
11.5 Evaluation of Expectation

Posterior distribution fθ|y(θ|y)

E(θ|y) =
∫
θ fθ|y(θ|y)dθ =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

.

In the case where it is not easy to evaluate E(θ|y), how do we do?

Bayesian Method = Evaluation of Integration (Too much to say?)

• Numerical Integration

• Monte Carlo Integration

• Random Number Generation from fθ|y(θ|y)
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11.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a function f (x).

Suppose that x is a scalar.

Let x0, x1, x2, · · ·, xn be n nodes, which are sorted by order of size but not necessarily equal intervals

between xi−1 and xi for i = 1, 2, · · · , n.

Rectangular Approximation:∫
f (x)dx ≈

n∑
i=1

f (xi)(xi − xi−1) or
n∑

i=1

f (xi−1)(xi − xi−1).

Trapezoid Approximation: ∫
f (x)dx ≈

n∑
i=1

1
2

( f (xi) + f (xi−1))(xi − xi−1).
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Bivariate Case: Consider integration of a function f (x, y).

Suppose that both x and y are scalars.

Let x0, x1, x2, · · ·, xn be n nodes, which are sorted by order of size not necessarily equal intervals

between xi−1 and xi for i = 1, 2, · · · , n.

Let y0, y1, y2, · · ·, ym be m nodes.

Rectangular Approximation:∫ ∫
f (x, y)dxdy ≈

n∑
i=1

m∑
j=1

f (xi, y j)(xi − xi−1)(y j − y j−1).

Trapezoid Approximation:∫ ∫
f (x.y)dxdy

≈
n∑

i=1

m∑
j=1

1
4

( f (xi, y j) + f (xi, y j−1) + f (xi−1, y j) + f (xi−1, y j−1))(xi − xi−1)(y j − y j−1).
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Applying to Bayes Method (Rectangular Approximation):

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)(θi − θi−1)∑n
i=1 fy|θ(y|θi) fθ(θi)(θi − θi−1)

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)∑n
i=1 fy|θ(y|θi) fθ(θi)

=

n∑
i=1

θiωi, for constant θi − θi−1,

where

ωi =
fy|θ(y|θi) fθ(θi)∑n

i=1 fy|θ(y|θi) fθ(θi)
.
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Problem of Numerical Integration:

1. Choice of initial and terminal values =⇒ Truncation errors

2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

=⇒ k dimension, and n nodes for each dimension =⇒ nk
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11.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a function f (x).

Suppose that x is a scalar.

Let x1, x2, · · ·, xn be n random draws generated from g(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)

g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

.

=⇒ Importance Sampling (重点的サンプリング)
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Multivariate Case: Consider integration of a function f (x).

Suppose that x is a vector.

Let x1, x2, · · ·, xn be n random draws generated from g(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)

g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

,

which is exacly the same as the univariate case.

Computational burden: =⇒ Univariate case: n, Multivariate case: n

Precision of integration ???

Especially, when g(x) is not close to f (x), approximation is prror.

Applying to Bayes Method:

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∫
θ

fy|θ(y|θ) fθ(θ)
g(θ)

g(θ)dθ∫
fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ

=
(1/n)

∑n
i=1 θiω(θi)

(1/n)
∑n

i=1 ω(θi)
,
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where

ω(θi) =
fy|θ(y|θi) fθ(θi)

g(θi)
.

Choice of g(θ) — One Solution: Define l(θ) ≡ fy|θ(y|θ) fθ(θ).

log l(θ) ≈ log l(θ̃) +
1

l(θ̃)
∂l(θ̃)
∂θ

(θ − θ̃)

+
1
2

(θ − θ̃)′
(
− 1

l(θ̃)2

∂l(θ̃)
∂θ

∂l(θ̃)
∂θ′
+

1
l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃)

= −1
2

(θ − θ̃)′
(
− 1

l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃), when θ̃ is a mode of l(θ).

Thus, N
(
θ̃,

(
− 1

l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)−1)
might be taken as the importance density g(θ).
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11.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws of θ from the posterior distribution fθ|y(θ|y).

Then, (1/n)
∑n

i=1 θi is taken as a consistent estimator of E(θ|y), where θi indicates the ith random draw

generated from fθ|y(θ|y).

Note that (1/n)
∑n

i=1 θi −→ E(θ|y) under the condition (1/n)
∑n

i=1 θi < ∞.

Bayesian confidence interval, median, quntiles and so on are obtained by sorting θ1, θ2, · · ·, θn in order

of size.

=⇒ Sampling methods
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11.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and Johnson (2000a,

2000b, 2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws between zero and

one.

11.6.1 Uniform Distribution: U(0, 1)

Properties of Uniform Distribution: The most heuristic and simplest distribution is uni-

form.

The uniform distribution between zero and one is given by:

f (x) =

 1, for 0 < x < 1,

0, otherwise.

Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, φ(θ) =

eθ − 1
θ
.

Use L’Hospital’s theorem to derive E(X) and V(X) using φ(θ).
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In the next section, we introduce an idea of generating uniform random draws, which in turn yield the

other random draws by the transformation of variables, the inverse transform algorithm and so on.

Uniform Random Number Generators: It is no exaggeration to say that all the random

draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as exponential, normal,

logistic, Bernoulli and other distributions are obtained by transforming the uniform random draws.

Thus, it is important to consider how to generate a uniform random number.

However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears at random is taken

as a sequence of random numbers.

First, consider the following relation:

m = k − [k/n]n,

where k, m and n are integers.

[k/n] denotes the largest integer less than or equal to the argument.

In Fortran 77, it is written as m=k-int(k/n)*n, where 0 ≤ m < n.
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m indicates the remainder (余り) when k is divided by n.

n is called the modulus (商).

We define the right hand side in the equation above as:

k − [k/n]n ≡ k mod n.

Then, using the modular arithmetic we can rewrite the above equation as follows:

m = k mod n,

which is represented by: m=mod(k,n) in Fortran 77 and m=k%n in C language.

A basic idea of the uniform random draw is as follows.

Given xi−1, xi is generated by:

xi = (axi−1 + c) mod n,

where 0 ≤ xi < n.

a and c are positive integers, called the multiplier and the increment, respectively.

The generator above have to be started by an initial value, which is called the seed.

ui = xi/n is regarded as a uniform random number between zero and one.
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This generator is called the linear congruential generator (線形合同法).

Especially, when c = 0, the generator is called the multiplicative linear congruential generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a and c are properly chosen, the period of the generator is n.

However, when they are not chosen very carefully, there may be a lot of serial correlation among the

generated values.

Therefore, the performance of the congruential generators depend heavily on the choice of (a, c).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980), Law and Kelton

(2000), Niederreiter (1992), Ripley (1987), Robert and Casella (1999), Rubinstein and Melamed

(1998), Thompson (2000) and so on for the other congruential generators.

However, we introduce only two uniform random number generators.

Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three congruential gen-

erators for 16-bit computers.
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The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

zi = 170zi−1 mod 30323,

and

ui =

( xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e., x0, y0 and z0, for this random number generator.

ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95 × 1012).

The source code of this generator is given by urnd16(ix,iy,iz,rn), where ix, iy and iz are seeds

and rn represents the uniform random number between zero and one.

——— urnd16(ix,iy,iz,rn)———
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1: subroutine urnd16(ix,iy,iz,rn)
2: c
3: c Input:
4: c ix, iy, iz: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 ix=mod( 171*ix,30269 )
9: iy=mod( 172*iy,30307 )

10: iz=mod( 170*iz,30323 )
11: rn=ix/30269.+iy/30307.+iz/30323.
12: rn=rn-int(rn)
13: if( rn.le.0 ) go to 1
14: return
15: end

We exclude one in Line 12 and zero in Line 13 from rn.

That is, 0 < rn < 1 is generated in urnd16(ix,iy,iz,rn).

Zero and one in the uniform random draw sometimes cause the complier errors in programming, when

the other random draws are derived based on the transformation of the uniform random variable.

De Matteis and Pagnutti (1993) examine the Wichmann-Hill generator with respect to the higher order

autocorrelations in sequences, and conclude that the Wichmann-Hill generator performs well.
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For 32-bit computers, L’Ecuyer (1988) proposed a combination of k congruential generators that have

prime moduli n j, such that all values of (n j − 1)/2 are relatively prime, and with multipliers that yield

full periods.

Let the sequence from jth generator be x j,1, x j,2, x j,3, · · ·.
Consider the case where each individual generator j is a maximum-period multiplicative linear con-

gruential generator with modulus n j and multiplier a j, i.e.,

x j,i ≡ a jx j,i−1 mod n j.

Assuming that the first generator is a relatively good one and that n1 is fairly large, we form the ith

integer in the sequence as:

xi =

k∑
j=1

(−1) j−1x j,i mod (n1 − 1),

where the other moduli n j, j = 2, 3, · · · , k, do not need to be large.

The normalization takes care of the possibility of zero occurring in this sequence:

ui =


xi

n1
, if xi > 0,

n1 − 1
n1
, if xi = 0.
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As for each individual generator j, note as follows.

Define q = [n/a] and r ≡ n mod a, i.e., n is decomposed as n = aq + r, where r < a.

Therefore, for 0 < x < n, we have:

ax mod n = (ax − [x/q]n) mod n

=

(
ax − [x/q](aq + r)

)
mod n

=

(
a(x − [x/q]q) − [x/q]r

)
mod n

=

(
a(x mod q) − [x/q]r

)
mod n.

Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential generators, where

k = 2, (a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and (a2, n2, q2, r2) = (40692,

2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The source code is shown in urnd(ix,iy,rn), where ix and iy are inputs, i.e., seeds, and rn is an

output, i.e., a uniform random number between zero and one.
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——— urnd(ix,iy,rn)———

1: subroutine urnd(ix,iy,rn)
2: c
3: c Input:
4: c ix, iy: Seeds
5: c Output:
6: c rn: Uniform Random Draw U(0,1)
7: c
8: 1 kx=ix/53668
9: ix=40014*(ix-kx*53668)-kx*12211

10: if(ix.lt.0) ix=ix+2147483563
11: c
12: ky=iy/52774
13: iy=40692*(iy-ky*52774)-ky*3791
14: if(iy.lt.0) iy=iy+2147483399
15: c
16: rn=ix-iy
17: if( rn.lt.1.) rn=rn+2147483562
18: rn=rn*4.656613e-10
19: if( rn.le.0.) go to 1
20: c
21: return
22: end

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018 (more precisely
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2.31 × 1018), which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where the above generator

performs well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit computers.

Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988) is combined with

the shuffling method suggested by Bays and Durham (1976), and it is introduced as ran2 in Press,

Teukolsky, Vetterling and Flannery (1992a, 1992b).

However, from relatively long period and simplicity of the source code, hereafter the subroutine

urnd(ix,iy,rn) is utilized for the uniform random number generation method, and we will obtain

various random draws based on the uniform random draws.

11.6.2 Transforming U(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density functions are derived

from the uniform distribution U(0, 1) by transformation of variables.
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Normal Distribution: N(0, 1): The normal distribution with mean zero and variance one,

i.e, the standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.

Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, φ(θ) = exp
(1
2
θ2

)
.

The normal random variable is constructed using two independent uniform random variables.

This transformation is well known as the Box-Muller (1958) transformation and is shown as follows.

Let U1 and U2 be uniform random variables between zero and one.

Suppose that U1 is independent of U2.

Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).
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where we have −∞ < X1 < ∞ and −∞ < X2 < ∞ when 0 < U1 < 1 and 0 < U2 < 1.

Then, the inverse transformation is given by:

u1 = exp
− x2

1 + x2
2

2

 , u2 =
1

2π
arctan

x2

x1
.

We perform transformation of variables in multivariate cases.

From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp

(
−1

2
(x2

1 + x2
2)
)
.

Let fx(x1, x2) be the joint density of X1 and X2 and fu(u1, u2) be the joint density of U1 and U2.

Since U1 and U2 are assumed to be independent, we have the following:

fu(u1, u2) = f1(u1) f2(u2) = 1,

where f1(u1) and f2(u2) are the density functions of U1 and U2, respectively.
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Note that f1(u1) = f2(u2) = 1 because U1 and U2 are uniform random variables between zero and one.

Accordingly, the joint density of X1 and X2 is:

fx(x1, x2) = |J| fu
(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp

(
−1

2
x2

1

)
× 1
√

2π
exp

(
−1

2
x2

2

)
,

which is a product of two standard normal distributions.

Thus, X1 and X2 are mutually independently distributed as normal random variables with mean zero

and variance one.

See Hogg and Craig (1995, pp.177 – 178).

The source code of the standard normal random number generator shown above is given by snrnd(ix,iy,rn).

——— snrnd(ix,iy,rn)———

1: subroutine snrnd(ix,iy,rn)
2: c
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3: c Use "snrnd(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Standard Normal Random Draw N(0,1)

10: c
11: pi= 3.1415926535897932385
12: call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn=sqrt(-2.0*log(rn1))*sin(2.0*pi*rn2)
15: return
16: end

snrnd(ix,iy,rn) should be used together with the uniform random number generator urnd(ix,iy,rn)

shown in Section 11.6.1 (p.290).

rn in snrnd(ix,iy,rn) corresponds to X2.

Conventionally, one of X1 and X2 is taken as the random number which we use.

Here, X1 is excluded from consideration.

snrnd(ix,iy,rn) includes the sine, which takes a lot of time computationally.
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Therefore, to avoid computation of the sine, various algorithms have been invented (Ahrens and Dieter

(1988), Fishman (1996), Gentle (1998), Marsaglia, MacLaren and Bray (1964) and so on).

Standard Normal Probabilities When X ∼ N(0, 1), we have the case where we want to

approximate p such that p = F(x) given x, where F(x) =
∫ x
−∞ f (t) dt = P(X < x).

Adams (1969) reports that

P(X > x) =
∫ ∞

x

1
√

2π
e−

1
2 t2

dt =
1
√

2π
e−

1
2 x2

( 1
x+

1
x+

2
x+

3
x+

4
x+
· · ·

)
,

for x > 0, where the form in the parenthesis is called the continued fraction, which is defined as

follows:
a1

x1+

a2

x2+

a3

x3+
· · · = a1

x1 +
a2

x2 +
a3

x3 + · · ·

.

A lot of approximations on the continued fraction shown above have been proposed.

See Kennedy and Gentle (1980), Marsaglia (1964) and Marsaglia and Zaman (1994).

Here, we introduce the following approximation (see Takeuchi (1989)):

P(X > x) =
1
√

2π
e−

1
2 x2

(b1t + b2t2 + b3t3 + b4t4 + b5t5), t =
1

1 + a0x
,
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a0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782,

b3 = 1.781477937, b4 = −1.821255978, b5 = 1.330274429.

In snprob(x,p) below, P(X < x) is shown.

That is, p up to Line 19 is equal to P(X > x) in snprob(x,p).

In Line 20, P(X < x) is obtained.

——— snprob(x,p)———

1: subroutine snprob(x,p)
2: c
3: c Input:
4: c x: N(0,1) Percent Point
5: c Output:
6: c p: Probability corresponding to x
7: c
8: pi= 3.1415926535897932385
9: a0= 0.2316419

10: b1= 0.319381530
11: b2=-0.356563782
12: b3= 1.781477937
13: b4=-1.821255978
14: b5= 1.330274429
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15: c
16: z=abs(x)
17: t=1.0/(1.0+a0*z)
18: pr=exp(-.5*z*z)/sqrt(2.0*pi)
19: p=pr*t*(b1+t*(b2+t*(b3+t*(b4+b5*t))))
20: if(x.gt.0.0) p=1.0-p
21: c
22: return
23: end

The maximum error of approximation of p is 7.5× 10−8, which practically gives us enough precision.

Standard Normal Percent Points When X ∼ N(0, 1), we approximate x such that p = F(x)

given p, where F(x) indicates the standard normal cumulative distribution function, i.e., F(x) = P(X <

x), and p denotes probability.

As shown in Odeh and Evans (1974), the approximation of a percent point is of the form:

x = y +
S 4(y)
T4(y)

= y +
p0 + p1y + p2y2 + p3y3 + p4y4

q0 + q1y + q2y2 + q3y3 + q4y4 ,

where y =
√
−2 log(p).

299



S 4(y) and T4(y) denote polynomials degree 4.

The source code is shown in snperpt(p,x), where x is obtained within 10−20 < p < 1 − 10−20.
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——— snperpt(p,x)———

1: subroutine snperpt(p,x)
2: c
3: c Input:
4: c p: Probability
5: c (err<p<1-err, where err=1e-20)
6: c Output:
7: c x: N(0,1) Percent Point corresponding to p
8: c
9: p0=-0.322232431088

10: p1=-1.0
11: p2=-0.342242088547
12: p3=-0.204231210245e-1
13: p4=-0.453642210148e-4
14: q0= 0.993484626060e-1
15: q1= 0.588581570495
16: q2= 0.531103462366
17: q3= 0.103537752850
18: q4= 0.385607006340e-2
19: ps=p
20: if( ps.gt.0.5 ) ps=1.0-ps
21: if( ps.eq.0.5 ) x=0.0
22: y=sqrt( -2.0*log(ps) )
23: x=y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)
24: & /((((y*q4+q3)*y+q2)*y+q1)*y+q0)
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25: if( p.lt.0.5 ) x=-x
26: return
27: end

The maximum error of approximation of x is 1.5×10−8 if the function is evaluated in double precision

and 1.8 × 10−6 if it is evaluated in single precision.

