
i.e.,
DT 0 · · · 0

0 DT
. . .

...
...
. . .

. . . 0

0 · · · 0 DT


y =


DT 0 · · · 0

0 DT
. . .

...
...
. . .

. . . 0

0 · · · 0 DT


Xβ +


DT 0 · · · 0

0 DT
. . .

...
...
. . .

. . . 0

0 · · · 0 DT


u,

where y =


y1

y2
...

yn


, X


X1

X2
...

Xn


, and u =


u1

u2
...

un


, which are Tn×1, Tn×k and Tn×1 matrices,

respectively

Using the Kronecker product, we obtain the following expression:

(In ⊗ DT )y = (In ⊗ DT )Xβ + (In ⊗ DT )u,

where (In ⊗ DT ), y, X, and u are nT × nT , nT × 1, nT × k, and nT × 1, respectively.
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Kronecker Product — Review:

1. A: n × m, B: T × k

A ⊗ B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

... · · · ...

an1B an2B · · · anmB


, which is a nT × mk matrix.

2. A: n × n, B: m × m

(A ⊗ B)−1 = A−1 ⊗ B−1, |A ⊗ B| = |A|m|B|n,

(A ⊗ B)′ = A′ ⊗ B′, tr(A ⊗ B) = tr(A)tr(B).

3. For A, B, C and D such that the products are defined,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

End of Review
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Going back to the previous slide, using the Kronecker product, we obtain the fol-

lowing expression:

(In ⊗ DT )y = (In ⊗ DT )Xβ + (In ⊗ DT )u,

where (In ⊗ DT ), y, X, and u are nT × nT , nT × 1, nT × k, and nT × 1, respectively.

Apply OLS to the above regression model.

β̂ =
(
((In ⊗ DT )X)′(In ⊗ DT )X

)−1
((In ⊗ DT )X)′(In ⊗ DT )y

=
(
X′(In ⊗ D′T DT )X

)−1
X′(In ⊗ D′T DT )y

=
(
X′(In ⊗ DT )X

)−1
X′(In ⊗ DT )y.

Note that the inverse matrix of DT is not available, because the rank of DT is T − 1,

not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

194



The fixed effect vi is estimated as:

v̂i = yi − Xiβ̂.

Possibly, we can estimate the following regression:

v̂i = Ziα + εi,

where it is assumed that the individual-specific effect depends on Zi.

The estimator of σ2
u is given by:

σ̂2
u =

1
nT − k − n

n∑
i=1

T∑
t=1

(yit − Xitβ̂ − v̂i)2.
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[Remark]

More than ten years ago, “fixed” indicates that vi is nonstochastic.

Recently, however, “fixed” does not mean anything.

“fixed” indicates that OLS is applied and that vi may be correlated with Xit.

Possibly, E(vi|X) = αi(X), where αi(X) is a function of Xit for i = 1, 2, · · · , n and

t = 1, 2, · · · ,T , and it is normalized to
∑n

i=1 αi(X) = 0.
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8.4.2 Random Effect Model (ランダム効果モデル)

Model:

yit = Xitβ + vi + uit, i = 1, 2, · · · , n, t = 1, 2, · · · ,T

where i indicates individual and t denotes time.

The assumptions on the error terms vi and uit are:

E(vi|X) = E(uit|X) = 0 for all i,

V(vi|X) = σ2
v for all i, V(uit|X) = σ2

u for all i and t,

Cov(vi, v j|X) = 0 for i , j, Cov(uit, u js|X) = 0 for i , j and t , s,

Cov(vi, u jt|X) = 0 for all i, j and t.

Note that X includes Xit for i = 1, 2, · · · , n and t = 1, 2, · · · ,T .
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In a matrix form with respect to t = 1, 2, · · · ,T , we have the following:

yi = Xiβ + vi1T + ui, i = 1, 2, · · · , n,

where yi =


yi1

yi2
...

yiT


, Xi =


Xi1

Xi2
...

XiT


and ui =


ui1

ui2
...

uiT


are T ×1, T × k and T ×1, respectively.

ui ∼ N(0, σ2
uIT ) and vi1T ∼ N(0, σ2

v) =⇒ vi1T + ui ∼ N(0, σ2
v1T 1′T + σ

2
uIT ).

Again, in a matrix form with respect to i, we have the following:

y = Xβ + v + u,

where y =


y1

y2
...

yn


, X =


X1

X2
...

Xn


, v =


v11T

v21T

...

vn1T


and u =


u1

u2
...

un


are nT × 1, nT × k, nT × 1 and
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nT × 1, respectively.

The distribution of u + v is given by:

v + u ∼ N
(
0, In ⊗ (σ2

v1T 1′T + σ
2
uIT )
)

The likelihood function is given by:

L(β, σ2
v , σ

2
u) = (2π)−nT/2

∣∣∣∣In ⊗ (σ2
v1T 1′T + σ

2
uIT )
∣∣∣∣−1/2

× exp
(
−1

2
(y − Xβ)′

(
In ⊗ (σ2

v1T 1′T + σ
2
uIT )
)−1

(y − Xβ)
)
.

Remember that f (x) = (2π)−k/2|Σ|−1/2 exp
(
−1

2 (x − µ)′Σ−1(x − µ)
)

when X ∼ N(µ,Σ),

where X denotes a k-variate random variable.
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The estimators of β, σ2
v and σ2

u are given by maximizing the following log-likelihood

function:

log L(β, σ2
v , σ

2
u) = −nT

2
log(2π) − 1

2
log
∣∣∣∣In ⊗ (σ2

v1T 1′T + σ
2
uIT )
∣∣∣∣

−1
2

(y − Xβ)′
(
In ⊗ (σ2

v1T 1′T + σ
2
uIT )
)−1

(y − Xβ).

MLE of β, denoted by β̃, is given by:

β̃ =
(
X′
(
In ⊗ (σ2

v1T 1′T + σ
2
uIT )
)−1

X
)−1

X′
(
In ⊗ (σ2

v1T 1′T + σ
2
uIT )
)−1

y

=
( n∑

i=1

X′i (σ
2
v1T 1′T + σ

2
uIT )−1Xi

)−1( n∑
i=1

X′i (σ
2
v1T 1′T + σ

2
uIT )−1yi

)
,

which is equivalent to GLS.

Note that β̃ is not operational, because β̂ depends on σ2
v and σ2

u.
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