

i.e.,

$$\begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} y = \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} X\beta + \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} u,$$

where $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$, which are $Tn \times 1$, $Tn \times k$ and $Tn \times 1$ matrices, respectively,

Using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y , X , and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Kronecker Product — Review:

1. $A: n \times m, B: T \times k$

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{pmatrix}, \text{ which is a } nT \times mk \text{ matrix.}$$

2. $A: n \times n, B: m \times m$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}, \quad |A \otimes B| = |A|^m |B|^n,$$

$$(A \otimes B)' = A' \otimes B', \quad \text{tr}(A \otimes B) = \text{tr}(A)\text{tr}(B).$$

3. For A, B, C and D such that the products are defined,

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

End of Review

Going back to the previous slide, using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y , X , and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Apply OLS to the above regression model.

$$\begin{aligned}\hat{\beta} &= \left(((I_n \otimes D_T)X)'(I_n \otimes D_T)X \right)^{-1} ((I_n \otimes D_T)X)'(I_n \otimes D_T)y \\ &= \left(X'(I_n \otimes D_T'D_T)X \right)^{-1} X'(I_n \otimes D_T'D_T)y \\ &= \left(X'(I_n \otimes D_T)X \right)^{-1} X'(I_n \otimes D_T)y.\end{aligned}$$

Note that the inverse matrix of D_T is not available, because the rank of D_T is $T - 1$, not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

The fixed effect v_i is estimated as:

$$\hat{v}_i = \bar{y}_i - \bar{X}_i \hat{\beta}.$$

Possibly, we can estimate the following regression:

$$\hat{v}_i = Z_i \alpha + \epsilon_i,$$

where it is assumed that the individual-specific effect depends on Z_i .

The estimator of σ_u^2 is given by:

$$\hat{\sigma}_u^2 = \frac{1}{nT - k - n} \sum_{i=1}^n \sum_{t=1}^T (y_{it} - X_{it} \hat{\beta} - \hat{v}_i)^2.$$

[Remark]

More than ten years ago, “fixed” indicates that v_i is nonstochastic.

Recently, however, “fixed” does not mean anything.

“fixed” indicates that OLS is applied and that v_i may be correlated with X_{it} .

Possibly, $E(v_i|X) = \alpha_i(X)$, where $\alpha_i(X)$ is a function of X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$, and it is normalized to $\sum_{i=1}^n \alpha_i(X) = 0$.

8.4.2 Random Effect Model (ランダム効果モデル)

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it}, \quad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T$$

where i indicates individual and t denotes time.

The assumptions on the error terms v_i and u_{it} are:

$$E(v_i|X) = E(u_{it}|X) = 0 \text{ for all } i,$$

$$V(v_i|X) = \sigma_v^2 \text{ for all } i, \quad V(u_{it}|X) = \sigma_u^2 \text{ for all } i \text{ and } t,$$

$$\text{Cov}(v_i, v_j|X) = 0 \text{ for } i \neq j, \quad \text{Cov}(u_{it}, u_{js}|X) = 0 \text{ for } i \neq j \text{ and } t \neq s,$$

$$\text{Cov}(v_i, u_{jt}|X) = 0 \text{ for all } i, j \text{ and } t.$$

Note that X includes X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$.

In a matrix form with respect to $t = 1, 2, \dots, T$, we have the following:

$$y_i = X_i\beta + v_i 1_T + u_i, \quad i = 1, 2, \dots, n,$$

where $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}$, $X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{iT} \end{pmatrix}$ and $u_i = \begin{pmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{iT} \end{pmatrix}$ are $T \times 1$, $T \times k$ and $T \times 1$, respectively.

$$u_i \sim N(0, \sigma_u^2 I_T) \text{ and } v_i 1_T \sim N(0, \sigma_v^2) \implies v_i 1_T + u_i \sim N(0, \sigma_v^2 1_T 1_T' + \sigma_u^2 I_T).$$

Again, in a matrix form with respect to i , we have the following:

$$y = X\beta + v + u,$$

where $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, $v = \begin{pmatrix} v_1 1_T \\ v_2 1_T \\ \vdots \\ v_n 1_T \end{pmatrix}$ and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$ are $nT \times 1$, $nT \times k$, $nT \times 1$ and

$nT \times 1$, respectively.

The distribution of $u + v$ is given by:

$$v + u \sim N\left(0, I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T)\right)$$

The likelihood function is given by:

$$\begin{aligned} L(\beta, \sigma_v^2, \sigma_u^2) &= (2\pi)^{-nT/2} \left| I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right|^{-1/2} \\ &\times \exp\left(-\frac{1}{2}(y - X\beta)' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} (y - X\beta)\right). \end{aligned}$$

Remember that $f(x) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)' \Sigma^{-1} (x - \mu)\right)$ when $X \sim N(\mu, \Sigma)$, where X denotes a k -variate random variable.

The estimators of β , σ_v^2 and σ_u^2 are given by maximizing the following log-likelihood function:

$$\begin{aligned}\log L(\beta, \sigma_v^2, \sigma_u^2) &= -\frac{nT}{2} \log(2\pi) - \frac{1}{2} \log \left| I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right| \\ &\quad - \frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} (\mathbf{y} - \mathbf{X}\beta).\end{aligned}$$

MLE of β , denoted by $\tilde{\beta}$, is given by:

$$\begin{aligned}\tilde{\beta} &= \left(\mathbf{X}' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}' \left(I_n \otimes (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T) \right)^{-1} \mathbf{y} \\ &= \left(\sum_{i=1}^n \mathbf{X}'_i (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T)^{-1} \mathbf{X}_i \right)^{-1} \left(\sum_{i=1}^n \mathbf{X}'_i (\sigma_v^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 I_T)^{-1} \mathbf{y}_i \right),\end{aligned}$$

which is equivalent to GLS.

Note that $\tilde{\beta}$ is not operational, because $\hat{\beta}$ depends on σ_v^2 and σ_u^2 .