The approximation of the form x = y + S 2(y)/T3(y) by Hastings (1955) gives a maximum error of

4.5 × 10−4.

To improve accuracy of the approximation, Odeh and Evans (1974) proposed the algorithm above.

Normal Distribution: N(µ, σ2): The normal distribution denoted by N(µ, σ2) is represented

as follows:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2
,

for −∞ < x < ∞.

µ is called a location parameter and σ2 is a scale parameter.
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Mean, variance and the moment-generating function of the normal distribution N(µ, σ2) are given by:

E(X) = µ, V(X) = σ2, φ(θ) = exp
(
µθ +

1
2
σ2θ2

)
.

When µ = 0 and σ2 = 1 are taken, the above density function reduces to the standard normal distribu-

tion in Section 11.6.2.

X = σZ + µ is normally distributed with mean µ and variance σ2, when Z ∼ N(0, 1).

Therefore, the source code is represented by nrnd(ix,iy,ave,var,rn), where ave and var corre-

spond to µ and σ2, respectively.

——— nrnd(ix,iy,ave,var,rn)———

1: subroutine nrnd(ix,iy,ave,var,rn)
2: c
3: c Use "nrnd(ix,iy,ave,var,rn)"
4: c together with "urnd(ix,iy,rn)"
5: c and "snrnd(ix,iy,rn)".
6: c
7: c Input:
8: c ix, iy: Seeds
9: c ave: Mean
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10: c var: Variance
11: c Output:
12: c rn: Normal Random Draw N(ave,var)
13: c
14: call snrnd(ix,iy,rn1)
15: rn=ave+sqrt(var)*rn1
16: return
17: end

nrnd(ix,iy,ave,var,rn) should be used together with urnd(ix,iy,rn) and snrnd(ix,iy,rn).

It is possible to replace snrnd(ix,iy,rn) by snrnd2(ix,iy,rn) or snrnd3(ix,iy,rn).

Exponential Distribution: The exponential distribution with parameter β is written as:

f (x) =


1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.
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Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, φ(θ) =
1

1 − βθ .

The relation between the exponential random variable the uniform random variable is shown as fol-

lows:

When U ∼ U(0, 1), consider the following transformation:

X = −β log(U).

Then, X is an exponential distribution with parameter β.

Because the transformation is given by u = exp(−x/β), the Jacobian is:

J =
du
dx
= −1
β

exp
(
−1
β

x
)
.

By transforming the variables, the density function of X is represented as:

f (x) = |J| fu
(
exp(−1

β
x)

)
=

1
β

exp
(
−1
β

x
)
,

where f (·) and fu(·) denote the probability density functions of X and U, respectively.

305



Note that 0 < x < ∞ because of x = −β log(u) and 0 < u < 1.

Thus, the exponential distribution with parameter β is obtained from the uniform random draw be-

tween zero and one.

——— exprnd(ix,iy,beta,rn)———

1: subroutine exprnd(ix,iy,beta,rn)
2: c
3: c Use "exprnd(ix,iy,beta,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c beta: Parameter
9: c Output:

10: c rn: Exponential Random Draw
11: c with Parameter beta
12: c
13: call urnd(ix,iy,rn1)
14: rn=-beta*log(rn1)
15: return
16: end
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exprnd(ix,iy,beta,rn) should be used together with urnd(ix,iy,rn).

When β = 2, the exponential distribution reduces to the chi-square distribution with 2 degrees of

freedom.

Gamma Distribution: G(α, β): The gamma distribution with parameters α and β, denoted

by G(α, β), is represented as follows:

f (x) =


1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,

for α > 0 and β > 0, where α is called a shape parameter and β denotes a scale parameter.

Γ(·) is called the gamma function, which is the following function of α:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ

(1
2

)
= 2Γ

(3
2

)
=
√
π.
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Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, φ(θ) =
1

(1 − βθ)α .

The gamma distribution with α = 1 is equivalent to the exponential distribution shown in Section

11.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parameters α and β are

derived as follows.

The derivation shown in this section deals with the case where α is a positive integer, i.e., α =

1, 2, 3, · · ·.
The random variables Z1, Z2, · · ·, Zα are assumed to be mutually independently distributed as expo-

nential random variables with parameter β, which are shown in Section 11.6.2.

Define X =
∑α

i=1 Zi.

Then, X has distributed as a gamma distribution with parameters α and β, where α should be an
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integer, which is proved as follows:

φx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi ) =
α∏

i=1

E(eθZi ) =
α∏

i=1

φi(θ) =
α∏

i=1

1
1 − βθ

=
1

(1 − βθ)α ,

where φx(θ) and φi(θ) represent the moment-generating functions of X and Zi, respectively.

Thus, sum of the α exponential random variables yields the gamma random variable with parameters

α and β.

Therefore, the source code which generates gamma random numbers is shown in gammarnd(ix,iy,alpha,beta,rn).

——— gammarnd(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd(ix,iy,alpha,beta,rn)"
4: c together with "exprnd(ix,iy,beta,rn)"
5: c and "urnd(ix,iy,rn)".
6: c
7: c Input:
8: c ix, iy: Seeds
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9: c alpha: Shape Parameter (which should be an integer)
10: c beta: Scale Parameter
11: c Output:
12: c rn: Gamma Random Draw with alpha and beta
13: c
14: rn=0.0
15: do 1 i=1,nint(alpha)
16: call exprnd(ix,iy,beta,rn1)
17: 1 rn=rn+rn1
18: return
19: end

gammarnd(ix,iy,alpha,beta,rn) is utilized together with urnd(ix,iy,rn) and exprnd(ix,iy,rn).

As pointed out above, α should be an integer in the source code.

When α is large, we have serious problems computationally in the above algorithm, because α expo-

nential random draws have to be generated to obtain one gamma random draw with parameters α and

β.

When α = k/2 and β = 2, the gamma distribution reduces to the chi-square distribution with k degrees

of freedom.
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Chi-Square Distribution: χ2(k): The chi-square distribution with k degrees of freedom,

denoted by χ2(k), is written as follows:

f (x) =


1

2k/2Γ
(

k
2

) x
k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

where k is a positive integer.

The chi-square distribution is equivalent to the gamma distribution with β = 2 and α = k/2.

The chi-square distribution with k = 2 reduces to the exponential distribution with β = 2, shown in

Section 11.6.2.

Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, φ(θ) =
1

(1 − 2θ)k/2 .
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F Distribution: F(m, n): The F distribution with m and n degrees of freedom, denoted by

F(m, n), is represented as:

f (x) =


Γ
(

m+n
2

)
Γ
(

m
2

)
Γ
(

n
2

) (m
n

) m
2

x
m
2 −1

(
1 +

m
n

x
)− m+n

2
, for 0 < x < ∞,

0, otherwise,

where m and n are positive integers.

Mean and variance are given by:

E(X) =
n

n − 2
, for n > 2,

V(X) =
2n2(m + n − 2)

m(n − 2)2(n − 4)
, for n > 4.

The moment-generating function of F distribution does not exist.

One F random variable is derived from two chi-square random variables.

Suppose that U and V are independently distributed as chi-square random variables, i.e., U ∼ χ2(m)

and V ∼ χ2(n).

Then, it is shown that X =
U/m
V/n

has a F distribution with (m, n) degrees of freedom.
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t Distribution: t(k): The t distribution (or Student’s t distribution) with k degrees of freedom,

denoted by t(k), is given by:

f (x) =
Γ
(

k+1
2

)
Γ
(

k
2

) 1
√

kπ

(
1 +

x2

k

)− k+1
2
,

for −∞ < x < ∞, where k does not have to be an integer but conventionally it is a positive integer.

When k is small, the t distribution has fat tails.

The t distribution with k = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, the t distribution approaches the standard normal distribution, i.e., t(∞) = N(0, 1),

which is easily shown by using the definition of e, i.e.,(
1 +

x2

k

)− k+1
2
=

(
1 +

1
h

)− hx2+1
2
=

((
1 +

1
h

)h
)− 1

2 x2(
1 +

1
h

)− 1
2 −→ e−

1
2 x2
,

where h = k/x2 is set and h goes to infinity (equivalently, k goes to infinity).

Thus, a kernel of the t distribution is equivalent to that of the standard normal distribution.

Therefore, it is shown that as k is large the t distribution approaches the standard normal distribution.

Mean and variance of the t distribution with k degrees of freedom are obtained as:

E(X) = 0, for k > 1,
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V(X) =
k

k − 2
, for k > 2.

In the case of the t distribution, the moment-generating function does not exist, because all the mo-

ments do not necessarily exist.

For the t random variable X, we have the fact that E(Xp) exists when p is less than k.

Therefore, all the moments exist only when k is infinity.

One t random variable is obtained from chi-square and standard normal random variables.

Suppose that Z ∼ N(0, 1) is independent of U ∼ χ2(k).

Then, X = Z/
√

U/k has a t distribution with k degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generating t random draws, which is based on a

transformed acceptance/rejection method, which will be discussed later.
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11.6.3 Inverse Transform Method

In Section 11.6.2, we have introduced the probability density functions which can be derived by

transforming the uniform random variables between zero and one.

In this section, the probability density functions obtained by the inverse transform method are pre-

sented and the corresponding random number generators are shown.

The inverse transform method is represented as follows.

Let X be a random variable which has a cumulative distribution function F(·).
When U ∼ U(0, 1), F−1(U) is equal to X.

The proof is obtained from the following fact:

P(X < x) = P
(
F−1(U) < x

)
= P

(
U < F(x)

)
= F(x).

In other words, let u be a random draw of U, where U ∼ U(0, 1), and F(·) be a distribution function

of X.

When we perform the following inverse transformation:

x = F−1(u),
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x implies the random draw generated from F(·).

The inverse transform method shown above is useful when F(·) can be computed easily and the inverse

distribution function, i.e., F−1(·), has a closed form.

For example, recall that F(·) cannot be obtained explicitly in the case of the normal distribution be-

cause the integration is included in the normal cumulative distribution (conventionally we approximate

the normal cumulative distribution when we want to evaluate it).

If no closed form of F−1(·) is available but F(·) is still computed easily, an iterative method such as

the Newton-Raphson method can be applied.

Define k(x) = F(x) − u.

The first order Taylor series expansion around x = x∗ is:

0 = k(x) ≈ k(x∗) + k′(x∗)(x − x∗).

Then, we obtain:

x = x∗ − k(x∗)
k′(x∗)

= x∗ − F(x∗) − u
f (x∗)

.

Replacing x and x∗ by x(i) and x(i−1), we have the following iteration:

x(i) = x(i−1) − F(x(i−1)) − u
f (x(i−1))

,
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for i = 1, 2, · · ·.

The convergence value of x(i) is taken as a solution of equation u = F(x).

Thus, based on u, a random draw x is derived from F(·).

However, we should keep in mind that this procedure takes a lot of time computationally, because we

need to repeat the convergence computation shown above as many times as we want to generate.
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11.6.4 Using U(0, 1): Discrete Type

In Sections 11.6.2 and 11.6.3, the random number generators from continuous distributions are dis-

cussed, i.e., the transformation of variables in Section 11.6.2 and the inverse transform method in

Section 11.6.3 are utilized.

Based on the uniform random draw between zero and one, in this section we deal with some discrete

distributions and consider generating their random numbers.

As a representative random number generation method, we can consider utilizing the inverse transform

method in the case of discrete random variables.

Suppose that a discrete random variable X can take x1, x2, · · ·, xn, where the probability which X takes

xi is given by f (xi), i.e., P(X = xi) = f (xi).

Generate a uniform random draw u, which is between zero and one.

Consider the case where we have F(xi−1) ≤ u < F(xi), where F(xi) = P(X ≤ xi) and F(x0) = 0.

Then, the random draw of X is given by xi.
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11.7 Sampling Method II: Random Number Generation
11.7.1 Rejection Sampling (棄却法)

We want to generate random draws from f (x), called the target density (目的密度), but we consider

the case where it is hard to sample from f (x).

Now, suppose that it is easy to generate a random draw from another density f∗(x), called the sampling

density (サンプリング密度) or proposal density (提案密度).
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In this case, random draws of X from f (x) are generated by utilizing the random draws sampled from

f∗(x).

Let x be the the random draw of X generated from f (x).

Suppose that q(x) is equal to the ratio of the target density and the sampling density, i.e.,

q(x) =
f (x)
f∗(x)
. (19)

Then, the target density is rewritten as:

f (x) = q(x) f∗(x).

Based on q(x), the acceptance probability is obtained.

Depending on the structure of the acceptance probability, we have three kinds of sampling techniques,

i.e., rejection sampling (棄却法) in this section, importance resampling (重点的リサンプリング

法) in Section 11.7.2 and the Metropolis-Hastings algorithm (メトロポリス－ハスティング・アル

ゴリズム) in Section 11.7.4.

See Liu (1996) for a comparison of the three sampling methods.

Thus, to generate random draws of x from f (x), the functional form of q(x) should be known and

random draws have to be easily generated from f∗(x).
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In order for rejection sampling to work well, the following condition has to be satisfied:

q(x) =
f (x)
f∗(x)

< c,

where c is a fixed value.

That is, q(x) has an upper limit.

As discussed below, 1/c is equivalent to the acceptance probability.

If the acceptance probability is large, rejection sampling computationally takes a lot of time.

Under the condition q(x) < c for all x, we may minimize c.

That is, since we have q(x) < supx q(x) ≤ c, we may take the supremum of q(x) for c.

Thus, in order for rejection sampling to work efficiently, c should be the supremum of q(x) with respect

to x, i.e., c = supx q(x).

Let x∗ be the random draw generated from f∗(x), which is a candidate of the random draw generated

from f (x).

Define ω(x) as:

ω(x) =
q(x)

supz q(z)
=

q(x)
c
,

which is called the acceptance probability (採択確率).
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Note that we have 0 ≤ ω(x) ≤ 1 when supz q(z) = c < ∞.

The supremum supz q(z) = c has to be finite.

This condition is sometimes too restrictive, which is a crucial problem in rejection sampling.

A random draw of X is generated from f (x) in the following way:

(i) Generate x∗ from f∗(x) and compute ω(x∗).

(ii) Set x = x∗ with probability ω(x∗) and go back to (i) otherwise.

In other words, generating u from a uniform distribution between zero and one, take x = x∗ if

u ≤ ω(x∗) and go back to (i) otherwise.

The above random number generation procedure can be justified as follows.

Let U be the uniform random variable between zero and one, X be the random variable generated

from the target density f (x),

X∗ be the random variable generated from the sampling density f∗(x), and x∗ be the realization (i.e.,

the random draw) generated from the sampling density f∗(x).

Consider the probability P
(
X ≤ x|U ≤ ω(x∗)

)
, which should be the cumulative distribution of X, F(x),

from Step (ii).
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The probability P
(
X ≤ x|U ≤ ω(x∗)

)
is rewritten as follows:

P
(
X ≤ x|U ≤ ω(x∗)

)
=

P
(
X ≤ x,U ≤ ω(x∗)

)
P
(
U ≤ ω(x∗)

) ,

where the numerator is represented as:

P
(
X ≤ x,U ≤ ω(x∗)

)
=

∫ x

−∞

∫ ω(t)

0
fu,∗(u, t) du dt =

∫ x

−∞

∫ ω(t)

0
fu(u) f∗(t) du dt

=

∫ x

−∞

(∫ ω(t)

0
fu(u) du

)
f∗(t) dt =

∫ x

−∞

(∫ ω(t)

0
du

)
f∗(t) dt

=

∫ x

−∞

[
u
]ω(t)

0
f∗(t) dt =

∫ x

−∞
ω(t) f∗(t) dt =

∫ x

−∞

q(t)
c

f∗(t) dt =
F(x)

c
,

and the denominator is given by:

P
(
U ≤ ω(x∗)

)
= P

(
X ≤ ∞,U ≤ ω(x∗)

)
=

F(∞)
c
=

1
c
.

In the numerator, fu,∗(u, x) denotes the joint density of random variables U and X∗.

Because the random draws of U and X∗ are independently generated in Steps (i) and (ii) we have

fu,∗(u, x) = fu(u) f∗(x), where fu(u) and f∗(x) denote the marginal density of U and that of X∗.
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The density function of U is given by fu(u) = 1, because the distribution of U is assumed to be uniform

between zero and one.

Thus, the first four equalities are derived.

Furthermore, in the seventh equality of the numerator, since we have:

ω(x) =
q(x)

c
=

f (x)
c f∗(x)

,

ω(x) f∗(x) = f (x)/c is obtained.

