8.3 GLS - Review

Regression model:

$$
y=X \beta+u, \quad u \sim N(0, \Omega),
$$

where $y, X, \beta, u, 0$ and Ω are $n \times 1, n \times k, k \times 1, n \times 1, n \times 1$, and $n \times n$, respectively.

We solve the following minimization problem:

$$
\min _{\beta}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

Let b be a solution of the above minimization problem.
GLS estimator of β is given by:

$$
b=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

In general, when Ω is symmetric, Ω is decomposed as follows.

$$
\Omega=A^{\prime} \Lambda A
$$

Λ is a diagonal matrix, where the diagonal elements of Λ are given by the eigen values.
A is a matrix consisting of eigen vectors.
When Ω is a positive definite matrix, all the diagonal elements of Λ are positive.
There exists P such that $\Omega=P P^{\prime}$ (i.e., take $P=A^{\prime} \Lambda^{1 / 2}$). $\Longrightarrow P^{-1} \Omega P^{\prime-1}=I_{n}$
Multiply P^{-1} on both sides of $y=X \beta+u$.
We have:

$$
y^{\star}=X^{\star} \beta+u^{\star},
$$

where $\quad y^{\star}=P^{-1} y, \quad X^{\star}=P^{-1} X, \quad$ and $\quad u^{\star}=P^{-1} u$.
The variance of u^{\star} is:

$$
\mathrm{V}\left(u^{\star}\right)=\mathrm{V}\left(P^{-1} u\right)=P^{-1} \mathrm{~V}(u) P^{\prime-1}=\sigma^{2} P^{-1} \Omega P^{\prime-1}=\sigma^{2} I_{n}
$$

because $\Omega=P P^{\prime}$, i.e., $P^{-1} \Omega P^{\prime-1}=I_{n}$.

Accordingly, the regression model is rewritten as:

$$
y^{\star}=X^{\star} \beta+u^{\star}, \quad u^{\star} \sim\left(0, \sigma^{2} I_{n}\right)
$$

Apply OLS to the above model.

Let b be as estimator of β from the above model.

That is, the minimization problem is given by:

$$
\min _{b}\left(y^{\star}-X^{\star} b\right)^{\prime}\left(y^{\star}-X^{\star} b\right)
$$

which is equivalent to:

$$
\min _{b}(y-X b)^{\prime} \Omega^{-1}(y-X b)
$$

Solving the minimization problem above, we have the following estimator:

$$
\begin{aligned}
b & =\left(X^{\star} X^{\star}\right)^{-1} X^{\star} y^{\star} \\
& =\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y,
\end{aligned}
$$

which is called GLS (Generalized Least Squares) estimator.
b is rewritten as follows:

$$
b=\beta+\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star} u^{\star}=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u
$$

The mean and variance of b are given by:

$$
\begin{aligned}
& \mathrm{E}(b)=\beta \\
& \mathrm{V}(b)=\sigma^{2}\left(X^{\star \prime} X^{\star}\right)^{-1}=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} .
\end{aligned}
$$

Suppose that the regression model is given by:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right) .
$$

In this case, when we use OLS, what happens?

$$
\begin{aligned}
& \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& \mathrm{~V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

- Compare GLS and OLS.

Expectation:

$$
\mathrm{E}(\hat{\beta})=\beta, \quad \text { and } \quad \mathrm{E}(b)=\beta
$$

Thus, both $\hat{\beta}$ and b are unbiased estimator.

Variance:

$$
\begin{aligned}
& \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} \\
& \mathrm{~V}(b)=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

Which is more efficient, OLS or GLS?.

$$
\begin{aligned}
\mathrm{V}(\hat{\beta})-\mathrm{V}(b)= & \sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
= & \sigma^{2}\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \Omega \\
& \quad \times\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
= & \sigma^{2} A \Omega A^{\prime}
\end{aligned}
$$

Ω is the variance-covariance matrix of u, which is a positive definite matrix.
Therefore, except for $\Omega=I_{n}, A \Omega A^{\prime}$ is also a positive definite matrix.
This implies that $\mathrm{V}\left(\hat{\beta}_{i}\right)-\mathrm{V}\left(b_{i}\right)>0$ for the i th element of β.

Accordingly, b is more efficient than $\hat{\beta}$.
If $u \sim N\left(0, \sigma^{2} \Omega\right)$, then $b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right)$.

