expectation of X is:

$$E(X) = \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^{\infty} \lambda \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!} = \lambda \sum_{x'=0}^{\infty} \frac{e^{-\lambda} \lambda^{x'}}{x'!} = \lambda.$$

Remember that $\sum_{x} f(x) = 1$, i.e., $\sum_{x=0}^{\infty} e^{-\lambda} \lambda^{x} / x! = 1$.

Therefore, the probability function of the count data y_i is taken as the Poisson distribution with parameter λ_i .

In the case where the explained variable y_i takes 0, 1, 2, \cdots (discrete numbers), assuming that the distribution of y_i is Poisson, the logarithm of λ_i is specified as a

linear function, i.e.,

$$E(y_i) = \lambda_i = \exp(X_i\beta).$$

Note that λ_i should be positive.

Therefore, it is better to avoid the specification: $\lambda = X_i \beta$.

The joint distribution of y_1, y_2, \dots, y_n is:

$$f(y_1, y_2, \dots, y_n) = \prod_{i=1}^n f(y_i) = \prod_{i=1}^n \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} = L(\beta),$$

where $\lambda_i = \exp(X_i\beta)$.

The log-likelihood function is:

$$\log L(\beta) = -\sum_{i=1}^{n} \lambda_i + \sum_{i=1}^{n} y_i \log \lambda_i - \sum_{i=1}^{n} y_i!$$

= $-\sum_{i=1}^{n} \exp(X_i \beta) + \sum_{i=1}^{n} y_i X_i \beta - \sum_{i=1}^{n} y_i!$.

The first-order condition is:

$$\frac{\partial \log L(\beta)}{\partial \beta} = -\sum_{i=1}^{n} X_i' \exp(X_i \beta) + \sum_{i=1}^{n} X_i' y_i = 0.$$

⇒ Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization procedures) is:

$$\beta^{(j+1)} = \beta^{(j)} - \left(\frac{\partial^2 \log L(\beta^{(j)})}{\partial \beta \partial \beta'}\right)^{-1} \frac{\partial \log L(\beta^{(j)})}{\partial \beta},$$

which comes from the first-order Taylor series expansion around $\beta = \beta^*$:

$$0 = \frac{\partial \log L(\beta)}{\partial \beta} \approx \frac{\partial \log L(\beta^*)}{\partial \beta} + \frac{\partial^2 \log L(\beta^*)}{\partial \beta \partial \beta'} (\beta - \beta^*),$$

and β and β^* are replaced by $\beta^{(j+1)}$ and $\beta^{(j)}$, respectively.

An alternative nonlinear optimization procedure is known as the method of scoring, which is shown as:

$$\beta^{(j+1)} = \beta^{(j)} - \left(\mathbb{E} \left(\frac{\partial^2 \log L(\beta^{(j)})}{\partial \beta \partial \beta'} \right) \right)^{-1} \frac{\partial \log L(\beta^{(j)})}{\partial \beta},$$

$$\text{ where } \bigg(\frac{\partial^2 \log L(\beta^{(j)})}{\partial \beta \partial \beta'} \bigg) \text{ is replaced by } \mathrm{E} \bigg(\frac{\partial^2 \log L(\beta^{(j)})}{\partial \beta \partial \beta'} \bigg).$$

[End of Review]

In this case, we have the following iterative procedure:

$$\beta^{(j+1)} = \beta^{(j)} - \left(-\sum_{i=1}^n X_i' X_i \exp(X_i \beta^{(j)})\right)^{-1} \left(-\sum_{i=1}^n X_i' \exp(X_i \beta^{(j)}) + \sum_{i=1}^n X_i' y_i\right).$$

The Newton-Raphson method is equivalent to the scoring method in this count model, because any random variable is not included in the expectation.

Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have to modify the estimation procedure.

Suppose that the probability of $y_i = j$ is decomposed of two regimes.

 \longrightarrow We have the case of $y_i = j$ and Regime 1, and that of $y_i = j$ and Regime 2.

Consider $P(y_i = 0)$ and $P(y_i = j)$ separately as follows:

$$P(y_i = 0) = P(y_i = 0 | \text{Regime 1}) P(\text{Regime 1}) + P(y_i = 0 | \text{Regime 2}) P(\text{Regime 2})$$

$$P(y_i = j) = P(y_i = j | \text{Regime 1}) P(\text{Regime 1}) + P(y_i = j | \text{Regime 2}) P(\text{Regime 2}),$$

for
$$j = 1, 2, \cdots$$
.

Assume:

•
$$P(y_i = 0 | \text{Regime 1}) = 1 \text{ and } P(y_i = j | \text{Regime 1}) = 0 \text{ for } j = 1, 2, \dots,$$

- $P(\text{Regime 1}) = F_i \text{ and } P(\text{Regime 2}) = 1 F_i$,
- $P(y_i = j | \text{Regime 2}) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}$ for $j = 0, 1, 2, \dots$,

where $F_i = F(Z_i\alpha)$ and $\lambda_i = \exp(X_i\beta)$. $\implies w_i$ and X_i are exogenous variables.

