9.4.2 Error Correction Representation

VAR(p) model:

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \epsilon_t,$$

where y_t , α and ϵ_t indicate $g \times 1$ vectors for $t = 1, 2, \dots, T$, and ϕ_s is a $g \times g$ matrix for $s = 1, 2, \dots, p$.

Rewrite:

$$y_t = \alpha + \rho y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where

$$\rho = \phi_1 + \phi_2 + \dots + \phi_p,$$

$$\delta_s = -(\phi_{s+1} + \delta_{s+2} + \dots + \phi_p), \quad \text{for } s = 1, 2, \dots, p - 1.$$

Again, rewrite:

$$\Delta y_t = \alpha + \delta_0 y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where

$$\delta_0 = \rho - I_g = -\phi(1),$$

for
$$\phi(L) = I_g - \delta_1 L - \delta_2 L^2 - \dots - \delta_p L^p$$
.

If y_t has h cointegrating relations, we have the following error correction representation:

$$\Delta y_t = \alpha - BA' y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where $A'y_{t-1}$ is a stationary $h \times 1$ vector (i.e., h I(0) processes), and B and A are $g \times h$ matrices.

Note that
$$\phi(1) = BA'$$
 for $\phi(L) = I_g - \delta_1 L - \delta_2 L^2 - \dots - \delta_p L^p$.

Each row of A' denotes the cointegrating vector, i.e., A' consists of h cointegrating vectors.

Suppose that $\epsilon_t \sim N(0, \Sigma)$. The log-likelihood function is:

$$\begin{split} \log l(\alpha, \delta_1, \cdots, \delta_{p-1}, B|A) \\ &= -\frac{Tg}{2} \log(2\pi) - \frac{T}{2} \log |\Sigma| \\ &- \frac{1}{2} \sum_{t=1}^{T} (\Delta y_t - \alpha + BA' y_{t-1} - \delta_1 \Delta y_{t-1} - \cdots - \delta_{p-1} \Delta y_{t-p+1})' \Sigma^{-1} \\ &\times (\Delta y_t - \alpha + BA' y_{t-1} - \delta_1 \Delta y_{t-1} - \cdots - \delta_{p-1} \Delta y_{t-p+1}) \end{split}$$

Given A and h, maximize $\log l$ with respect to $\alpha, \delta_1, \dots, \delta_{p-1}, B$.

Then, given h, how do we estimate $A? \implies$ Johansen (1988, 1991)

(*) Canonical Correlatoion (正準相関)

$$x' = (x_1, x_2, \dots, x_n)$$
 and $y' = (y_1, y_2, \dots, y_m)$, where $n \le m$.

$$u = a'x = a_1x_1 + a_2x_2 + \dots + a_nx_n,$$

 $v = b'y = b_1y_1 + b_2y_2 + \dots + b_my_m,$

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.

Define:

$$V(x) = \Sigma_{xx}, \qquad E(xy') = \Sigma_{xy}, \qquad V(y) = \Sigma_{yy}, \qquad E(yx') = \Sigma_{yx} = \Sigma'_{xy}.$$

The correlation coefficient between u and v, denoted by ρ , is:

$$\rho = \frac{\operatorname{Cov}(u, v)}{\sqrt{\operatorname{V}(u)}\sqrt{\operatorname{V}(v)}} = a' \Sigma_{xy} b,$$

where $V(u) = a' \Sigma_{xx} a = 1$ and $V(v) = b' \Sigma_{yy} b = 1$.

Maximize $\rho = a' \Sigma_{xy} b$ subject to $a' \Sigma_{xx} a = 1$ and $b' \Sigma_{yy} b = 1$.

The Lagrangian is:

$$L = a'\Sigma_{xy}b - \frac{1}{2}\lambda(a'\Sigma_{xx}a - 1) - \frac{1}{2}\mu(b'\Sigma_{yy}b - 1).$$

Take a derivative with respect to a and b.

$$\frac{\partial L}{\partial a} = \Sigma_{xy}b - \lambda \Sigma_{xx}a = 0, \qquad \frac{\partial L}{\partial b} = \Sigma'_{xy}a - \mu \Sigma_{yy}b = 0.$$

Using $a'\Sigma_{xx}a = 1$ and $b'\Sigma_{yy}b = 1$, we obtain:

$$\lambda = \mu = a' \Sigma_{xy} b.$$

From the first equation, we obtain:

$$a = \frac{1}{\lambda} \Sigma_{xx}^{-1} \Sigma_{xy} b,$$

which is substituted into the second equation as follows:

$$\frac{1}{\lambda} \Sigma_{xy}' \Sigma_{xx}^{-1} \Sigma_{xy} b - \lambda \Sigma_{yy} b = 0,$$

i.e.,

$$(\Sigma_{yy}^{-1}\Sigma_{xy}'\Sigma_{xx}^{-1}\Sigma_{xy} - \lambda^2 I_m)b = 0,$$

i.e.,

$$|\Sigma_{yy}^{-1}\Sigma_{xy}'\Sigma_{xx}^{-1}\Sigma_{xy} - \lambda^2 I_m| = 0.$$

The solution of λ^2 is given by the maximum eigen value of $\Sigma_{yy}^{-1}\Sigma_{xy}'\Sigma_{xx}^{-1}\Sigma_{xy}$, and b is the corresponding eigen vector.