Finally, substituting the numerator and denominator shown above, we have the following equality:

P
(
X ≤ x|U ≤ ω(x∗)

)
= F(x).

Thus, the rejection sampling method given by Steps (i) and (ii) is justified.

The rejection sampling method is the most efficient sampling method in the sense of precision of the

random draws, because using rejection sampling we can generate mutually independently distributed

random draws.

However, for rejection sampling we need to obtain the c which is greater than or equal to the supremum

of q(x).
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If the supremum is infinite, i.e., if c is infinite, ω(x) is zero and accordingly the candidate x∗ is never

accepted in Steps (i) and (ii).

Moreover, as for another remark, note as follows.

Let NR be the average number of the rejected random draws.

We need (1 + NR) random draws in average to generate one random number from f (x).

In other words, the acceptance rate is given by 1/(1+ NR) in average, which is equal to 1/c in average

because of P
(
U ≤ ω(x∗)

)
= 1/c.

Therefore, to obtain one random draw from f (x), we have to generate (1 + NR) random draws from

f∗(x) in average.

See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and Geweke (1996) for

rejection sampling.

To examine the condition that ω(x) is greater than zero, i.e., the condition that the supremum of q(x)

exists, consider the case where f (x) and f∗(x) are distributed as N(µ, σ2) and N(µ∗, σ2
∗), respectively.
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q(x) is given by:

q(x) =
f (x)
f∗(x)

=

(2πσ2)−1/2 exp
(
− 1

2σ2 (x − µ)2
)

(2πσ2
∗)−1/2 exp

(
− 1

2σ2
∗

(x − µ∗)2
)

=
σ∗
σ

exp
(
− 1

2σ2 (x − µ)2 +
1

2σ2
∗

(x − µ∗)2
)

=
σ∗
σ

exp

 − 1
2
σ2
∗ − σ2

σ2σ2
∗

(
x − µσ

2
∗ − µ∗σ2

σ2
∗ − σ2

)2
+

1
2

(µ − µ∗)2

σ2
∗ − σ2

.
If σ2

∗ < σ
2, q(x) goes to infinity as x is large.

In the case of σ2
∗ > σ

2, the supremum of q(x) exists, which condition implies that f∗(x) should be

more broadly distributed than f (x).

In this case, the supremum is obtained as:

c = sup
x

q(x) =
σ∗
σ

exp
(1
2

(µ − µ∗)2

σ2
∗ − σ2

)
.

When σ2 = σ2
∗ and µ = µ∗, we have q(x) = 1, which implies ω(x) = 1.

That is, a random draw from the sampling density f∗(x) is always accepted as a random draw from the

target density f (x), where f (x) is equivalent to f∗(x) for all x.
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If σ2 = σ2
∗ and µ , µ∗, the supremum of q(x) does not exists.

Accordingly, the rejection sampling method does not work in this case.

Figure 1: Rejection Sampling

X

f (x)

��	
c f∗(x)

x∗

 f (x∗)

c f∗(x∗)



From the definition of ω(x), we have the inequality f (x) ≤ c f∗(x).

c f∗(x) and f (x) are displayed in Figure 1.

The ratio of f (x∗) and c f∗(x∗) corresponds to the acceptance probability at x∗, i.e., ω(x∗).

Thus, for rejection sampling, c f∗(x) has to be greater than or equal to f (x) for all x, which implies that
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the sampling density f∗(x) needs to be more widely distributed than the target density f (x).

Finally, note that the above discussion holds without any modification even though f (x) is a kernel of

the target density, i.e., even though f (x) is proportional to the target density, because the constant term

is canceled out between the numerator and denominator (remember that ω(x) = q(x)/ supz q(z)).

Normal Distribution: N(0, 1): First, denote the half-normal distribution by:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

The half-normal distribution above corresponds to the positive part of the standard normal probability

density function.

Using rejection sampling, we consider generating standard normal random draws based on the half-

normal distribution.

We take the sampling density as the exponential distribution:

f∗(x) =


λe−λx, for 0 ≤ x < ∞,

0, otherwise,
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where λ > 0. Since q(x) is defined as q(x) = f (x)/ f∗(x), the supremum of q(x) is given by:

c = sup
x

q(x) =
2

λ
√

2π
e

1
2 λ

2
.

which depends on parameter λ.

Remember that P(U ≤ ω(x∗)) = 1/c corresponds to the acceptance probability.

Since we need to increase the acceptance probability to reduce computational time, we want to obtain

the λ which minimizes supx q(x) with respect to λ.

Solving the minimization problem, λ = 1 is obtained.

Substituting λ = 1, the acceptance probability ω(x) is derived as:

ω(x) = e−
1
2 (x−1)2

,

for 0 < x < ∞.

Remember that − log U has an exponential distribution with λ = 1 when U ∼ U(0, 1).

Therefore, the algorithm is represented as follows.

(i) Generate two independent uniform random draws u1 and u2 between zero and one.
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(ii) Compute x∗ = − log u2, which indicates the exponential random draw generated from the target

density f∗(x).

(iii) Set x = x∗ if u1 ≤ exp(− 1
2 (x∗ − 1)2), i.e., −2 log(u1) ≥ (x∗ − 1)2, and return to (i) otherwise.

x in Step (iii) yields a random draw from the half-normal distribution.

To generate a standard normal random draw utilizing the half-normal random draw above, we may

put the positive or negative sign randomly with x.

Therefore, the following Step (iv) is additionally put.

(iv) Generate a uniform random draw u3 between zero and one, and set z = x if u3 ≤ 1/2 and

z = −x otherwise.

z gives us a standard normal random draw.

Note that the number of iteration in Step (iii) is given by c =
√

2e/π ≈ 1.3155 in average, or equiva-

lently, the acceptance probability in Step (iii) is 1/c ≈ 0.7602.

The source code for this standard normal random number generator is shown in snrnd6(ix,iy,rn).
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——— snrnd6(ix,iy,rn)———

1: subroutine snrnd6(ix,iy,rn)
2: c
3: c Use "snrnd6(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: 1 call urnd(ix,iy,rn1)
12: call urnd(ix,iy,rn2)
13: y=-log(rn2)
14: if( -2.*log(rn1).lt.(y-1.)**2 ) go to 1
15: call urnd(ix,iy,rn3)
16: if(rn3.le.0.5) then
17: rn= y
18: else
19: rn=-y
20: endif
21: return
22: end

Note that snrnd6(ix,iy,rn) should be used together with urnd(ix,iy,rn).
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Thus, utilizing rejection sampling, we have the standard normal random number generator, which is

based on the half-normal distribution.

Gamma Distribution: G(α, 1) for 0 < α ≤ 1 and 1 < α: In this section, utilizing

rejection sampling we show an example of generating random draws from the gamma distribution

with parameters α and β = 1, i.e., G(α, 1).

When X ∼ G(α, 1), the density function of X is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

Ahrens and Dieter (1974) consider the case of 0 < α ≤ 1, which is discussed in this section.

The case of α > 1 will be discussed later.

Using the rejection sampling, the composition method and the inverse transform method, we consider

generating random draws from G(α, 1) for 0 < α ≤ 1.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),
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where both I1(x) and I2(x) denote the indicator functions defined as:

I1(x) =

 1, if 0 < x ≤ 1,

0, otherwise,
I2(x) =

 1, if 1 < x,

0, otherwise.

Random number generation from the sampling density above utilizes the composition method and the

inverse transform method.

The cumulative distribution related to f∗(x) is given by:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1 − e−x+1), if x > 1.

Note that 0 < α ≤ 1 is required because the sampling density for 0 < x ≤ 1 has to satisfy the property

that the integration is equal to one.

The acceptance probability ω(x) = q(x)/ supz q(z) for q(x) = f (x)/ f∗(x) is given by:

ω(x) = e−xI1(x) + xα−1I2(x).

Moreover, the mean number of trials until success, i.e., c = supz q(z) is represented as:

c =
α + e
αeΓ(α)

,
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which depends on α and is not greater than 1.39.

Note that q(x) takes a maximum value at x = 1.

The random number generation procedure is given by:

(i) Generate a uniform random draw u1 from U(0, 1), and set x∗ =
(
(α/e+1)u1

)1/α
if u1 ≤ e/(α+e)

and x∗ = − log
(
(1/e + 1/α)(1 − u1)

)
if u1 > e/(α + e).

(ii) Obtain ω(x∗) = e−x∗ if u1 ≤ e/(α + e) and ω(x∗) = x∗α−1 if u1 > e/(α + e).

(iii) Generate a uniform random draw u2 from U(0, 1), and set x = x∗ if u2 ≤ ω(x∗) and return to

(i) otherwise.

In Step (i) a random draw x∗ from f∗(x) can be generated by the inverse transform method discussed

in Section 11.6.3.

——— gammarnd2(ix,iy,alpha,rn)———

1: subroutine gammarnd2(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd2(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
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5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (0<alpha \le 1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: 1 call urnd(ix,iy,rn0)
15: call urnd(ix,iy,rn1)
16: if( rn0.le.e/(alpha+e) ) then
17: rn=( (alpha+e)*rn0/e )**(1./alpha)
18: if( rn1.gt.e**(-rn) ) go to 1
19: else
20: rn=-log((alpha+e)*(1.-rn0)/(alpha*e))
21: if( rn1.gt.rn**(alpha-1.) ) go to 1
22: endif
23: return
24: end

Note that gammarnd2(ix,iy,alpha,rn) should be used with urnd(ix,iy,rn).

In gammarnd2(ix,iy,alpha,rn), the case of 0 < α ≤ 1 has been shown.

Now, using rejection sampling, the case of α > 1 is discussed in Cheng (1977, 1998).
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The sampling density is chosen as the following cumulative distribution:

F∗(x) =


xλ

δ + xλ
, for x > 0,

0, otherwise,

which is sometimes called the log-logistic distribution.

Then, the probability density function, f∗(x), is given by:

f∗(x) =


λδxλ−1

(α + xλ)2 , for x > 0,

0, otherwise.

By the inverse transform method, the random draw from f∗(x), denoted by x, is generated as follows:

x =
(
δu

1 − u

)1/λ
,

where u denotes the uniform random draw generated from U(0, 1).

For the two parameters, λ =
√

2α − 1 and δ = αλ are chosen, taking into account minimizing c =

supx q(x) = supx f (x)/ f∗(x) with respect to δ and λ (note that λ and δ are approximately taken, since it

is not possible to obtain the explicit solution of δ and λ).
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Then, the number of rejections in average is given by:

c =
4ααe−α

Γ(α)
√

2α − 1
,

which is computed as:

1.47 when α = 1, 1.25 when α = 2, 1.17 when α = 5,

1.15 when α = 10, 1.13 when α = ∞.

Thus, the average number of rejections is quite small for all α.

The random number generation procedure is given by:

(i) Set a = 1/
√

2α − 1, b = α − log 4 and c = α +
√

2α − 1.

(ii) Generate two uniform random draws u1 and u2 from U(0, 1).

(iii) Set y = a log
u1

1 − u1
, x∗ = αey, z = u2

1u2 and r = b + cy − x.

(iv) Take x = x∗ if r ≥ log z and return to (ii) otherwise.

To avoid evaluating the logarithm in Step (iv), we put Step (iii)’ between Steps (iii) and (iv), which is

as follows:

(iii)’ Take x = x∗ if r ≥ 4.5z − d and go to (iv) otherwise.
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d is defined as d = 1 + log 4.5, which has to be computed in Step (i).

Note that we have the relation: θz − (1 + log θ) ≥ log z for all z > 0 and any given θ > 0, because log z

is a concave function of z. According to Cheng (1977), the choice of θ is not critical and the suggested

value is θ = 4.5, irrespective of α.

The source code for Steps (i) – (iv) and (iii)’ is given by gammarnd3(ix,iy,alpha,rn).

——— gammarnd3(ix,iy,alpha,rn)———

1: subroutine gammarnd3(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd3(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (1<alpha)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: a=1./sqrt(2.*alpha-1.)
15: b=alpha-log(4.)
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16: c=alpha+sqrt(2.*alpha-1.)
17: d=1.+log(4.5)
18: 1 call urnd(ix,iy,u1)
19: call urnd(ix,iy,u2)
20: y=a*log(u1/(1.-u1))
21: rn=alpha*(e**y)
22: z=u1*u1*u2
23: r=b+c*y-rn
24: if( r.ge.4.5*z-d ) go to 2
25: if( r.lt.log(z) ) go to 1
26: 2 return
27: end

Note that gammarnd3(ix,iy,alpha,rn) requires urnd(ix,iy,rn).

Line 24 corresponds to Step (iii)’, which gives us a fast acceptance.

Taking into account a recent progress of a personal computer, we can erase Lines 17 and 24 from

gammarnd3, because evaluating the if(...) sentences in Lines 24 and 25 sometimes takes more

time than computing the logarithm in Line 25.

Thus, using both gammarnd2 and gammarnd3, we have the gamma random number generator with

parameters α > 0 and β = 1.
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11.7.2 Importance Resampling (重点的リサンプリング)

The importance resampling method also utilizes the sampling density f∗(x), where we should choose

the sampling density from which it is easy to generate random draws.

Let x∗i be the ith random draw of x generated from f∗(x).

The acceptance probability is defined as:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j)

,

where q(·) is represented as equation (19).

To obtain a random draws from f (x), we perform the following procedure:

(i) Generate x∗j from the sampling density f∗(x) for j = 1, 2, · · · , n.

(ii) Compute ω(x∗j) for all j = 1, 2, · · · , n.

(iii) Generate a uniform random draw u between zero and one and take x = x∗j whenΩ j−1 ≤ u < Ω j,

where Ω j =
∑ j

i=1 ω(x∗i ) and Ω0 ≡ 0.

The x obtained in Step (iii) represents a random draw from the target density f (x).

345



In Step (ii), all the probability weights ω(x∗j), j = 1, 2, · · · , n, have to be computed for importance

resampling.

Thus, we need to generate n random draws from the sampling density f∗(x) in advance.

When we want to generate more random draws (say, N random draws), we may repeat Step (iii) N

times.

In the importance resampling method, there are n realizations, i.e., x∗1, x∗2, · · ·, x∗n, which are mutually

independently generated from the sampling density f∗(x).

The cumulative distribution of f (x) is approximated by the following empirical distribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x
−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt

≈
(1/n)

∑n
i=1 q(x∗i )I(x, x∗i )

(1/n)
∑n

j=1 q(x∗j)
=

n∑
i=1

ω(x∗i )I(x, x∗i ),

where I(x, x∗i ) denotes the indicator function which satisfies I(x, x∗i ) = 1 when x ≥ x∗i and I(x, x∗i ) = 0

otherwise.

P(X = x∗i ) is approximated as ω(x∗i ).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance resampling proce-

346



dure.

As mentioned in Section 11.7.1, for rejection sampling, f (x) may be a kernel of the target density, or

equivalently, f (x) may be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.

That is, f (x) may be proportional to the target density for importance resampling, too.

To obtain a random draws from f (x), importance resampling requires n random draws from the sam-

pling density f∗(x), but rejection sampling needs (1 + NR) random draws from the sampling density

f∗(x).

For importance resampling, when we have n different random draws from the sampling density, we

pick up one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because we have to com-

pute all the probability weights Ω j, j = 1, 2, · · · , n, in advance even when we want only one random

draw.

When we want to generate N random draws, importance resampling requires n random draws from

the sampling density f∗(x), but rejection sampling needs n(1 + NR) random draws from the sampling

density f∗(x).
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Thus, as N increases, importance resampling is relatively less computational than rejection sampling.

Note that N < n is recommended for the importance resampling method.

In addition, when we have N random draws from the target density f (x), some of the random draws

take the exactly same values for importance resampling, while all the random draws take the different

values for rejection sampling.

Therefore, we can see that importance resampling is inferior to rejection sampling in the sense of

precision of the random draws.

Normal Distribution: N(0, 1): Again, we consider an example of generating standard nor-

mal random draws based on the half-normal distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

We take the sampling density as the following exponential distribution:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,
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which is exactly the same sampling density as in Section 11.7.1.

Given the random draws x∗i , i = 1, · · · , n, generated from the above exponential density f∗(x), the

acceptance probability ω(x∗i ) is given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j)

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j)/ f∗(x∗j)
=

exp(− 1
2 x∗2i + x∗i )∑n

j=1 exp(− 1
2 x∗2j + x∗j)

.

Therefore, a random draw from the half-normal distribution is generated as follows.

(i) Generate uniform random draws u1, u2, · · ·, un from U(0, 1).

(ii) Obtain x∗i = − log(ui) for i = 1, 2, · · · , n.

(iii) Compute ω(x∗i ) for i = 1, 2, · · · , n.

(iv) Generate a uniform random draw v1 from U(0, 1).

(v) Set x = x∗j when Ω j−1 ≤ v1 < Ω j for Ω j =
∑ j

i=1 ω(x∗i ) and Ω0 = 0.

x is taken as a random draw generated from the half-normal distribution f (x).

In order to have a standard normal random draw, we additionally put the following step.

