9.4.2 Error Correction Representation

VAR(p) model:
Vi =@+ 1y + G2+ Gpyip t &,
where y;, @ and ¢ indicate g X 1 vectors fort = 1,2,---,T, and ¢, is a g X g matrix for s = 1,2, - -
Rewrite:
Vi =a+py 1 +01Ay1 + 020y 0+ + 0, 1AV p1 T &,
where

p=¢1+dr+- -+,

Os = —(Pss1 + 052 + -+ @), fors=1,2,---,p—1.
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Again, rewrite:
Ay = a + 80yi1 + 018y 1 + O2AY 2+ + +0, 1AV p11 + &,

where
6o =p— 1, =—¢(1),

for (L) = I, — ;L — 621> —--- = 5, LP.
If y, has & cointegrating relations, we have the following error correction representation:
Ay, =a — BA'y,_1 + 61AY—1 + Ay 0 + - + 01 Ayi—pi1 + €,
where A’y,_; is a stationary & X 1 vector (i.e., & I(0) processes), and B and A are g X h matrices.
Note that  ¢(1) = BA” for ¢(L) =1, — 6L —6,L> — -+ —6,L".

Each row of A’ denotes the cointegrating vector, i.e., A’ consists of /& cointegrating vectors.
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Suppose that €, ~ N(0, ). The log-likelihood function is:

logl(@, 61, +,6p-1, BIA)

T T
- —Tg log(2m) ~  log %]
1 T
—= > (Ay —a+BAy, | —61Ay =+ = p Ay per)' T
t=1
X(Ay; — @+ BA'y,_| = 61Ay-1 — - = 6po1 AVi—pe1)
Given A and h, maximize log [ with respect to , 61, -+, 6,_1, B.

Then, given A, how do we estimate A? — Johansen (1988, 1991)
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(*) Canonical Correlatoion (IE #48E3)

X' = (x1, %0, -, xp) and Y = (1,2, *, Ym), Where n < m.
u=dadx=ax,+ax,+--+ a,x,,
v=by=by+byrs+ -+ byym,

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.
Define:

V(x) =X, E(Xy') = z")cy’ V(y) = Zyy’ E()’x’) = Zy)c = Z;{\

The correlation coefficient between u and v, denoted by p, is:

Cov(u,v) ,

p=——==dax,b,
V@) VWO ’”
where V(u) = a’Z,ca = 1and V(v) = b'Z,,b = 1.

Maximize p = a’X,,b subject to a’Xa = 1 and b'Zy,b = 1.

The Lagrangian is:

1 1
L=d%,b- le(a’Exxa -1)- Eu(b’Zyyb -1).
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Take a derivative with respect to a and b.

oL oL

=2yb—AZa =0, =Xa—uZyb =0.

da ab
Using a’Xy,a = 1 and b'Z,,b = 1, we obtain:
A=p=a3yb.
From the first equation, we obtain:
| .
a= Zzx,g)t,@b,
which is substituted into the second equation as follows:
1,
;nyzx)lzxyb - ﬂz}vb =0,
ie.,
() 2 Sy — A21)b = 0,
ie.,

I8 2 E Ey — AL = 0.

xXy“<xx
The solution of A2 is given by the maximum eigen value of E;yl E;yZ;; 2.y, and b is the corresponding

eigen vector.
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Back to the Cointegration:

Estimate the following two regressions:

Ay, = b1+ b1,1Ay 1 + b1pAyi o+ + by p 1Ay piy Uy

Vie1 = bag + br 1Ay, + byoAy,y + -+ by 1Ay pir +uny

Obtain i;, fori =1,2and ¢t = 1,2,---, T, and compute as follow:

1 Z
2 = T Z fiy 1, 201 = 2.
t=1
From 2521 ﬁnﬁl‘llf)lz, compute / biggest eigenvalues, denoted by A;, Ay, - - -, A5, and the corresponding
eigen vectors, denoted by a, @y, - - -, a, where /All > ;12 >0 > ;lh,

The estimate of A, A, is given by A= (ai,az,---,ap).
How do we obtain /?
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9.5 Testing the Number of Cointegrating Vectors

Trace Test (b L — IR E):

Hy: 211 =0

and H;: 1,>0.

8
2(logly —loglp) = =T )" log(1 =) —> tx(Q),

i=h+1

where 1 o 4, 1
0= (fo W(r)dW(r)') (jo‘ W(r)W(r)’dr) (f(; W(r)dW(r)’) .
Trace Test for # of Cointegrating Relations
# of Random | (a) Regressors have no drift (b) Some regressors have drift
Walks (g — h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 11.576  9.658 8.083 6.691 | 6936 5332 3962 2816
2 21.962 19.611 17.844 15583 | 19.310 17.299 15.197 13.338
3 37.291 34.062 31.256 28.436 | 35.397 32.313 29.509 26.791
4 55.551 51.801 48.419 45248 | 53.792 50.424 47.181 43.964
5 77911 73.031 69.977 65956 | 76.955 72.140 68.905 65.063

J.D. Hamilton (1994), Time Series Analysis, p.767.

253



Largest Eigenvalue Test (& XE A (B E):
H(] . /lh+l =0 and Hy: 4, > 0.

2(logly —logly) = —T log(1 — ;lh+1) — maxmum eigen value of Q,

Maximum Eigenvalue Test for # of Cointegrating Relations

# of Random | (a) Regressors have no drift (b) Some regressors have drift
Walks (g — h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 11.576  9.658 8.083  6.691 | 6936 5332 3962 2816
2 18.782 16403 14595 12.783 | 17.936 15.810 14.036 12.099
3 26.154 23.362 21.279 18959 | 25.521 23.002 20.778 18.697
4 32.616 29.599 27341 24917 | 31.943 29335 27.169 24.712
5 38.858 35700 33.262 30.818 | 38.341 35546 33.178 30.774

J.D. Hamilton (1994), Time Series Analysis, p.768.
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10 GMM (Generalized Mothod of Moments,

RS

1. Method of Moments (8 £):
Regression Model: y, = x,8 + ¢
From the assumption, E(x}¢) = 0.

The sample mean is given by:

T T

1 , 1 ,
T Z X, € T x,(y: — x8) = 0.

t=1 t=1

Therefore,

T -1

Bum = (% Z x;xz)

t=1

- x;)’z) s
r t=1

which is equivalent to OLS.

2. Generalized Mothod of Moments (GMM, — &/ LFE=R1%):
E (h(0;w)) =0
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0 is a k X 1 parameter vector to be estimated.
w, is an observed vector w; = (V, X;).

h(0;w,) is a r X 1 vector function, where r > k.
Define g(8; Wr) as follows:

T
1
80:Wr) = Z; h(0; wy),

where Wy = {wr, wr_1, -+, wi}.

Compute:

mgin g(0; Wr)'S ' g(6; Wr)

The solution of 6, denoted by 7, corresponds to the GMM estimator, where S is defined as

follows:

. l T oo )
S = lim — Z Z E (h(6; w)h(0: wi_r)) .

t=1 T=—00

In empirical studies, S is replaced by its estimate, i.e., S 7.
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