- Maximum Likelihood Estimation (MLE):

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right) .
$$

$\mathrm{E}(y)=X \beta$ and $\mathrm{V}(y)=\sigma^{2} \Omega$

$$
f(y)=\left(2 \pi \sigma^{2}\right)^{-n / 2}|\Omega|^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta) \Omega^{-1}(y-X \beta)^{\prime}\right)=L\left(\beta, \sigma^{2}\right)
$$

b is equivalent to MLE.

8.4 Panel Model Basic

Model:

$$
y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T
$$

where i indicates individual and t denotes time.

There are n observations for each t.
$u_{i t}$ indicates the error term, assuming that $\mathrm{E}\left(u_{i t}\right)=0, \mathrm{~V}\left(u_{i t}\right)=\sigma_{u}^{2}$ and $\operatorname{Cov}\left(u_{i t}, u_{j s}\right)=0$ for $i \neq j$ and $t \neq s$.
v_{i} denotes the individual effect, which is fixed or random.

8．4．1 Fixed Effect Model（固定効果モデル）

In the case where v_{i} is fixed，the case of $v_{i}=z_{i} \alpha$ is included．

$$
\begin{aligned}
& y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T, \\
& \bar{y}_{i}=\bar{X}_{i} \beta+v_{i}+\bar{u}_{i}, \quad i=1,2, \cdots, n,
\end{aligned}
$$

where $\bar{y}_{i}=\frac{1}{T} \sum_{t=1}^{T} y_{i t}, \bar{X}_{i}=\frac{1}{T} \sum_{t=1}^{T} X_{i t}$ ，and $\bar{u}_{i}=\frac{1}{T} \sum_{t=1}^{T} u_{i t}$ ．

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(X_{i t}-\bar{X}_{i}\right) \beta+\left(u_{i t}-\bar{u}_{i}\right), \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T,
$$

Taking an example of y ，the left－hand side of the above equation is rewritten as：

$$
y_{i t}-\bar{y}_{i}=y_{i t}-\frac{1}{T} 1_{T}^{\prime} y_{i},
$$

where $1_{T}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$, which is a $T \times 1$ vector, and $y_{i}=\left(\begin{array}{c}y_{i 1} \\ y_{i 2} \\ \vdots \\ y_{i T}\end{array}\right)$.

$$
\left(\begin{array}{c}
y_{i 1}-\bar{y}_{i} \\
y_{i 2}-\bar{y}_{i} \\
\vdots \\
y_{i T}-\bar{y}_{i}
\end{array}\right)=I_{T} y_{i}-1_{T} \bar{y}_{i}=I_{T} y_{i}-\frac{1}{T} 1_{T} 1_{T}^{\prime} y_{i}=\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right) y_{i}
$$

Thus,

$$
\left(\begin{array}{c}
y_{i 1}-\bar{y}_{i} \\
y_{i 2}-\bar{y}_{i} \\
\vdots \\
y_{i T}-\bar{y}_{i}
\end{array}\right)=\left(\begin{array}{c}
X_{i 1}-\bar{X}_{i} \\
X_{i 2}-\bar{X}_{i} \\
\vdots \\
X_{i T}-\bar{X}_{i}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{i 1}-\bar{u}_{i} \\
u_{i 2}-\bar{u}_{i} \\
\vdots \\
u_{i T}-\bar{u}_{i}
\end{array}\right), \quad i=1,2, \cdots, n,
$$

which is re-written as:

$$
\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right) y_{i}=\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right) X_{i} \beta+\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right) u_{i}, \quad i=1,2, \cdots, n
$$

i.e.,

$$
D_{T} y_{i}=D_{T} X_{i} \beta+D_{T} u_{i}, \quad i=1,2, \cdots, n
$$

where $D_{T}=\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right)$, which is a $T \times T$ matrix.
Note that $D_{T} D_{T}^{\prime}=D_{T}$, i.e., D_{T} is a symmetric and idempotent matrix.
Using the matrix form for $i=1,2, \cdots, n$, we have:

$$
\left(\begin{array}{c}
D_{T} y_{1} \\
D_{T} y_{2} \\
\vdots \\
D_{T} y_{n}
\end{array}\right)=\left(\begin{array}{c}
D_{T} X_{1} \\
D_{T} X_{2} \\
\vdots \\
D_{T} X_{n}
\end{array}\right) \beta+\left(\begin{array}{c}
D_{T} u_{1} \\
D_{T} u_{2} \\
\vdots \\
D_{T} u_{n}
\end{array}\right)
$$