(vi) Generate a uniform random draw v2 from U(0, 1), and set z = x if v2 ≤ 1/2 and z = −x

otherwise.

349



z represents a standard normal random draw.

Note that Step (vi) above corresponds to Step (iv) in Section 11.7.1.

Steps (i) – (vi) shown above represent the generator which yields one standard normal random draw.

When we want N standard normal random draws, Steps (iv) – (vi) should be repeated N times.

In Steps (iv) and (v), a random draw from f (x) is generated based on Ω j for j = 1, 2, · · · , n.

Gamma Distribution: G(α, 1) for 0 < α ≤ 1: When X ∼ G(α, 1), the density function of

X is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

The sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),

which is the same function as in gammarnd2 of Section 11.7.1, where both I1(x) and I2(x) denote the

indicator functions defined in Section 11.7.1.

350



The probability weights are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j)

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j)/ f∗(x∗j)

=
x∗α−1

i e−x∗i /
(
x∗α−1

i I1(x∗i ) + e−x∗i I2(x∗i )
)

∑n
j=1 x∗α−1

j e−x∗j/
(
x∗α−1

j I1(x∗j) + e−x∗j I2(x∗j)
) ,

for i = 1, 2, · · · , n.

The cumulative distribution function of f∗(x) is represented as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1 − e−x+1), if x > 1.

Therefore, x∗i can be generated by utilizing both the composition method and the inverse transform

method.

Given x∗i , compute ω(x∗i ) for i = 1, 2, · · · , n, and take x = x∗i with probability ω(x∗i ).

Summarizing above, the random number generation procedure for the gamma distribution is given by:

(i) Generate uniform random draws ui, i = 1, 2, · · · , n, from U(0, 1), and set x∗i =
(
(α/e + 1)ui

)1/α
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and ω(x∗i ) = e−x∗i if ui ≤ e/(α + e) and take x∗i = − log
(
(1/e + 1/α)(1 − ui)

)
and ω(x∗i ) = x∗α−1

i

if ui > e/(α + e) for i = 1, 2, · · · , n.

(ii) Compute Ωi =
∑i

j=1 ω(x∗j) for i = 1, 2, · · · , n, where Ω0 = 0.

(iii) Generate a uniform random draw v from U(0, 1), and take x = x∗i when Ωi−1 ≤ v < Ωi.

As mentioned above, this algorithm yields one random draw.

If we want N random draws, Step (iii) should be repeated N times.

Beta Distribution: The beta distribution with parameters α and β is of the form:

f (x) =


1

B(α, β)
xα−1(1 − x)β−1, for 0 < x < 1,

0, otherwise.

The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.
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The probability weights ω(x∗i ), i = 1, 2, · · · , n, are given by:

ω(x∗i ) =
q(x∗i )∑n
j=1 q(x∗j)

=
f (x∗i )/ f∗(x∗i )∑n

j=1 f (x∗j)/ f∗(x∗j)
=

x∗α−1
i (1 − x∗i )β−1∑n

j=1 x∗α−1
j (1 − x∗j)

β−1
.

Therefore, to generate a random draw from f (x), first generate x∗i , i = 1, 2, · · · , n, from U(0, 1), second

compute ω(x∗i ) for i = 1, 2, · · ·,n, and finally take x = x∗i with probability ω(x∗i ).

We have shown three examples of the importance resampling procedure in this section.

One of the advantages of importance resampling is that it is really easy to construct a Fortran source

code.

However, the disadvantages are that (i) importance resampling takes quite a long time because we

have to obtain all the probability weights in advance and (ii) importance resampling requires a great

amount of storages for x∗i and Ωi for i = 1, 2, · · · , n.

11.7.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アル
ゴリズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distributions are com-

pared with respect to precision of the random draws from the target density f (x).
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The Metropolis-Hastings algorithm is also one of the sampling methods to generate random draws

from any target density f (x), utilizing sampling density f∗(x), even in the case where it is not easy to

generate random draws from the target density.

Let us define the acceptance probability by:

ω(xi−1, x∗) = min
( q(x∗)
q(xi−1)

, 1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

, 1
)
,

where q(·) is defined as equation (19).

By the Metropolis-Hastings algorithm, a random draw from f (x) is generated in the following way:

(i) Take the initial value of x as x−M .

(ii) Generate x∗ from f∗(x) and compute ω(xi−1, x∗) given xi−1.

(iii) Set xi = x∗ with probability ω(xi−1, x∗) and xi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.

In the above algorithm, x1 is taken as a random draw from f (x).

When we want more random draws (say, N), we replace Step (iv) by Step (iv)’, which is represented

as follows:
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(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random draws x−M , x−M+1, · · ·, x0, x1, x2,

· · ·, xN , where x−M , x−M+1, · · ·, x0 are discarded from further consideration.

The last N random draws are taken as the random draws generated from the target density f (x).

Thus, N denotes the number of random draws.

M is sometimes called the burn-in period.

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 11.7.1.

We show that xi is the random draw generated from the target density f (x) under the assumption xi−1

is generated from f (x).

Let U be the uniform random variable between zero and one, X be the random variable which has the

density function f (x) and x∗ be the realization (i.e., the random draw) generated from the sampling

density f∗(x).

Consider the probability P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
, which should be the cumulative distribution of X,

i.e., F(x).
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The probability P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
is rewritten as follows:

P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
=

P
(
X ≤ x,U ≤ ω(xi−1, x∗)

)
P
(
U ≤ ω(xi−1, x∗)

) ,

where the numerator is represented as:

P
(
X ≤ x,U ≤ ω(xi−1, x∗)

)
=

∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du

)
f∗(t) dt =

∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P
(
U ≤ ω(xi−1, x∗)

)
= P

(
X ≤ ∞,U ≤ ω(xi−1, x∗)

)
=

f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.

The density function of U is given by fu(u) = 1 for 0 < u < 1.

Let X∗ be the random variable which has the density function f∗(x).

356



In the numerator, fu,∗(u, x) denotes the joint density of random variables U and X∗.

Because the random draws of U and X∗ are independently generated, we have fu,∗(u, x) = fu(u) f∗(x) =

f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following equality:

P
(
X ≤ x|U ≤ ω(xi−1, x∗)

)
= F(x).

Thus, the x∗ which satisfies u ≤ ω(xi−1, x∗) indicates a random draw from f (x).

We set xi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied. xi−1 is already assumed to be a random draw from

f (x).

Therefore, it is shown that xi is a random draw from f (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note that f (x) may be a kernel of the

target density, or equivalently, f (x) may be proportional to the target density.

The same algorithm as Steps (i) – (iv) can be applied to the case where f (x) is proportional to the

target density, because f (x∗) is divided by f (xi−1) in ω(xi−1, x∗).
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As a general formulation of the sampling density, instead of f∗(x), we may take the sampling density

as the following form: f∗(x|xi−1), where a candidate random draw x∗ depends on the (i − 1)th random

draw, i.e., xi−1.

For choice of the sampling density f∗(x|xi−1), Chib and Greenberg (1995) pointed out as follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support of f (x), which implies that

f∗(x|i−1) should not have too large variance and too small variance, compared with f (x).

See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan (1994), Tierney

(1994), Geweke (1996), Gamerman (1997), Robert and Casella (1999) and so on for the Metropolis-

Hastings algorithm.

As an alternative justification, note that the Metropolis-Hastings algorithm is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv,

where f ∗(u|v) denotes the transition distribution, which is characterized by Step (iii).

xi−1 is generated from fi−1(·) and xi is from f ∗(·|xi−1).

xi depends only on xi−1, which is called the Markov property.

The sequence {· · ·, xi−1, xi, xi+1, · · ·} is called the Markov chain.
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The Monte Carlo statistical methods with the sequence {· · ·, xi−1, xi, xi+1, · · ·} is called the Markov

chain Monte Carlo (MCMC).

From Step (iii), f ∗(u|v) is given by:

f ∗(u|v) = ω(v, u) f∗(u|v) +
(
1 −

∫
ω(v, u) f∗(u|v) du

)
p(u), (20)

where p(x) denotes the following probability function:

p(u) =

 1, if u = v,

0, otherwise.

Thus, x is generated from f∗(u|v) with probabilityω(v, u) and from p(u) with probability 1−
∫
ω(v, u) f∗(u|v) du.

Now, we want to show fi(u) = fi−1(u) = f (u) as i goes to infinity, which implies that both xi and xi−1

are generated from the invariant distribution function f (u) for sufficiently large i.

To do so, we need to consider the condition satisfying the following equation:

f (u) =
∫

f ∗(u|v) f (v) dv. (21)

Equation (21) holds if we have the following equation:

f ∗(v|u) f (u) = f ∗(u|v) f (v), (22)
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which is called the reversibility condition.

By taking the integration with respect to v on both sides of equation (22), equation (21) is obtained.

Therefore, we have to check whether the f ∗(u|v) shown in equation (20) satisfies equation (22).

It is straightforward to verify that

ω(v, u) f∗(u|v) f (v) = ω(u, v) f∗(v|u) f (u),(
1 −

∫
ω(v, u) f∗(u|v) du

)
p(u) f (v) =

(
1 −

∫
ω(u, v) f∗(v|u) dv

)
p(v) f (u).

Thus, as i goes to infinity, xi is a random draw from the target density f (·).
If xi is generated from f (·), then xi+1 is also generated from f (·).
Therefore, all the xi, xi+1, xi+2, · · · are taken as random draws from the target density f (·).
The requirement for uniform convergence of the Markov chain is that the chain should be irreducible

and aperiodic.

See, for example, Roberts and Smith (1993).

Let Ci(x0) be the set of possible values of xi from starting point x0.

If there exist two possible starting values, say x∗ and x∗∗, such that Ci(x∗) ∩ Ci(x∗∗) = ∅ (i.e., empty

set) for all i, then the same limiting distribution cannot be reached from both starting points.
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Thus, in the case of Ci(x∗) ∩Ci(x∗∗) = ∅, the convergence may fail.

A Markov chain is said to be irreducible if there exists an i such that P(xi ∈ C|x0) > 0 for any starting

point x0 and any set C such that
∫

C f (x) dx > 0.

The irreducible condition ensures that the chain can reach all possible x values from any starting point.

Moreover, as another case in which convergence may fail, if there are two disjoint set C1 and C2 such

that xi−1 ∈ C1 implies xi ∈ C2 and xi−1 ∈ C2 implies xi ∈ C1, then the chain oscillates between C1 and

C2 and we again have Ci(x∗) ∩Ci(x∗∗) = ∅ for all i when x∗ ∈ C1 and x∗∗ ∈ C2.

Accordingly, we cannot have the same limiting distribution in this case, either.

It is called aperiodic if the chain does not oscillate between two sets C1 and C2 or cycle around a

partition C1, C2, · · ·, Cr of r disjoint sets for r > 2.

See O’Hagan (1994) for the discussion above.

For the Metropolis-Hastings algorithm, x1 is taken as a random draw of x from f (x) for sufficiently

large M.

To obtain N random draws, we need to generate M + N random draws.

Moreover, clearly we have Cov(xi−1, xi) > 0, because xi is generated based on xi−1 in Step (iii).

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm gives us the worst

361



random number of the three sampling methods. i.e., rejection sampling in Section 11.7.1, importance

resampling in Section 11.7.2 and the Metropolis-Hastings algorithm in this section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the Metropolis-Hastings

algorithm is as follows:

1
N

N∑
i=1

g(xi) −→ E
(
g(x)

)
=

∫
g(x) f (x) dx, as N −→ ∞,

where g(·) is a function, which is representatively taken as g(x) = x for mean and g(x) = (x − x)2 for

variance.

x denotes x = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E
(
g(x)

)
, even though x1, x2, · · ·, xN

are mutually correlated.

As an alternative random number generation method to avoid the positive correlation, we can perform

the case of N = 1 as in the above procedures (i) – (iv) N times in parallel, taking different initial values

for x−M .

In this case, we need to generate M + 1 random numbers to obtain one random draw from f (x).

That is, N random draws from f (x) are based on N(1 + M) random draws from f∗(x|xi−1).
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Thus, we can obtain mutually independently distributed random draws.

For precision of the random draws, the alternative Metropolis-Hastings algorithm should be similar to

rejection sampling.

However, this alternative method is too computer-intensive, compared with the above procedures (i) –

(iii) and (iv)’, which takes more time than rejection sampling in the case of M > NR.

Furthermore, the sampling density has to satisfy the following conditions:

(i) we can quickly and easily generate random draws from the sampling density and

(ii) the sampling density should be distributed with the same range as the target density.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999) for the

MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily depend on choice of the

sampling density, we can see that the Metropolis-Hastings algorithm has the problem of specifying

the sampling density, which is the crucial criticism.

Several generic choices of the sampling density are discussed by Tierney (1994) and Chib and Green-

berg (1995).
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We can consider several candidates for the sampling density f∗(x|xi−1), i.e., Sampling Densities I – III.

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density, we have

started with f∗(x) in this section.

Thus, one possibility of the sampling density is given by: f∗(x|xi−1) = f∗(x), where f∗(·) does not

depend on xi−1.

This sampling density is called the independence chain.

For example, it is possible to take f∗(x) = N(µ∗, σ2
∗), where µ∗ and σ2

∗ are the hyper-parameters.

Or, when x lies on a certain interval, say (a, b), we can choose the uniform distribution f∗(x) = 1/(b−a)

for the sampling density.

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sampling den-

sity called the random walk chain, i.e., f∗(x|xi−1) = f∗(x − xi−1).

Representatively, we can take the sampling density as f∗(x|xi−1) = N(xi−1, σ2
∗), where σ2

∗ denotes the

hyper-parameter.

Based on the random walk chain, we have a series of the random draws which follow the random walk
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process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling distribution

is based on approximation of the log-kernel (see Geweke and Tanizaki (1999, 2001, 2003)), which is

a substantial extension of the Taylored chain discussed in Chib, Greenberg and Winkelmann (1998).

Let p(x) = log( f (x)), where f (x) may denote the kernel which corresponds to the target density.

Approximating the log-kernel p(x) around xi−1 by the second order Taylor series expansion, p(x) is

represented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x − xi−1) +
1
2

p′′(xi−1)(x − xi−1)2, (23)

where p′(·) and p′′(·) denote the first- and second-derivatives.

Depending on the values of p′(x) and p′′(x), we have the four cases, i.e., Cases 1 – 4, which are

classified by (i) p′′(x) < −ε in Case 1 or p′′(x) ≥ −ε in Cases 2 – 4 and (ii) p′(x) < 0 in Case 2,

p′(x) > 0 in Case 3 or p′(x) = 0 in Case 4.

Geweke and Tanizaki (2003) suggested introducing ε into the Taylored chain discussed in Geweke

and Tanizaki (1999, 2001).

Note that ε = 0 is chosen in Geweke and Tanizaki (1999, 2001).
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To improve precision of random draws, ε should be a positive value, which will be discussed later in

detail (see Remark 1 for ε).

Case 1: p′′(xi−1) < −ε: Equation (23) is rewritten by:

p(x) ≈ p(xi−1) − 1
2

( 1
−1/p′′(xi−1)

)(
x − (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

where r(xi−1) is an appropriate function of xi−1.

Since p′′(xi−1) is negative, the second term in the right-hand side is equivalent to the exponen-

tial part of the normal density.

Therefore, f∗(x|xi−1) is taken as N(µ∗, σ2
∗), where µ∗ = xi−1 − p′(xi−1)/p′′(xi−1) and σ2

∗ =

−1/p′′(xi−1).

Case 2: p′′(xi−1) ≥ −ε and p′(xi−1) < 0: Perform linear approximation of p(x).

Let x+ be the nearest mode with x+ < xi−1.

Then, p(x) is approximated by a line passing between x+ and xi−1, which is written as:

p(x) ≈ p(x+) +
p(x+) − p(xi−1)

x+ − xi−1
(x − x+).
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From the second term in the right-hand side, the sampling density is represented as the expo-

nential distribution with x > x+ − d, i.e., f∗(x|xi−1) = λ exp
(
−λ

(
x− (x+ − d)

))
if x+ − d < x and

f∗(x|xi−1) = 0 otherwise, where λ is defined as:

λ =

∣∣∣∣∣ p(x+) − p(xi−1)
x+ − xi−1

∣∣∣∣∣ .
d is a positive value, which will be discussed later (see Remark 2 for d).

Thus, a random draw x∗ from the sampling density is generated by x∗ = w+ (x+ − d), where w

represents the exponential random variable with parameter λ.

Case 3: p′′(xi−1) ≥ −ε and p′(xi−1) > 0: Similarly, perform linear approximation of p(x) in this

case.

Let x+ be the nearest mode with xi−1 < x+.

Approximation of p(x) is exactly equivalent to that of Case 2.

Taking into account x < x++d, the sampling density is written as: f∗(x|xi−1) = λ exp
(
−λ

(
(x++

d) − x
))

if x < x+ + d and f∗(x|xi−1) = 0 otherwise.