Under the first assumption, we have the following equations:

$$P(y_i = 0) = P(\text{Regime 1}) + P(y_i = 0 | \text{Regime 2})P(\text{Regime 2})$$

$$P(y_i = j) = P(y_i = j | \text{Regime 2})P(\text{Regime 2}),$$

for $j = 1, 2, \cdots$.

Combining the above two equations, we obtain the following:

$$P(y_i = j) = P(\text{Regime 1})I_i + P(y_i = j|\text{Regime 2})P(\text{Regime 2}),$$

for $i = 0, 1, 2, \dots$,

where the indicator function I_i is given by $I_i = 1$ for $y_i = 0$ and $I_i = 0$ for $y_i \neq 0$.

 F_i denotes a cumulative distribution function of $Z_i\alpha$. \Longrightarrow We have to assume F_i .

Including the other two assumptions, we obtain the distribution of y_i as follows:

$$P(y_i = j) = F_i I_i + \frac{e^{-\lambda_i} \lambda_i^{y_i}}{v_i!} (1 - F_i), \qquad j = 0, 1, 2, \cdots$$

where $F_i \equiv F(Z_i\alpha)$, $\lambda_i = \exp(X_i\beta)$, and the indicator function I_i is given by $I_i = 1$ for $y_i = 0$ and $I_i = 0$ for $y_i \neq 0$.

Therefore, the log-likelihood function is:

$$\log L(\alpha, \beta) = \sum_{i=1}^{n} \log P(y_i = j) = \sum_{i=1}^{n} \log \left(F_i I_i + \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} (1 - F_i) \right),$$

where $F_i \equiv F(Z_i\alpha)$ and $\lambda_i = \exp(X_i\beta)$.

 $\log L(\alpha, \beta)$ is maximized with respect to α and β .

⇒ The Newton-Raphson method or the method of scoring is utilized for maximization.

Example of Poisson Regression:

bike 自転車事故死者数 (2012 年) lowland 低地面積 (平方キロ, 2012 年) dwellings 居住用宅地面積 (平方キロ, 2012 年) pop 人口 (2010 年)

	pre	f bike	lowland	dwell	ings pop
北海道	1	11	9794	543	5504
青森	2	6	1237	193	1374
岩手	3	7	1261	216	1326
宮城	4	4	1757	259	2352
秋田	5	2	2453	170	1085
山形	6	5	1393	163	1167
福島	7	5	1437	255	2021
茨城	8	20	1647	454	2887
栃木	9	17	752	289	1990
群馬	10	17	585	272	2005
埼玉	11	42	1414	487	6373
千葉	12	30	1452	489	556 0
東京	13	34	274	421	15576
神奈川	14	17	575	418	8254
新潟	19	5	2775	274	2375
富山	20	4	987	145	1091
石川	15	5	656	116	1172
福井	16	2	932	93	807
山梨	17	4	343	115	855

長野 阜 岡 知	21 22 23 24	7 12 22 44	751 1174 1155 1148	307 226 338 521	2149 1998 3760 7521
三重	18	8	1031	207	1820
滋賀	25	6	935	132	1363
京都	26	15	820	149	2668
大阪	27	47	610	318	9281
兵庫	28	23	1604	346	5348
奈良	29	4	273	110	1260
和歌山	30	7	316	93	983
鳥取	31	4	411	70	589
島根	32	3	495	94	718
岡山	33	14	1141	216	1943
広島	34	12	559	232	2869
道直	35	2	461	173	1444
徳島	36	7	551	88	783
香川	37	17	474	117	998
愛媛	38	9	557	146	1433
高知	39	6	327	70	763
福岡	40	18	1224	400	5078
佐賀	41	6	645	103	852
長崎	42	1	339	141	1423
熊本	43	14	958	225	1810
大分	44	6	595	140	1197
宮崎	45	6	764	163	1136
鹿児島	46	5	771	258	1704
沖縄	47	1	151	98	1392

. poisson bike lowland dwellings pop

```
Iteration 0: log likelihood = -156.83031
Iteration 1: log likelihood = -153.97721
Iteration 2: log likelihood = -153.97403
Iteration 3: log likelihood = -153.97403
```

Log likelihood = -153.97403

Poisson regression

Number of obs = 47 LR chi2(3) = 286.85 Prob > chi2 = 0.0000 Pseudo R2 = 0.4823

bike	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lowland	0001559	.0000368	-4.23	0.000	0002281	0000837
dwellings	.0042478	.000447	9.50	0.000	.0033716	.0051239
pop	.0000519	.0000146	3.56	0.000	.0000234	.0000804
_cons	1.309844	.1051302	12.46	0.000	1.103793	1.515896

- . gen llland=log(lowland)
- . gen ldwellings=log(dwellings)
- . gen lpop=log(pop)

. poisson bike llland ldwellings lpop

Iteration 0:	log likelihood = -156.15686
Iteration 1:	$log\ likelihood = -155.6255$
Iteration 2:	$log\ likelihood = -155.62489$
Iteration 3:	log likelihood = -155.62489

Poisson	regression	

Log likelihood = -155.62489

=	47
=	283.54
=	0.0000
=	0.4767
	= =

bike	 Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
llland	1028579	.0800629	-1.28	0.199	2597784	.0540625
ldwellings	.4817018	.2171779	2.22	0.027	.056041	.9073626
lpop	.5715923	.1220733	4.68	0.000	.332333	.8108517
_cons	-3.93974	.559487	-7.04	0.000	-5.036315	-2.843166

8 Panel Data

8.1 Some Formulas of Matrix Algebra — Review

1. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lk} \end{pmatrix} = [a_{ij}],$$

which is a $l \times k$ matrix, where a_{ij} denotes *i*th row and *j*th column of A.