Back to the Cointegration:

Estimate the following two regressions:

$$\Delta y_t = b_{1,0} + b_{1,1} \Delta y_{t-1} + b_{1,2} \Delta y_{t-2} + \dots + b_{1,p-1} \Delta y_{t-p+1} + u_{1,t}$$
$$y_{t-1} = b_{2,0} + b_{2,1} \Delta y_{t-1} + b_{2,2} \Delta y_{t-2} + \dots + b_{2,p-1} \Delta y_{t-p+1} + u_{2,t}$$

Obtain $\hat{u}_{i,t}$ for i = 1, 2 and $t = 1, 2, \dots, T$, and compute as follow:

$$\hat{\Sigma}_{11} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{1,t} \hat{u}'_{1,t}, \qquad \hat{\Sigma}_{22} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{2,t} \hat{u}'_{2,t},$$

$$\hat{\Sigma}_{12} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{1,t} \hat{u}'_{2,t}, \qquad \hat{\Sigma}_{21} = \hat{\Sigma}'_{12}.$$

From $\hat{\Sigma}_{22}^{-1}\hat{\Sigma}_{21}\hat{\Sigma}_{11}^{-1}\hat{\Sigma}_{12}$, compute h biggest eigenvalues, denoted by $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_h$, and the corresponding eigen vectors, denoted by $\hat{a}_1, \hat{a}_2, \dots, \hat{a}_h$, where $\hat{\lambda}_1 > \hat{\lambda}_2 > \dots > \hat{\lambda}_h$,

The estimate of A, \hat{A} , is given by $\hat{A} = (\hat{a}_1, \hat{a}_2, \dots, \hat{a}_h)$.

How do we obtain h?

9.5 Testing the Number of Cointegrating Vectors

Trace Test (トレース検定): $H_0: \lambda_{h+1} = 0$ and $H_1: \lambda_h > 0$.

$$2(\log l_1 - \log l_0) = -T \sum_{i=h+1}^g \log(1 - \hat{\lambda}_i) \longrightarrow \operatorname{tr}(Q),$$

where

$$Q = \left(\int_0^1 W(r) dW(r)'\right)' \left(\int_0^1 W(r) W(r)' dr\right)^{-1} \left(\int_0^1 W(r) dW(r)'\right).$$

Trace Test for # of Cointegrating Relations

# of Random	(a) Regressors have no drift				(b) Some regressors have drift			
Walks $(g - h)$	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	11.576	9.658	8.083	6.691	6.936	5.332	3.962	2.816
2	21.962	19.611	17.844	15.583	19.310	17.299	15.197	13.338
3	37.291	34.062	31.256	28.436	35.397	32.313	29.509	26.791
4	55.551	51.801	48.419	45.248	53.792	50.424	47.181	43.964
5	77.911	73.031	69.977	65.956	76.955	72.140	68.905	65.063

J.D. Hamilton (1994), Time Series Analysis, p.767.

Largest Eigenvalue Test (最大固有值検定):

$$H_0: \lambda_{h+1} = 0$$
 and $H_1: \lambda_h > 0$.

$$2(\log l_1 - \log l_0) = -T \log(1 - \hat{\lambda}_{h+1}) \longrightarrow \text{maxmum eigen value of } Q,$$

Maximum Eigenvalue Test for # of Cointegrating Relations

# of Random	(a) Regressors have no drift				(b) Some regressors have drift			
Walks $(g - h)$	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	11.576	9.658	8.083	6.691	6.936	5.332	3.962	2.816
2	18.782	16.403	14.595	12.783	17.936	15.810	14.036	12.099
3	26.154	23.362	21.279	18.959	25.521	23.002	20.778	18.697
4	32.616	29.599	27.341	24.917	31.943	29.335	27.169	24.712
5	38.858	35.700	33.262	30.818	38.341	35.546	33.178	30.774

J.D. Hamilton (1994), Time Series Analysis, p.768.

10 GMM (Generalized Mothod of Moments, 一般化 積率法)

1. Method of Moments (積率法):

Regression Model: $y_t = x_t \beta + \epsilon_t$

From the assumption, $E(x_t' \epsilon_t) = 0$.

The sample mean is given by:

$$\frac{1}{T} \sum_{t=1}^{T} x_t' \epsilon_t = \frac{1}{T} \sum_{t=1}^{T} x_t' (y_t - x_t \beta) = 0.$$

Therefore,

$$\beta_{MM} = \left(\frac{1}{T} \sum_{t=1}^{T} x_t' x_t\right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} x_t' y_t\right),$$

which is equivalent to OLS.

2. Generalized Mothod of Moments (GMM, 一般化積率法):

$$\mathbf{E}\left(h(\theta;w_t)\right) = 0$$

 θ is a $k \times 1$ parameter vector to be estimated.

 w_t is an observed vector $w_t = (y_t, x_t)$.

 $h(\theta; w_t)$ is a $r \times 1$ vector function, where $r \ge k$.

Define $g(\theta; W_T)$ as follows:

$$g(\theta; W_T) = \frac{1}{T} \sum_{t=1}^{T} h(\theta; w_t),$$

where $W_T = \{w_T, w_{T-1}, \dots, w_1\}.$

Compute:

$$\min_{\theta} g(\theta; W_T)' S^{-1} g(\theta; W_T)$$

The solution of θ , denoted by $\hat{\theta}_T$, corresponds to the GMM estimator, where S is defined as follows:

$$S = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{\tau=-\infty}^{\infty} E\left(h(\theta; w_t)h(\theta; w_{t-\tau})'\right).$$

In empirical studies, S is replaced by its estimate, i.e., \hat{S}_T .