367



Thus, a random draw x∗ from the sampling density is generated by x∗ = (x+ + d)−w, where w

is distributed as the exponential random variable with parameter λ.

Case 4: p′′(xi−1) ≥ −ε and p′(xi−1) = 0: In this case, p(x) is approximated as a uniform distribution

at the neighborhood of xi−1.

As for the range of the uniform distribution, we utilize the two appropriate values x+ and x++,

which satisfies x+ < x < x++.

When we have two modes, x+ and x++ may be taken as the modes.

Thus, the sampling density f∗(x|xi−1) is obtained by the uniform distribution on the interval

between x+ and x++, i.e., f∗(x|xi−1) = 1/(x++ − x+) if x+ < x < x++ and f∗(x|xi−1) = 0

otherwise.

Thus, for approximation of the kernel, all the possible cases are given by Cases 1 – 4, depending on

the values of p′(·) and p′′(·).

Moreover, in the case where x is a vector, applying the procedure above to each element of x, Sampling

III is easily extended to multivariate cases.

Finally, we discuss about ε and d in the following remarks.
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Remark 1: ε in Cases 1 – 4 should be taken as an appropriate positive number.

It may seem more natural to take ε = 0, rather than ε > 0.

The reason why ε > 0 is taken is as follows.

Consider the case of ε = 0.

When p′′(xi−1) is negative and it is very close to zero, variance σ2
∗ in Case 1 becomes extremely large

because of σ2
∗ = −1/p′′(xi−1).

In this case, the obtained random draws are too broadly distributed and accordingly they become

unrealistic, which implies that we have a lot of outliers.

To avoid this situation, ε should be positive.

It might be appropriate that ε should depend on variance of the target density, because ε should be

small if variance of the target density is large.

Thus, in order to reduce a number of outliers, ε > 0 is recommended.

Remark 2: For d in Cases 2 and 3, note as follows.

As an example, consider the unimodal density in which we have Cases 2 and 3.

Let x+ be the mode.
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We have Case 2 in the right-hand side of x+ and Case 3 in the left-hand side of x+.

In the case of d = 0, we have the random draws generated from either Case 2 or 3.

In this situation, the generated random draw does not move from one case to another.

In the case of d > 0, however, the distribution in Case 2 can generate a random draw in Case 3.

That is, for positive d, the generated random draw may move from one case to another, which implies

that the irreducibility condition of the MH algorithm is guaranteed.

Normal Distribution: N(0, 1): As in Sections 11.7.1 and 11.7.2, we consider an example of

generating standard normal random draws based on the half-normal distribution:

f (x) =


2
√

2π
e−

1
2 x2
, for 0 ≤ x < ∞,

0, otherwise.

As in Sections 11.7.1 and 11.7.2, we take the sampling density as the following exponential distribu-

tion:

f∗(x) =


e−x, for 0 ≤ x < ∞,

0, otherwise,
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which is the independence chain, i.e., f∗(x|xi−1) = f∗(x).

Then, the acceptance probability ω(xi−1, x∗) is given by:

ω(xi−1, x∗) = min
( f (x∗)/ f∗(x∗)

f (xi−1)/ f∗(xi−1)
, 1

)
= min

(
exp(−1

2
x∗2 + x∗ +

1
2

x2
i−1 − xi−1), 1

)
.

Utilizing the Metropolis-Hastings algorithm, the standard normal random number generator is shown

as follows:

(i) Take an appropriate initial value of x as x−M (for example, x−M = 0).

(ii) Set yi−1 = |xi−1|.

(iii) Generate a uniform random draw u1 from U(0, 1) and computeω(yi−1, y∗) where y∗ = − log(u1).

(iv) Generate a uniform random draw u2 from U(0, 1), and set yi = y∗ if u2 ≤ ω(yi−1, y∗) and

yi = yi−1 otherwise.

(v) Generate a uniform random draw u3 from U(0, 1), and set xi = yi if u3 ≤ 0.5 and xi = −yi

otherwise.

(vi) Repeat Steps (ii) – (v) for i = −M + 1,−M + 2, · · · , 1.
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y1 is taken as a random draw from f (x). M denotes the burn-in period.

If a lot of random draws (say, N random draws) are required, we replace Step (vi) by Step (vi)’

represented as follows:

(vi)’ Repeat Steps (ii) – (v) for i = −M + 1,−M + 2, · · · ,N.

In Steps (ii) – (iv), a half-normal random draw is generated.

Note that the absolute value of xi−1 is taken in Step (ii) because the half-normal random draw is

positive.

In Step (v), the positive or negative sign is randomly assigned to yi.

Gamma Distribution: G(α, 1) for 0 < α ≤ 1: When X ∼ G(α, 1), the density function of

X is given by:

f (x) =


1
Γ(α)

xα−1e−x, for 0 < x < ∞,

0, otherwise.

As in gammarnd2 of Sections 11.7.1 and gammarnd4 of 11.7.2, the sampling density is taken as:

f∗(x) =
e
α + e

αxα−1I1(x) +
α

α + e
e−x+1I2(x),
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where both I1(x) and I2(x) denote the indicator functions defined in Section 11.7.1.

Then, the acceptance probability is given by:

ω(xi−1, x∗) = min
( q(x∗)
q(xi−1)

, 1
)
= min

( f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

, 1
)

= min
( x∗α−1e−x∗/

(
x∗α−1I1(x∗) + e−x∗ I2(x∗)

)
xα−1

i−1 e−xi−1/
(
xα−1

i−1 I1(xi−1) + e−xi−1 I2(xi−1)
) , 1).

As shown in Section 11.7.1, the cumulative distribution function of f∗(x) is represented as:

F∗(x) =


e
α + e

xα, if 0 < x ≤ 1,

e
α + e

+
α

α + e
(1 − e−x+1), if x > 1.

Therefore, a candidate of the random draw, i.e., x∗, can be generated from f∗(x), by utilizing both the

composition method and the inverse transform method.

Then, using the Metropolis-Hastings algorithm, the gamma random number generation method is

shown as follows.

(i) Take an appropriate initial value as x−M .
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(ii) Generate a uniform random draw u1 from U(0, 1), and set x∗ =
(
(α/e+1)u1

)1/α
if u1 ≤ e/(α+e)

and x∗ = − log
(
(1/e + 1/α)(1 − u1)

)
if u1 > e/(α + e).

(iii) Compute ω(xi−1, x∗).

(iv) Generate a uniform random draw u2 from U(0, 1), and set xi = x∗ if u2 ≤ ω(xi−1, x∗) and

xi = xi−1 otherwise.

(v) Repeat Steps (ii) – (iv) for i = −M + 1,−M + 2, · · · , 1.

For sufficiently large M, x1 is taken as a random draw from f (x). u1 and u2 should be independently

distributed.

M denotes the burn-in period. If we need a lot of random draws (say, N random draws), replace Step

(v) by Step (v)’, which is given by:

(v)’ Repeat Steps (ii) – (iv) for i = −M + 1,−M + 2, · · · ,N.

Beta Distribution: The beta distribution with parameters α and β is of the form:

f (x) =


1

B(α, β)
xα−1(1 − x)β−1, for 0 < x < 1,

0, otherwise.
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The sampling density is taken as:

f∗(x) =


1, for 0 < x < 1,

0, otherwise,

which represents the uniform distribution between zero and one.

The probability weights ω(x∗i ), i = 1, 2, · · · , n, are given by:

ω(xi−1, x∗) = min
( f (x∗)/ f∗(x∗)

f (xi−1)/ f∗(xi−1)
, 1

)
= min

(( x∗

xi−1

)α−1( 1 − x∗

1 − xi−1

)β−1
, 1

)
.

Then, utilizing the Metropolis-Hastings algorithm, the random draws are generated as follows.

(i) Take an appropriate initial value as x−M .

(ii) Generate a uniform random draw x∗ from U(0, 1), and compute ω(xi−1, x∗).

(iii) Generate a uniform random draw u from U(0, 1), which is independent of x∗, and set xi = x∗

if u ≤ ω(xi−1, x∗) and xi = xi−1 if u > ω(xi−1, x∗).

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.

For sufficiently large M, x1 is taken as a random draw from f (x).
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M denotes the burn-in period.

If we want a lot of random draws (say, N random draws), replace Step (iv) by Step (iv)’, which is

represented as follows:

(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

11.7.4 Ratio-of-Uniforms Method

As an alternative random number generation method, in this section we introduce the ratio-of-uniforms

method.

This generation method does not require the sampling density utilized in rejection sampling (Sec-

tion 11.7.1), importance resampling (Section 11.7.2) and the Metropolis-Hastings algorithm (Section

11.7.3).

Suppose that a bivariate random variable (U1,U2) is uniformly distributed, which satisfies the follow-

ing inequality:

0 ≤ U1 ≤
√

h(U2/U1),

for any nonnegative function h(x). Then, X = U2/U1 has a density function f (x) = h(x)/
∫

h(x) dx.
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Note that the domain of (U1, U2) will be discussed below.

The above random number generation method is justified in the following way.

The joint density of U1 and U2, denoted by f12(u1, u2), is given by:

f12(u1, u2) =


k, if 0 ≤ u1 ≤

√
h(u2/u1),

0, otherwise,

where k is a constant value, because the bivariate random variable (U1,U2) is uniformly distributed.

Consider the following transformation from (u1, u2) to (x, y):

x =
u2

u1
, y = u1,

i.e.,

u1 = y, u2 = xy.

The Jacobian for the transformation is:

J =

∣∣∣∣∣∣∣
∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ 0 1

y x

∣∣∣∣∣∣ = −y.
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Therefore, the joint density of X and Y , denoted by fxy(x, y), is written as:

fxy(x, y) = |J| f12(y, xy) = ky,

for 0 ≤ y ≤
√

h(x).

The marginal density of X, denoted by fx(x), is obtained as follows:

fx(x) =
∫ √

h(x)

0
fxy(x, y) dy =

∫ √
h(x)

0
ky dy = k

[y2

2

]√h(x)

0
=

k
2

h(x) = f (x),

where k is taken as: k = 2/
∫

h(x) dx.

Thus, it is shown that fx(·) is equivalent to f (·).
This result is due to Kinderman and Monahan (1977).

Also see Ripley (1987), O’Hagan (1994), Fishman (1996) and Gentle (1998).

Now, we take an example of choosing the domain of (U1,U2).

In practice, for the domain of (U1,U2), we may choose the rectangle which encloses the area 0 ≤
U1 ≤

√
h(U2/U1), generate a uniform point in the rectangle, and reject the point which does not

satisfy 0 ≤ u1 ≤
√

h(u2/u1).
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That is, generate two independent uniform random draws u1 and u2 from U(0, b) and U(c, d), respec-

tively.

The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,

where b, c and d are given by:

b = sup
x

√
h(x), c = − sup

x
x
√

h(x), d = sup
x

x
√

h(x),

because the rectangle has to enclose 0 ≤ u1 ≤
√

h(u2/u1), which is verified as follows:

0 ≤ u1 ≤
√

h(u2/u1) ≤ sup
x

√
h(x),

− sup
x

x
√

h(x) ≤ −x
√

h(x) ≤ u2 ≤ x
√

h(x) ≤ sup
x

x
√

h(x).

The second line also comes from 0 ≤ u1 ≤
√

h(u2/u1) and x = u2/u1.

We can replace c = − supx x
√

h(x) by c = infx x
√

h(x), taking into account the case of− supx x
√

h(x) ≤

infx x
√

h(x).

The discussion above is shown in Ripley (1987).
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Thus, in order to apply the ratio-of-uniforms method with the domain {0 ≤ u1 ≤ b, c ≤ u2 ≤ d}, we

need to have the condition that h(x) and x2h(x) are bounded.

The algorithm for the ratio-of-uniforms method is as follows:

(i) Generate u1 and u2 independently from U(0, b) and U(c, d).

(ii) Set x = u2/u1 if u2
1 ≤ h(u2/u1) and return to (i) otherwise.

As shown above, the x accepted in Step (ii) is taken as a random draw from f (x) = h(x)/
∫

h(x) dx.

The acceptance probability in Step (ii) is
∫

h(x) dx/
(
2b(d − c)

)
.

We have shown the rectangular domain of (U1,U2).

It may be possible that the domain of (U1,U2) is a parallelogram.

In Sections 11.7.4 and 11.7.4, we show two examples as applications of the ratio-of-uniforms method.

Especially, in Section 11.7.4, the parallelogram domain of (U1,U2) is taken as an example.

Normal Distribution: N(0, 1): The kernel of the standard normal distribution is given by:

h(x) = exp(− 1
2 x2).
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In this case, b, c and d are obtained as follows:

b = sup
x

√
h(x) = 1,

c = inf
x

x
√

h(x) = −
√

2e−1,

d = sup
x

x
√

h(x) =
√

2e−1.

Accordingly, the standard normal random number based on the ratio-of-uniforms method is repre-

sented as follows.

(i) Generate two independent uniform random draws u1 and v2 from U(0, 1) and define u2 =

(2v2 − 1)
√

2e−1.

(ii) Set x = u2/u1 if u2
1 ≤ exp(− 1

2 u2
2/u

2
1), i.e., −4u2

1 log(u1) ≥ u2
2, and return to (i) otherwise.

The acceptance probability is given by:∫
h(x) dx

2b(d − c)
=

√
πe
4
≈ 0.7306,

which is slightly smaller than the acceptance probability in the case of rejection sampling, i.e., 1/
√

2e/π ≈

0.7602.
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The Fortran source code for the standard normal random number generator based on the ratio-of-

uniforms method is shown in snrnd9(ix,iy,rn).

——— snrnd9(ix,iy,rn)———

1: subroutine snrnd9(ix,iy,rn)
2: c
3: c Use "snrnd9(ix,iy,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c Output:
9: c rn: Normal Random Draw N(0,1)

10: c
11: e1=1./2.71828182845905
12: 1 call urnd(ix,iy,rn1)
13: call urnd(ix,iy,rn2)
14: rn2=(2.*rn2-1.)*sqrt(2.*e1)
15: if(-4.*rn1*rn1*log(rn1).lt.rn2*rn2 ) go to 1
16: rn=rn2/rn1
17: return
18: end
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Gamma Distribution: G(α, β): When random variable X has a gamma distribution with

parameters α and β, i.e., X ∼ G(α, β), the density function of X is written as follows:

f (x) =
1

βαΓ(α)
xα−1e−

x
β ,

for 0 < x < ∞.

When X ∼ G(α, 1), we have Y = βX ∼ G(α, β).

Therefore, first we consider generating a random draw of X ∼ G(α, 1).

Since we have discussed the case of 0 < α ≤ 1 in Sections 11.7.1 – 11.7.3, now we consider the case

of α > 1.

Using the ratio-of-uniforms method, the gamma random number generator is introduced.

h(x), b, c and d are set to be:

h(x) = xα−1e−x,

b = sup
x

√
h(x) =

α − 1
e

(α−1)/2

,

c = inf
x

x
√

h(x) = 0,
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d = sup
x

x
√

h(x) =

α + 1
e

(α+1)/2

.

Note that α > 1 guarantees the existence of the supremum of h(x), which implies b > 0.

See Fishman (1996, pp.194 – 195) and Ripley (1987, pp.88 – 89).

By the ratio-of-uniforms method, the gamma random number with parameter α > 1 and β = 1 is

represented as follows:

(i) Generate two independent uniform random draws u1 and u2 from U(0, b) and U(c, d), respec-

tively.

(ii) Set x = u2/u1 if u1 ≤
√

(u2/u1)α−1e−u2/u1 and go back to (i) otherwise.

Thus, the x obtained in Steps (i) and (ii) is taken as a random draw from G(α, 1) for α > 1.

Based on the above algorithm represented by Steps (i) and (ii), the Fortran 77 program for the gamma

random number generator with parameters α > 1 and β = 1 is shown in gammarnd6(ix,iy,alpha,rn).

——— gammarnd6(ix,iy,alpha,rn)———
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1: subroutine gammarnd6(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd6(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e=2.71828182845905
14: b=( (alpha-1.)/e )**(0.5*alpha-0.5)
15: d=( (alpha+1.)/e )**(0.5*alpha+0.5)
16: 1 call urnd(ix,iy,rn0)
17: call urnd(ix,iy,rn1)
18: u=rn0*b
19: v=rn1*d
20: rn=v/u
21: if( 2.*log(u).gt.(alpha-1.)*log(rn)-rn ) go to 1
22: return
23: end

gammarnd6(ix,iy,alpha,rn) should be used together with urnd(ix,iy,rn).
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b and d are obtained in Lines 14 and 15.

Lines 16 –19 gives us two uniform random draws u and v, which correspond to u1 and u2.

rn in Line 20 indicates a candidate of the gamma random draw.

Line 21 represents Step (ii).

To see efficiency or inefficiency of the generator above, we compute the acceptance probability in Step

(ii) as follows: ∫
h(x) dx

2b(d − c)
=

eαΓ(α)
2(α − 1)(α−1)/2(α + 1)(α+1)/2 . (24)

It is known that the acceptance probability decreases by the order of O(α−1/2), i.e., in other words,

computational time for random number generation increases by the order of O(α1/2).