The **transposed matrix** (転置行列) of A, denoted by A', is defined as:

$$A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{l1} \\ a_{12} & a_{22} & \cdots & a_{l2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{lk} \end{pmatrix} = [a_{ji}],$$

where the *i*th row of A' is the *i*th column of A.

2.
$$(Ax)' = x'A'$$
,

where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.

3.
$$a' = a$$
,

where a denotes a scalar.

$$4. \ \frac{\partial a'x}{\partial x} = a,$$

where a and x are $k \times 1$ vectors.

5.
$$\frac{\partial x' A x}{\partial x} = (A + A')x$$
,

where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.

Especially, when A is symmetric,

$$\frac{\partial x'Ax}{\partial x} = 2Ax.$$

6. Let A and B be $k \times k$ matrices, and I_k be a $k \times k$ identity matrix (単位行列) (one in the diagonal elements and zero in the other elements).

When $AB = I_k$, B is called the **inverse matrix** (逆行列) of A, denoted by $B = A^{-1}$.

That is, $AA^{-1} = A^{-1}A = I_k$.

7. Let A be a $k \times k$ matrix and x be a $k \times 1$ vector.

If A is a **positive definite matrix** (正値定符号行列), for any x except for x = 0 we have:

$$x'Ax > 0$$
.

If A is a positive semidefinite matrix (非負値定符号行列), for any x except

for x = 0 we have:

$$x'Ax \ge 0$$
.

If A is a **negative definite matrix** (負値定符号行列), for any x except for x = 0 we have:

$$x'Ax < 0$$
.

If A is a **negative semidefinite matrix** (非正値定符号行列), for any x except for x = 0 we have:

$$x'Ax \leq 0$$
.

Trace, Rank and etc.: $A: k \times k$, $B: n \times k$, $C: k \times n$.

1. The **trace**
$$(\vdash \lor \vdash Z)$$
 of A is: $tr(A) = \sum_{i=1}^{k} a_{ii}$, where $A = [a_{ij}]$.

- 2. The **rank** (ランク, 階数) of *A* is the maximum number of linearly independent column (or row) vectors of *A*, which is denoted by rank(*A*).
- 3. If A is an idempotent matrix (べき等行列), $A = A^2$.
- 4. If A is an idempotent and symmetric matrix, $A = A^2 = A'A$.
- 5. *A* is idempotent if and only if the eigen values of *A* consist of 1 and 0.
- 6. If A is idempotent, rank(A) = tr(A).
- 7. tr(BC) = tr(CB)

Distributions in Matrix Form:

1. Let X, μ and Σ be $k \times 1$, $k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$f(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right).$$

$$E(X) = \mu$$
 and $V(X) = E((X - \mu)(X - \mu)') = \Sigma$

The moment-generating function: $\phi(\theta) = E(\exp(\theta'X)) = \exp(\theta'\mu + \frac{1}{2}\theta'\Sigma\theta)$

(*) In the univariate case, when $X \sim N(\mu, \sigma^2)$, the density function of X is:

$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

2. If $X \sim N(\mu, \Sigma)$, then $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi^2(k)$.

Note that $X'X \sim \chi^2(k)$ when $X \sim N(0, I_k)$.

3.
$$X: n \times 1, \qquad Y: m \times 1, \qquad X \sim N(\mu_x, \Sigma_x), \qquad Y \sim N(\mu_y, \Sigma_y)$$

X is independent of Y, i.e., $E((X - \mu_x)(Y - \mu_y)') = 0$ in the case of normal random variables.

$$\frac{(X - \mu_x)' \Sigma_x^{-1} (X - \mu_x)/n}{(Y - \mu_y)' \Sigma_y^{-1} (Y - \mu_y)/m} \sim F(n, m)$$

4. If $X \sim N(0, \sigma^2 I_n)$ and A is a symmetric idempotent $n \times n$ matrix of rank G, then $X'AX/\sigma^2 \sim \chi^2(G)$.

Note that X'AX = (AX)'(AX) and rank(A) = tr(A) because A is idempotent.

5. If $X \sim N(0, \sigma^2 I_n)$, A and B are symmetric idempotent $n \times n$ matrices of rank G and K, and AB = 0, then

$$\frac{X'AX}{G\sigma^2} \Big/ \frac{X'BX}{K\sigma^2} = \frac{X'AX/G}{X'BX/K} \sim F(G, K).$$