Therefore, as α is larger, the generator is less efficient.

See Fishman (1996) and Gentle (1998).

To improve inefficiency for large α, various methods have been proposed, for example, Cheng and

Feast (1979, 1980), Schmeiser and Lal (1980), Sarkar (1996) and so on.

As mentioned above, the algorithm gammarnd6 takes a long time computationally by the order of

O(α1/2) as shape parameter α is large.
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Chen and Feast (1979) suggested the algorithm which does not depend too much on shape parameter

α.

As α increases the acceptance region shrinks toward u1 = u2.

Therefore, Chen and Feast (1979) suggested generating two uniform random draws within the paral-

lelogram around u1 = u2, rather than the rectangle.

The source code is shown in gammarnd7(ix,iy,alpha,rn).

——— gammarnd7(ix,iy,alpha,rn)———

1: subroutine gammarnd7(ix,iy,alpha,rn)
2: c
3: c Use "gammarnd7(ix,iy,alpha,rn)"
4: c together with "urnd(ix,iy,rn)".
5: c
6: c Input:
7: c ix, iy: Seeds
8: c alpha: Shape Parameter (alpha>1)
9: c Output:

10: c rn: Gamma Random Draw
11: c with Parameters alpha and beta=1
12: c
13: e =2.71828182845905
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14: c0=1.857764
15: c1=alpha-1.
16: c2=( alpha-1./(6.*alpha) )/c1
17: c3=2./c1
18: c4=c3+2.
19: c5=1./sqrt(alpha)
20: 1 call urnd(ix,iy,u1)
21: call urnd(ix,iy,u2)
22: if(alpha.gt.2.5) u1=u2+c5*(1.-c0*u1)
23: if(0.ge.u1.or.u1.ge.1.) go to 1
24: w=c2*u2/u1
25: if(c3*u1+w+1./w.le.c4) go to 2
26: if(c3*log(u1)-log(w)+w.ge.1.) go to 1
27: 2 rn=c1*w
28: return
29: end

See Fishman (1996, p.200) and Ripley (1987, p.90).

In Line 22, we use the rectangle for 1 < α ≤ 2.5 and the parallelogram for α > 2.5 to give a fairly

constant speed as α is varied.

Line 25 gives us a fast acceptance to avoid evaluating the logarithm.

From computational efficiency, gammarnd7(ix,iy,alpha,rn) is better.
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Gamma Distribution: G(α, β) for α > 0 and β > 0: Combining gammarnd2 on p.339

and gammarnd7 on p.387, we introduce the gamma random number generator in the case of α > 0.

In addition, utilizing Y = βX ∼ G(α, β) when X ∼ G(α, 1), the random number generator for G(α, β)

is introduced as in the source code gammarnd8(ix,iy,alpha,beta,rn).

——— gammarnd8(ix,iy,alpha,beta,rn)———

1: subroutine gammarnd8(ix,iy,alpha,beta,rn)
2: c
3: c Use "gammarnd8(ix,iy,alpha,beta,rn)"
4: c together with "gammarnd2(ix,iy,alpha,rn)",
5: c "gammarnd7(ix,iy,alpha,rn)"
6: c and "urnd(ix,iy,rn)".
7: c
8: c Input:
9: c ix, iy: Seeds

10: c alpha: Shape Parameter
11: c beta: Scale Parameter
12: c Output:
13: c rn: Gamma Random Draw
14: c with Parameters alpha and beta
15: c
16: if( alpha.le.1. ) then
17: call gammarnd2(ix,iy,alpha,rn1)
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18: else
19: call gammarnd7(ix,iy,alpha,rn1)
20: endif
21: rn=beta*rn1
22: return
23: end

Lines 16 – 20 show that we use gammarnd2 for α ≤ 1 and gammarnd7 for α > 1.

In Line 21, X ∼ G(α, 1) is transformed into Y ∼ G(α, β) by Y = βX, where X and Y indicates rn1 and

rn, respectively.

Chi-Square Distribution: χ2(k): The gamma distribution with α = k/2 and β = 2 reduces to

the chi-square distribution with k degrees of freedom.

11.7.5 Gibbs Sampling

The sampling methods introduced in Sections 11.7.1 – 11.7.3 can be applied to the cases of both

univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the multivariate cases.
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The Gibbs sampler shows how to generate random draws from the unconditional densities under the

situation that we can generate random draws from two conditional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon and Smith (1990),

Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and Karim (1991), Casella and George

(1992), Gamerman (1997) and so on developed the Gibbs sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999,

2001) applied the Gibbs sampler to the nonlinear and/or non-Gaussian state-space models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random variables X and Y in

order to make things easier.

Two conditional density functions, fx|y(x|y) and fy|x(y|x), are assumed to be known, which denote the

conditional distribution function of X given Y and that of Y given X, respectively.

Suppose that we can easily generate random draws of X from fx|y(x|y) and those of Y from fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the joint density of X

and Y , denoted by fxy(x, y).
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In order to have the random draws of (X,Y) from the joint density fxy(x, y), we take the following

procedure:

(i) Take the initial value of X as x−M .

(ii) Given xi−1, generate a random draw of Y , i.e., yi, from f (y|xi−1).

(iii) Given yi, generate a random draw of X, i.e., xi, from f (x|yi).

(iv) Repeat the procedure for i = −M + 1,−M + 2, · · · , 1.

From the convergence theory of the Gibbs sampler, as M goes to infinity, we can regard x1 and y1 as

random draws from fxy(x, y), which is a joint density function of X and Y .

M denotes the burn-in period, and the first M random draws, (xi, yi) for i = −M + 1,−M + 2, · · · , 0,

are excluded from further consideration.

When we want N random draws from fxy(x, y), Step (iv) should be replaced by Step (iv)’, which is as

follows.

(iv)’ Repeat the procedure for i = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and (iv)’ is formulated
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as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution f (u) which satisfies

fi(u) = fi−1(u) = f (u). If we have the reversibility condition shown in equation (22), i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant distribution, which

implies that there exists the invariant distribution f (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribution, i.e., f ∗(u|v).

Here, we consider that both u and v are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions. xi and yi are generated from fi(u) through

f ∗(u|v), given fi−1(v).

Note that u = (u1, u2) = (xi, yi) is taken while v = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)
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Thus, we can choose f ∗(u|v) as shown above.

Then, as i goes to infinity, (xi, yi) tends in distribution to a random vector whose joint density is

fxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the basic result of the

Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi, yi) −→ E
(
g(x, y)

)
=

∫∫
g(x, y) fxy(x, y) dx dy, as N −→ ∞,

where g(·, ·) is a function.

The Gibbs sampler is a powerful tool in a Bayesian framework.

Based on the conditional densities, we can generate random draws from the joint density.

Remark 1: We have considered the bivariate case, but it is easily extended to the multivariate

cases.

That is, it is possible to take multi-dimensional vectors for x and y.
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Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the ith random draws

from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially, we can obtain the random draws

from fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables.

Take an example of the case where X is highly correlated with Y .

If we generate random draws from fx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known that convergence

of the Gibbs sampler is slow.

In this case, without separating X and Y , random number generation from f (x, y|z) and f (z|x, y) yields

better random draws from the joint density f (x, y, z).

Rejection Sampling, Importance Resampling and the Metropolis-Hastings Al-
gorithm: We compare rejection sampling, importance resampling and the Metropolis-Hastings

algorithm from precision of the estimated moments and CPU time.

All the three sampling methods utilize the sampling density and they are useful when it is not easy to

generate random draws directly from the target density.
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When the sampling density is too far from the target density, it is known that rejection sampling takes

a lot of time computationally while importance resampling and the Metropolis-Hastings algorithm

yields unrealistic random draws.

In this section, therefore, we investigate how the sampling density depends on the three sampling

methods.

For simplicity of discussion, consider the case where both the target and sampling densities are normal.

That is, the target density f (x) is given by N(0, 1) and the sampling density f∗(x) is N(µ∗, σ2
∗).

µ∗ = 0, 1, 2, 3 and σ∗ = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 are taken.

For each of the cases, the first three moments E(X j), j = 1, 2, 3, are estimated, generating 107 random

draws.

For importance resampling, n = 104 is taken, which is the number of candidate random draws.

The Metropolis-Hastings algorithm takes M = 1000 as the burn-in period and the initial value is

x−M = µ∗.

As for the Metropolis-Hastings algorithm, note that is the independence chain is taken for f∗(x) be-

cause of f∗(x|z) = f∗(x).
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Comparison of Three Sampling Methods
µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 0.0000 IR 0.060 0.005 0.000 0.005 0.014 0.014MH −0.004 0.000 0.000 0.000 0.000 0.000(59.25) (100.00) (74.89) (59.04) (40.99) (31.21)
E(X) RS — — 0.000 0.000 0.000 0.000= 0 1 IR 0.327 0.032 0.025 0.016 0.011 0.011MH 0.137 0.000 0.001 0.000 0.000 0.000(36.28) (47.98) (55.75) (51.19) (38.68) (30.23)

RS — — 0.000 0.000 0.000 0.0002 IR 0.851 0.080 0.031 0.030 0.003 0.005MH 0.317 0.005 0.001 0.001 0.000 0.001(8.79) (15.78) (26.71) (33.78) (32.50) (27.47)
RS — — 0.000 0.000 0.000 −0.0013 IR 1.590 0.337 0.009 0.029 0.021 −0.007MH 0.936 0.073 −0.002 0.000 0.001 −0.001(1.68) (3.53) (9.60) (17.47) (24.31) (23.40)

Comparison of Three Sampling Methods
µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 1.000 1.000 1.000 0.9990 IR 0.822 0.972 0.969 0.978 0.994 1.003MH 0.958 1.000 1.000 1.000 1.001 1.001
E(X2) RS — — 1.000 1.000 1.000 1.000= 1 1 IR 0.719 0.980 0.983 0.993 1.010 1.004MH 0.803 1.002 0.999 0.999 1.001 1.002

RS — — 1.000 1.000 1.001 1.0012 IR 1.076 0.892 1.014 0.984 1.000 1.012MH 0.677 0.992 1.001 0.999 1.001 1.002
RS — — 1.000 1.000 1.000 1.0003 IR 2.716 0.696 1.013 1.025 0.969 1.002MH 1.165 0.892 1.005 1.001 0.999 0.999
Comparison of Three Sampling Methods

µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 0.000 0.000 0.000 −0.0010 IR 0.217 0.034 −0.003 −0.018 0.018 0.036MH −0.027 0.001 0.001 −0.001 −0.002 −0.004
E(X3) RS — — 0.002 −0.001 0.000 0.001= 0 1 IR 0.916 0.092 0.059 0.058 0.027 0.032MH 0.577 −0.003 0.003 0.000 0.002 −0.001

RS — — −0.001 0.002 0.001 0.0012 IR 1.732 0.434 0.052 0.075 0.040 0.001MH 0.920 0.035 0.003 0.004 0.004 0.004
RS — — 0.000 0.001 0.001 −0.0013 IR 5.030 0.956 0.094 0.043 0.068 0.020MH 1.835 0.348 −0.002 0.003 0.001 −0.001

Comparison of Three Sampling Methods: CPU Time (Seconds)
µ∗
\σ∗ 0.5 1.0 1.5 2.0 3.0 4.0

RS — — 15.96 20.50 30.69 39.620 IR 431.89 431.40 431.53 432.58 435.37 437.16MH 9.70 9.24 9.75 9.74 9.82 9.77
RS — — 23.51 24.09 32.77 41.031 IR 433.22 427.96 426.41 426.36 427.80 430.39MH 9.73 9.54 9.81 9.75 9.83 9.76
RS — — 74.08 38.75 39.18 45.182 IR 435.90 432.23 425.06 423.78 421.46 422.35MH 9.71 9.52 9.83 9.77 9.82 9.77
RS — — 535.55 87.00 52.91 53.093 IR 437.32 439.31 429.97 424.45 422.91 418.38MH 9.72 9.48 9.79 9.75 9.81 9.76

RS, IR and MH denotes rejection sampling, importance resampling and the Metropolis-Hastings al-

gorithm, respectively.

In each table, “—” in RS implies the case where rejection sampling cannot be applied because the

supremum of q(x), supx q(x), does not exist.

As for MH in the case of E(X) = 0, the values in the parentheses represent the acceptance rate (percent)

in the Metropolis-Hastings algorithm.
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The results obtained from each table are as follows.

E(X) should be close to zero because we have E(X) = 0 from X ∼ N(0, 1).

When µ∗ = 0.0, all of RS, IR and MH are very close to zero and show a good performance.

When µ∗ = 1, 2, 3, for σ∗ = 1.5, 2.0, 3.0, 4.0, all of RS, IR and MH perform well, but IR and MH in

the case of σ∗ = 0.5, 1.0 have the case where the estimated mean is too different from zero.

For IR and MH, we can see that given σ∗ the estimated mean is far from the true mean as µ∗ is far

from mean of the target density.

Also, it might be concluded that given µ∗ the estimated mean approaches the true value as σ∗ is large.

E(X2) should be close to one because we have E(X2) = V(X) = 1 from X ∼ N(0, 1).

The cases of σ∗ = 1.5, 2.0, 3.0, 4.0 and the cases of µ∗ = 0, 1 and σ∗ = 1.0 are very close to one, but

the other cases are different from one.

These are the same results as the case of E(X).

E(X3) should be close to zero because E(X3) represents skewness.

For skewness, we obtain the similar results, i.e., the cases of σ∗ = 1.5, 2.0, 3.0, 4.0 and the cases of

µ∗ = 0, 1 and σ∗ = 0.5, 1.0 perform well for all of RS, IR and MH.

In the case where we compare RS, IR and MH, RS shows the best performance of the three, and IR
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and MH is quite good when σ∗ is relatively large.

We can conclude that IR is slightly worse than RS and MH.

As for the acceptance rates of MH in E(X) = 0, from the table a higher acceptance rate generally

shows a better performance.

The high acceptance rate implies high randomness of the generated random draws.

For variance of the sampling density, both too small variance and too large variance give us the rel-

atively low acceptance rate, which result is consistent with the discussion in Chib and Greenberg

(1995).

MH has the advantage over RS and IR from computational point of view.

IR takes a lot of time because all the acceptance probabilities have to be computed in advance (see

Section 11.7.2 for IR).

That is, 104 candidate random draws are generated from the sampling density f∗(x) and therefore 104

acceptance probabilities have to be computed.

For MH and IR, computational CPU time does not depend on µ∗ and σ∗.

However, for RS, given σ∗ computational time increases as µ∗ is large.

In other words, as the sampling density is far from the target density the number of rejections increases.
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When σ∗ increases given µ∗, the acceptance rate does not necessarily increase.

However, from the table a large σ∗ is better than a small σ∗ in general.

Accordingly, as for RS, under the condition that mean of f (x) is unknown, we can conclude that

relatively large variance of f∗(x) should be taken.

Finally, the results are summarized as follows.

(1) For IR and MH, depending on choice of the sampling density f∗(x), we have the cases where

the estimates of mean, variance and skewness are biased.

For RS, we can always obtain the unbiased estimates without depending on choice of the

sampling density.

(2) In order to avoid the biased estimates, it is safe for IR and MH to choose the sampling density

with relatively large variance.

Furthermore, for RS we should take the sampling density with relatively large variance to

reduce computational burden.

But, note that too large variance leads to an increase in computational disadvantages.

(3) MH is the least computational sampling method of the three.
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For IR, all the acceptance probabilities have to be computed in advance and therefore

IR takes a lot of time to generate random draws.

In the case of RS, the amount of computation increases as f∗(x) is far from f (x).

(4) For the sampling density in MH, it is known that both too large variance and too small variance

yield slow convergence of the obtained random draws.

The slow convergence implies that a great amount of random draws have to be generated from

the sampling density for evaluation of the expectations such as E(X) and V(X).

Therefore, choice of the sampling density has to be careful,

Thus, RS gives us the best estimates in the sense of unbiasedness, but RS sometimes has the case

where the supremum of q(x) does not exist and in this case it is impossible to implement RS.

As the sampling method which can be applied to any case, MH might be preferred to IR and RS in a

sense of less risk.

However, we should keep in mind that MH also has the problem which choice of the sampling density

is very important.
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12 Bayesian Estimation — Examples
12.1 Heteroscedasticity Model

In Section 12.1, Tanizaki and Zhang (2001) is re-computed using the random number generators.

Here, we show how to use Bayesian approach in the multiplicative heteroscedasticity model discussed

by Harvey (1976).

The Gibbs sampler and the Metropolis-Hastings (MH) algorithm are applied to the multiplicative

heteroscedasticity model, where some sampling densities are considered in the MH algorithm.

We carry out Monte Carlo study to examine the properties of the estimates via Bayesian approach

and the traditional counterparts such as the modified two-step estimator (M2SE) and the maximum

likelihood estimator (MLE).

The results of Monte Carlo study show that the sampling density chosen here is suitable, and Bayesian

approach shows better performance than the traditional counterparts in the criterion of the root mean

square error (RMSE) and the interquartile range (IR).
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12.1.1 Introduction

For the heteroscedasticity model, we have to estimate both the regression coefficients and the het-

eroscedasticity parameters.

In the literature of heteroscedasticity, traditional estimation techniques include the two-step estimator

(2SE) and the maximum likelihood estimator (MLE).

Harvey (1976) showed that the 2SE has an inconsistent element in the heteroscedasticity parameters

and furthermore derived the consistent estimator based on the 2SE, which is called the modified two-

step estimator (M2SE).

These traditional estimators are also examined in Amemiya (1985), Judge, Hill, Griffiths and Lee

(1980) and Greene (1997).

Ohtani (1982) derived the Bayesian estimator (BE) for a heteroscedasticity linear model.

Using a Monte Carlo experiment, Ohtani (1982) found that among the Bayesian estimator (BE) and

some traditional estimators, the Bayesian estimator (BE) shows the best properties in the mean square

error (MSE) criterion.

Because Ohtani (1982) obtained the Bayesian estimator by numerical integration, it is not easy to

410



extend to the multi-dimensional cases of both the regression coefficient and the heteroscedasticity

parameter.

Recently, Boscardin and Gelman (1996) developed a Bayesian approach in which a Gibbs sampler

and the Metropolis-Hastings (MH) algorithm are used to estimate the parameters of heteroscedasticity

in the linear model.

They argued that through this kind of Bayesian approach, we can average over our uncertainty in the

model parameters instead of using a point estimate via the traditional estimation techniques.

Their modeling for the heteroscedasticity, however, is very simple and limited. Their choice of the

heteroscedasticity is V(yi) = σ2w−θi , where wi are known “weights” for the problem and θ is an

unknown parameter.

In addition, they took only one candidate for the sampling density used in the MH algorithm and

compared it with 2SE.

In Section 12.1, we also consider Harvey’s (1976) model of multiplicative heteroscedasticity.

This modeling is very flexible, general, and includes most of the useful formulations for heteroscedas-

ticity as special cases.

The Bayesian approach discussed by Ohtani (1982) and Boscardin and Gelman (1996) can be extended
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to the multi-dimensional and more complicated cases, using the model introduced here.

The Bayesian approach discussed here includes the MH within Gibbs algorithm, where through Monte

Carlo studies we examine two kinds of candidates for the sampling density in the MH algorithm

and compare the Bayesian approach with the two traditional estimators, i.e., M2SE and MLE, in the

criterion of the root mean square error (RMSE) and the interquartile range (IR).

We obtain the results that the Bayesian estimator significantly has smaller RMSE and IR than M2SE

and MLE at least for the heteroscedasticity parameters.

Thus, the results of the Monte Carlo study show that the Bayesian approach performs better than the

traditional estimators.

12.1.2 Multiplicative Heteroscedasticity Regression Model

The multiplicative heteroscedasticity model discussed by Harvey (1976) can be shown as follows:

yt = Xtβ + ut, ut ∼ N(0, σ2
t ), (25)

σ2
t = σ

2 exp(qtα), (26)
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for t = 1, 2, · · · , n, where yt is the tth observation, Xt and qt are the tth 1 × k and 1 × (J − 1) vectors of

explanatory variables, respectively.

β and α are vectors of unknown parameters.

The model given by equations (25) and (26) includes several special cases such as the model in

Boscardin and Gelman (1996), in which qt = log wt and θ = −α.

As shown in Greene (1997), there is a useful simplification of the formulation.

Let zt = (1, qt) and γ = (logσ2, α′)′, where zt and γ denote 1 × J and J × 1 vectors.

Then, we can simply rewrite equation (26) as:

σ2
t = exp(ztγ). (27)

Note that exp(γ1) provides σ2, where γ1 denotes the first element of γ.

As for the variance of ut, hereafter we use (27), rather than (26).

The generalized least squares (GLS) estimator of β, denoted by β̂GLS , is given by:

β̂GLS =

( n∑
t=1

exp(−ztγ)X′t Xt

)−1 n∑
t=1

exp(−ztγ)X′t yt, (28)

where β̂GLS depends on γ, which is the unknown parameter vector.
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To obtain the feasible GLS estimator, we need to replace γ by its consistent estimate.

We have two traditional consistent estimators of γ, i.e., M2SE and MLE, which are briefly described

as follows.

Modified Two-Step Estimator (M2SE): First, define the ordinary least squares (OLS)

residual by et = yt−Xtβ̂OLS , where β̂OLS represents the OLS estimator, i.e., β̂OLS = (
∑n

t=1 X′t Xt)−1 ∑n
t=1 X′t yt.

For 2SE of γ, we may form the following regression:

log e2
t = ztγ + vt.

The OLS estimator of γ applied to the above equation leads to the 2SE of γ, because et is obtained by

OLS in the first step.

Thus, the OLS estimator of γ gives us 2SE, denoted by γ̂2S E , which is given by:

γ̂2S E = (
n∑

t=1

z′tzt)−1
n∑

t=1

z′t log e2
t .

A problem with this estimator is that vt, t = 1, 2, · · · , n, have non-zero means and are heteroscedastic.

If et converges in distribution to ut, the vt will be asymptotically independent with mean E(vt) =

−1.2704 and variance V(vt) = 4.9348, which are shown in Harvey (1976).
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Then, we have the following mean and variance of γ̂2S E :

E(γ̂2S E ) = γ − 1.2704(
n∑

t=1

z′tzt)−1
n∑

t=1

z′t , (29)

V(γ̂2S E ) = 4.9348(
n∑

t=1

z′tzt)−1.

For the second term in equation (29), the first element is equal to −1.2704 and the remaining elements

are zero, which can be obtained by simple calculation.

Therefore, the first element of γ̂2S E is biased but the remaining elements are still unbiased.

To obtain a consistent estimator of γ1, we consider M2SE of γ, denoted by γ̂M2S E , which is given by:

γ̂M2S E = γ̂2S E + 1.2704(
n∑

t=1

z′tzt)−1
n∑

t=1

z′t .

Let ΣM2S E be the variance of γ̂M2S E .

Then, ΣM2S E is represented by:

ΣM2S E ≡ V(γ̂M2S E ) = V(γ̂2S E ) = 4.9348(
n∑

t=1

z′tzt)−1.
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The first element of γ̂2S E and γ̂M2S E corresponds to the estimate of σ2, which value does not influence

β̂GLS .

Since the remaining elements of γ̂2S E are equal to those of γ̂M2S E , β̂2S E is equivalent to β̂M2S E , where β̂2S E

and β̂M2S E denote 2SE and M2SE of β, respectively.

Note that β̂2S E and β̂M2S E can be obtained by substituting γ̂2S E and γ̂M2S E into γ in (28).

Maximum Likelihood Estimator (MLE): The density of Yn = (y1, y2, · · ·, yn) based on

(25) and (27) is:

f (Yn|β, γ) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (30)

which is maximized with respect to β and γ, using the method of scoring.

That is, given values for β( j) and γ( j), the method of scoring is implemented by the following iterative

procedure:

β( j) =

( n∑
t=1

exp(−ztγ
( j−1))X′t Xt

)−1 n∑
t=1

exp(−ztγ
( j−1))X′t yt,

γ( j) = γ( j−1) + 2(
n∑

t=1

z′tzt)−1 1
2

n∑
t=1

z′t
(
exp(−ztγ

( j−1))e2
t − 1

)
,
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for j = 1, 2, · · · , where et = yt − Xtβ
( j−1).

The starting value for the above iteration may be taken as (β(0), γ(0)) = (β̂OLS , γ̂2S E ), (β̂2S E , γ̂2S E ) or

(β̂M2S E , γ̂M2S E ).

Let θ = (β, γ).

The limit of θ( j) = (β( j), γ( j)) gives us the MLE of θ, which is denoted by θ̂MLE = (β̂MLE , γ̂MLE ).

Based on the information matrix, the asymptotic covariance matrix of θ̂MLE is represented by:

V(θ̂MLE ) =

 − E

∂2 log f (Yn|θ)
∂θ∂θ′

−1

=

( (∑n
t=1 exp(−ztγ)X′t Xt

)−1
0

0 2(
∑n

t=1 z′tzt)−1

)
. (31)

Thus, from (31), asymptotically there is no correlation between β̂MLE and γ̂MLE , and furthermore the

asymptotic variance of γ̂MLE is represented by: ΣMLE ≡ V(γ̂MLE ) = 2(
∑n

t=1 z′tzt)−1, which implies that

γ̂M2S E is asymptotically inefficient because ΣM2S E − ΣMLE is positive definite.

Remember that the variance of γ̂M2S E is given by: V(γ̂M2S E ) = 4.9348(
∑n

t=1 z′tzt)−1.
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12.1.3 Bayesian Estimation

We assume that the prior distributions of the parameters β and γ are noninformative, which are repre-

sented by:

fβ(β) = constant, fγ(γ) = constant. (32)

Combining the prior distributions (32) and the likelihood function (30), the posterior distribution

f
βγ

(β, γ|y) is obtained as follows:

f
βγ

(β, γ|Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) .
The posterior means of β and γ are not operationally obtained.

Therefore, by generating random draws of β and γ from the posterior density f
βγ

(β, γ|Yn), we consider

evaluating the mathematical expectations as the arithmetic averages based on the random draws.

Now we utilize the Gibbs sampler, which has been introduced in Section 11.7.5, to sample random

draws of β and γ from the posterior distribution.
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Then, from the posterior density f
βγ

(β, γ|Yn), we can derive the following two conditional densities:

f
γ|β (γ|β,Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (33)

f
β|γ (β|γ,Yn) = N(B1,H1), (34)

where

H−1
1 =

n∑
t=1

exp(−ztγ)X′t Xt, B1 = H1

n∑
t=1

exp(−ztγ)X′t yt.

Sampling from (34) is simple since it is a k-variate normal distribution with mean B1 and variance H1.

However, since the J-variate distribution (33) does not take the form of any standard density, it is not

easy to sample from (33).

In this case, the MH algorithm discussed in Section 11.7.3 can be used within the Gibbs sampler.

See Tierney (1994) and Chib and Greeberg (1995) for a general discussion.

Let γi−1 be the (i − 1)th random draw of γ and γ∗ be a candidate of the ith random draw of γ.

The MH algorithm utilizes another appropriate distribution function f∗(γ|γi), which is called the sam-

pling density or the proposal density.
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Let us define the acceptance rate ω(γi−1, γ
∗) as:

ω(γi−1, γ
∗) = min

(
f
γ|β (γ

∗|βi−1,Yn)/ f∗(γ∗|γi−1)
f
γ|β (γi−1|βi−1,Yn)/ f∗(γi−1|γ∗)

, 1
)
.

The sampling procedure based on the MH algorithm within Gibbs sampling is as follows:

(i) Set the initial value β−M , which may be taken as β̂M2S E or β̂MLE .

(ii) Given βi−1, generate a random draw of γ, denoted by γi, from the conditional density f
γ|β (γ|βi−1,Yn),

where the MH algorithm is utilized for random number generation because it is not easy to

generate random draws of γ from (33).

The Metropolis-Hastings algorithm is implemented as follows:

(a) Given γi−1, generate a random draw γ∗ from f∗(·|γi−1) and compute the acceptance rate

ω(γi−1, γ
∗).

We will discuss later about the sampling density f∗(γ|γi−1).

(b) Set γi = γ
∗ with probability ω(γi−1, γ

∗) and γi = γi−1 otherwise,

(iii) Given γi, generate a random draw of β, denoted by βi, from the conditional density f
β|γ (β|γi,Yn),

which is β|γi,Yn ∼ N(B1,H1) as shown in (34).
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(iv) Repeat (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

Note that the iteration of Steps (ii) and (iii) corresponds to the Gibbs sampler, which iteration yields

random draws of β and γ from the joint density f
βγ

(β, γ|Yn) when i is large enough.

It is well known that convergence of the Gibbs sampler is slow when β is highly correlated with γ.

That is, a large number of random draws have to be generated in this case.

Therefore, depending on the underlying joint density, we have the case where the Gibbs sampler does

not work at all.

For example, see Chib and Greenberg (1995) for convergence of the Gibbs sampler.

In the model represented by (25) and (26), however, there is asymptotically no correlation between

β̂MLE and γ̂MLE , as shown in (31).

It might be expected that correlation between β̂MLE and γ̂MLE is not too high even in the small sample.

Therefore, it might be appropriate to consider that the Gibbs sampler works well in this model.

In Step (ii), the sampling density f∗(γ|γi−1) is utilized.

We consider the multivariate normal density function for the sampling distribution, which is discussed

as follows.
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Choice of the Sampling Density in Step (ii): Several generic choices of the sampling

density are discussed by Tierney (1994) and Chib and Greenberg (1995).

Here, we take f∗(γ|γi−1) = f∗(γ) as the sampling density, which is called the independence chain

because the sampling density is not a function of γi−1.

We consider taking the multivariate normal sampling density in the independence MH algorithm,

because of its simplicity.

Therefore, f∗(γ) is taken as follows:

f∗(γ) = N(γ+, c2Σ+), (35)

which represents the J-variate normal distribution with mean γ+ and variance c2Σ+.

The tuning parameter c is introduced into the sampling density (35).

We have mentioned that for the independence chain (Sampling Density I) the sampling density with

the variance which gives us the maximum acceptance probability is not necessarily the best choice.

From some Monte Carlo experiments, we have obtained the result that the sampling density with the

1.5 – 2.5 times larger standard error is better than that with the standard error which maximizes the

acceptance probability.
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Therefore, c = 2 is taken in the next section, and it is the larger value than the c which gives us the

maximum acceptance probability.

This detail discussion is given in Section 12.1.4.

Thus, the sampling density of γ is normally distributed with mean γ+ and variance c2Σ+.

As for (γ+,Σ+), in the next section we choose one of (γ̂M2S E , ΣM2S E ) and (γ̂MLE , ΣMLE ) from the criterion

of the acceptance rate.

As shown in Section 2, both of the two estimators γ̂M2S E and γ̂MLE are consistent estimates of γ.

Therefore, it might be very plausible to consider that the sampling density is distributed around the

consistent estimates.

Bayesian Estimator: From the convergence theory of the Gibbs sampler and the MH algorithm,

as i goes to infinity we can regard γi and βi as random draws from the target density f
βγ

(β, γ|Yn).

Let M be a sufficiently large number. γi and βi for i = 1, 2, · · · ,N are taken as the random draws from

the posterior density f
βγ

(β, γ|Yn).
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Therefore, the Bayesian estimators γ̂BZZ and β̂BZZ are given by:

γ̂BZZ =
1
N

N∑
i=1

γi, β̂BZZ =
1
N

N∑
i=1

βi,

where we read the subscript BZZ as the Bayesian estimator which uses the multivariate normal sam-

pling density with mean γ̂ZZ and variance ΣZZ . ZZ takes M2SE or MLE.

We consider two kinds of candidates of the sampling density for the Bayesian estimator, which are

denoted by BM2SE and BMLE.

Thus, in Section 12.1.4, we compare the two Bayesian estimators (i.e, BM2SE and BMLE) with the

two traditional estimators (i.e., M2SE and MLE).

12.1.4 Monte Carlo Study

Setup of the Model: In the Monte Carlo study, we consider using the artificially simulated

data, in which the true data generating process (DGP) is presented in Judge, Hill, Griffiths and Lee

(1980, p.156).

The DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, (36)
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where ut, t = 1, 2, · · · , n, are normally and independently distributed with E(ut) = 0, E(u2
t ) = σ2

t and,

σ2
t = exp(γ1 + γ2x2,t), for t = 1, 2, · · · , n. (37)

As it is discussed in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to be (β1, β2, β3,

γ1, γ2) = (10, 1, 1,−2, 0.25).

From (36) and (37), Judge, Hill, Griffiths and Lee (1980, pp.160 – 165) generated one hundred samples

of y with n = 20.

In the Monte Carlo study, we utilize x2,t and x3,t given in Judge, Hill, Griffiths and Lee (1980, pp.156),

which is shown in Table 2, and generate G samples of yt given the Xt for t = 1, 2, · · · , n.

That is, we perform G simulation runs for each estimator, where G = 104 is taken.

The simulation procedure is as follows:

(i) Given γ and x2,t for t = 1, 2, · · · , n, generate random numbers of ut for t = 1, 2, · · · , n, based

on the assumptions: ut ∼ N(0, σ2
t ), where (γ1, γ2) = (−2, 0.25) and σ2

t = exp(γ1 + γ2x2,t) are

taken.

(ii) Given β, (x2,t, x3,t) and ut for t = 1, 2, · · · , n, we obtain a set of data yt, t = 1, 2, · · · , n, from

equation (36), where (β1, β2, β3) = (10, 1, 1) is assumed.
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Table 2: The Exogenous Variables x1,t and x2,t

t 1 2 3 4 5 6 7 8 9 10
x2,t 14.53 15.30 15.92 17.41 18.37 18.83 18.84 19.71 20.01 20.26
x3,t 16.74 16.81 19.50 22.12 22.34 17.47 20.24 20.37 12.71 22.98
t 11 12 13 14 15 16 17 18 19 20

x2,t 20.77 21.17 21.34 22.91 22.96 23.69 24.82 25.54 25.63 28.73
x3,t 19.33 17.04 16.74 19.81 31.92 26.31 25.93 21.96 24.05 25.66

(iii) Given (yt, Xt) for t = 1, 2, · · · , n, perform M2SE, MLE, BM2SE and BMLE discussed in Sec-

tions 12.1.2 and 12.1.3 in order to obtain the estimates of θ = (β, γ), denoted by θ̂.

Note that θ̂ takes θ̂M2S E , θ̂MLE , θ̂BM2S E and θ̂BMLE .

(iv) Repeat (i) – (iii) G times, where G = 104 is taken as mentioned above.

(v) From G estimates of θ, compute the arithmetic average (AVE), the root mean square error

(RMSE), the first quartile (25%), the median (50%), the third quartile (75%) and the interquar-

tile range (IR) for each estimator.
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AVE and RMSE are obtained as follows:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE =

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)2

)1/2
,

for j = 1, 2, · · · , 5, where θ j denotes the jth element of θ and θ̂(g)
j represents the j-element of θ̂

in the gth simulation run.

As mentioned above, θ̂ denotes the estimate of θ, where θ̂ takes θ̂M2S E , θ̂MLE , θ̂BM2S E and θ̂BMLE .

Choice of (γ+, Σ+) and c: For the Bayesian approach, depending on (γ+, Σ+) we have BM2SE

and BMLE, which denote the Bayesian estimators using the multivariate normal sampling density

whose mean and covariance matrix are calibrated on the basis of M2SE or MLE.

We consider the following sampling density: f∗(γ) = N(γ+, c2Σ+), where c denotes the tuning param-

eter and (γ+,Σ+) takes (γM2S E ,ΣM2S E ) or (γMLE ,ΣMLE ).

Generally, for choice of the sampling density, the sampling density should not have too large variance

and too small variance.

Chib and Greenberg (1995) pointed out that if standard deviation of the sampling density is too low,
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Figure 2: Acceptance Rates in Average: M = 5000 and N = 104
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the Metropolis steps are too short and move too slowly within the target distribution; if it is too high,

the algorithm almost always rejects and stays in the same place.

The sampling density should be chosen so that the chain travels over the support of the target density.

First, we consider choosing (γ+,Σ+) and c which maximizes the arithmetic average of the acceptance

rates obtained from G simulation runs.

The results are in Figure 2, where n = 20, M = 5000, N = 104, G = 104 and c = 0.1, 0.2, · · · , 4.0 are

taken (choice of N and M is discussed in Appendix of Section 12.1.6).

In the case of (γ+,Σ+) = (γMLE ,ΣMLE ) and c = 1.2, the acceptance rate in average is 0.5078, which

gives us the largest one.

It is important to reduce positive correlation between γi and γi−1 and keep randomness.

Therefore, (γ+,Σ+) = (γMLE , ΣMLE ) is adopted, rather than (γ+,Σ+) = (γM2S E , ΣM2S E ), because BMLE has

a larger acceptance probability than BM2SE for all c (see Figure 2).

However, the sampling density with the largest acceptance probability is not necessarily the best

choice.

We have the result that the optimal standard error should be 1.5 – 2.5 times larger than the standard

error which gives us the largest acceptance probability.
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Here, (γ+,Σ+) = (γMLE ,ΣMLE ) and c = 2 are taken.

When c is larger than 2, both the estimates and their standard errors become stable although here we

do not show these facts.

Therefore, in this Monte Carlo study, f∗(γ) = N(γMLE , 2
2ΣMLE ) is chosen for the sampling density.

Hereafter, we compare BMLE with M2SE and MLE (i.e., we do not consider BM2SE anymore).

As for computational CPU time, the case of n = 20, M = 5000, N = 104 and G = 104 takes about

76 minutes for each of c = 0.1, 0.2, · · · , 4.0 and each of BM2SE and BMLE, where Dual Pentium III

1GHz CPU, Microsoft Windows 2000 Professional Operating System and Open Watcom FORTRAN

77/32 Optimizing Compiler (Version 1.0) are utilized.

Note that WATCOM Fortran 77 Compiler is downloaded from

http://www.openwatcom.org/.

Results and Discussion: Through Monte Carlo simulation studies, the Bayesian estimator

(i.e., BMLE) is compared with the traditional estimators (i.e., M2SE and MLE).

The arithmetic mean (AVE) and the root mean square error (RMSE) have been usually used in Monte

Carlo study.
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Moreover, for comparison with the standard normal distribution, Skewness and Kurtosis are also com-

puted.

Moments of the parameters are needed in the calculation of AVE, RMSE, Skewness and Kurtosis.

However, we cannot assure that these moments actually exist.

Therefore, in addition to AVE and RMSE, we also present values for quartiles, i.e., the first quartile

(25%), median (50%), the third quartile (75%) and the interquartile range (IR).

Thus, for each estimator, AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and IR are computed

from G simulation runs.

The results are given in Table 3, where BMLE is compared with M2SE and MLE.

The case of n = 20, M = 5000 and N = 104 is examined in Table 3.

A discussion on choice of M and N is given in Appendix 12.1.6, where we examine whether M = 5000

and N = 104 are sufficient.
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Table 3: The AVE, RMSE and Quartiles: n = 20
β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25
AVE 10.064 0.995 1.002 −0.988 0.199
RMSE 7.537 0.418 0.333 3.059 0.146
Skewness 0.062 −0.013 −0.010 −0.101 −0.086

M2SE Kurtosis 4.005 3.941 2.988 3.519 3.572
25% 5.208 0.728 0.778 −2.807 0.113
50% 10.044 0.995 1.003 −0.934 0.200
75% 14.958 1.261 1.227 0.889 0.287
IR 9.751 0.534 0.449 3.697 0.175

Table 3: The AVE, RMSE and Quartiles: n = 20 — Cont.
β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25
AVE 10.029 0.997 1.002 −2.753 0.272
RMSE 7.044 0.386 0.332 2.999 0.139
Skewness 0.081 −0.023 −0.014 0.006 −0.160

MLE Kurtosis 4.062 3.621 2.965 4.620 4.801
25% 5.323 0.741 0.775 −4.514 0.189
50% 10.066 0.998 1.002 −2.710 0.273
75% 14.641 1.249 1.229 −0.958 0.355
IR 9.318 0.509 0.454 3.556 0.165

Table 3: The AVE, RMSE and Quartiles: n = 20 — Cont.
β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25
AVE 10.034 0.996 1.002 −2.011 0.250
RMSE 6.799 0.380 0.328 2.492 0.117
Skewness 0.055 −0.016 −0.013 −0.016 −0.155

BMLE Kurtosis 3.451 3.340 2.962 3.805 3.897
25% 5.413 0.745 0.778 −3.584 0.176
50% 10.041 0.996 1.002 −1.993 0.252
75% 14.538 1.246 1.226 −0.407 0.325
IR 9.125 0.501 0.448 3.177 0.150

c = 2.0, M = 5000 and N = 104 are chosen for BMLE
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First, we compare the two traditional estimators, i.e., M2SE and MLE.

Judge, Hill, Griffiths and Lee (1980, pp.141–142) indicated that 2SE of γ1 is inconsistent although

2SE of the other parameters is consistent but asymptotically inefficient.

For M2SE, the estimate of γ1 is modified to be consistent.

But M2SE is still asymptotically inefficient while MLE is consistent and asymptotically efficient.

Therefore, for γ, MLE should have better performance than M2SE in the sense of efficiency.

In Table 3, for all the parameters except for IR of β3, RMSE and IR of MLE are smaller than those of

M2SE.

For both M2SE and MLE, AVEs of β are close to the true parameter values.

Therefore, it might be concluded that M2SE and MLE are unbiased for β even in the case of small

sample.

However, the estimates of γ are different from the true values for both M2SE and MLE.

That is, AVE and 50% of γ1 are −0.988 and −0.934 for M2SE, and −2.753 and −2.710 for MLE,

which are far from the true value −2.0.

Similarly, AVE and 50% of γ2 are 0.199 and 0.200 for M2SE, which are different from the true value

0.25.
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But 0.272 and 0.273 for MLE are slightly larger than 0.25 and they are close to 0.25.

Thus, the traditional estimators work well for the regression coefficients β but not for the heteroscedas-

ticity parameters γ.

Next, the Bayesian estimator (i.e., BMLE) is compared with the traditional ones (i.e., M2SE and

MLE).

For all the parameters of β, we can find from Table 3 that BMLE shows better performance in RMSE

and IR than the traditional estimators, because RMSE and IR of BMLE are smaller than those of

M2SE and MLE.

Furthermore, from AVEs of BMLE, we can see that the heteroscedasticity parameters as well as the

regression coefficients are unbiased in the small sample.

Thus, Table 3 also shows the evidence that for both β and γ, AVE and 50% of BMLE are very close

to the true parameter values.

The values of RMSE and IR also indicate that the estimates are concentrated around the AVE and

50%, which are vary close to the true parameter values.

For the regression coefficient β, all of the three estimators are very close to the true parameter values.

However, for the heteroscedasticity parameter γ, BMLE shows a good performance but M2SE and
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MLE are poor.

The larger values of RMSE for the traditional counterparts may be due to “outliers” encountered with

the Monte Carlo experiments.

This problem is also indicated in Zellner (1971, pp.281).

Compared with the traditional counterparts, the Bayesian approach is not characterized by extreme

values for posterior modal values.

Now we compare empirical distributions for M2SE, MLE and BMLE in Figures 3 – 7.

For the posterior densities of β1 (Figure 3), β2 (Figure 4), β3 (Figure 5) and γ1 (Figure 6), all of M2SE,

MLE and BMLE are almost symmetric (also, see Skewness in Table 3).

For the posterior density of γ2 (Figure 7), both MLE and BMLE are slightly skewed to the left because

Skewness of γ2 in Table 3 is negative, while M2SE is almost symmetric.

As for Kurtosis, all the empirical distributions except for β3 have a sharp kurtosis and fat tails, com-

pared with the normal distribution.

Especially, for the heteroscedasticity parameters γ1 and γ2, MLE has the largest kurtosis of the three.

For all figures, location of the empirical distributions indicates whether the estimators are unbiased or

not.
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Figure 3: Empirical Distributions of β1
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Figure 4: Empirical Distributions of β2
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Figure 5: Empirical Distributions of β3
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Figure 6: Empirical Distributions of γ1

M2SE

−10 −5 0 5

MLE

−10 −5 0 5

BMLE

−10 −5 0 5

439



Figure 7: Empirical Distributions of γ2

M2SE

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

MLE

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

BMLE

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

440



For β1 in Figure 3, β2 in Figure 4 and β3 in Figure 5, M2SE is biased while MLE and BMLE are

distributed around the true value.

For γ1 in Figure 6 and γ2 in Figure 7, the empirical distributions of M2SE, MLE and BMLE are quite

different.

For γ1 in Figure 6, M2SE is located in the right-hand side of the true parameter value, MLE is in the

left-hand side, and BMLE is also slightly in the left-hand side.

Moreover, for γ2 in Figure 7, M2SE is downward-biased, MLE is overestimated, and BMLE is dis-

tributed around the true parameter value.

On the Sample Size n: Finally, we examine how the sample size n influences precision of the

parameter estimates.

Since we utilize the exogenous variable X shown in Judge, Hill, Griffiths and Lee (1980), we cannot

examine the case where n is greater than 20.

In order to see the effect of the sample size n, here the case of n = 15 is compared with that of n = 20.

The case n = 15 of BMLE is shown in Table 4, which should be compared with BMLE in Table 3.

As a result, all the AVEs are very close to the corresponding true parameter values.
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Therefore, we can conclude from Tables 3 and 4 that the Bayesian estimator is unbiased even in the

small sample such as n = 15, 20.

However, RMSE and IR become large as n decreases.

That is, for example, RMSEs of β1, β2, β3, γ1 and γ2 are given by 6.799, 0.380, 0.328, 2.492 and 0.117

in Table 3, and 8.715, 0.455, 0.350, 4.449 and 0.228 in Table 4.

Thus, we can see that RMSE and IR decrease as n is large.

Table 4: BMLE: n = 15, c = 2.0, M = 5000 and N = 104

β1 β2 β3 γ1 γ2
True Value 10 1 1 −2 0.25
AVE 10.060 0.995 1.002 −2.086 0.252
RMSE 8.715 0.455 0.350 4.449 0.228
Skewness 0.014 0.033 −0.064 −0.460 0.308
Kurtosis 3.960 3.667 3.140 4.714 4.604
25% 4.420 0.702 0.772 −4.725 0.107
50% 10.053 0.995 1.004 −1.832 0.245
75% 15.505 1.284 1.237 0.821 0.391
IR 11.085 0.581 0.465 5.547 0.284

12.1.5 Summary

In Section 12.1, we have examined the multiplicative heteroscedasticity model discussed by Harvey

(1976), where the two traditional estimators are compared with the Bayesian estimator.
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For the Bayesian approach, we have evaluated the posterior mean by generating random draws from

the posterior density, where the Markov chain Monte Carlo methods (i.e., the MH within Gibbs algo-

rithm) are utilized.

In the MH algorithm, the sampling density has to be specified.

We examine the multivariate normal sampling density, which is the independence chain in the MH

algorithm.

For mean and variance in the sampling density, we consider using the mean and variance estimated by

the two traditional estimators (i.e., M2SE and MLE).

The Bayesian estimators with M2SE and MLE are called BM2SE and BMLE in Section 12.1.

Through the Monte Carlo studies, the results are summarized as follows:

(i) We compare BM2SE and BMLE with respect to the acceptance rates in the MH algorithm.

In this case, BMLE shows higher acceptance rates than BM2SE for all c, which is shown in

Figure 2.

For the sampling density, we utilize the independence chain through Section 12.1.

The high acceptance rate implies that the chain travels over the support of the target density.
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For the Bayesian estimator, therefore, BMLE is preferred to BM2SE.

However, note as follows.

The sampling density which yields the highest acceptance rate is not necessarily the best choice

and the tuning parameter c should be larger than the value which gives us the maximum ac-

ceptance rate.

Therefore, we have focused on BMLE with c = 2 (remember that BMLE with c = 1.2 yields

the maximum acceptance rate).

(ii) For the traditional estimators (i.e., M2SE and MLE), we have obtained the result that MLE

has smaller RMSE than M2SE for all the parameters, because for one reason the M2SE is

asymptotically less efficient than the MLE.

Furthermore, for M2SE, the estimates of β are unbiased but those of γ are different from the

true parameter values (see Table 3).

(iii) From Table 3, BMLE performs better than the two traditional estimators in the sense of RMSE

and IR, because RMSE and IR of BMLE are smaller than those of the traditional ones for all

the cases.
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(iv) Each empirical distribution is displayed in Figures 3 – 7.

The posterior densities of almost all the estimates are distributed to be symmetric (γ2 is slightly

skewed to the left), but the posterior densities of both the regression coefficients (except for β3)

and the heteroscedasticity parameters have fat tails.

Also, see Table 3 for skewness and kurtosis.

(v) As for BMLE, the case of n = 15 is compared with n = 20.

The case n = 20 has smaller RMSE and IR than n = 15, while AVE and 50% are close to the

true parameter values for β and γ.

Therefore, it might be expected that the estimates of BMLE go to the true parameter values as

n is large.
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12.1.6 Appendix: Are M = 5000 and N = 104 Sufficient?
Table 5: BMLE: n = 20 and c = 2.0

β1 β2 β3 γ1 γ2
True Value 10 1 1 −2 0.25
AVE 10.028 0.997 1.002 −2.008 0.250
RMSE 6.807 0.380 0.328 2.495 0.117
Skewness 0.041 −0.007 −0.012 0.017 −0.186

M = 1000 Kurtosis 3.542 3.358 2.963 3.950 4.042
N = 104 25% 5.413 0.745 0.778 −3.592 0.176

50% 10.027 0.996 1.002 −1.998 0.252
75% 14.539 1.245 1.226 −0.405 0.326
IR 9.127 0.500 0.448 3.187 0.150
Table 5: BMLE: n = 20 and c = 2.0 — Cont.

β1 β2 β3 γ1 γ2
True Value 10 1 1 −2 0.25
AVE 10.033 0.996 1.002 −2.010 0.250
RMSE 6.799 0.380 0.328 2.491 0.117
Skewness 0.059 −0.016 −0.011 −0.024 −0.146

M = 5000 Kurtosis 3.498 3.347 2.961 3.764 3.840
N = 5000 25% 5.431 0.747 0.778 −3.586 0.176

50% 10.044 0.995 1.002 −1.997 0.252
75% 14.532 1.246 1.225 −0.406 0.326
IR 9.101 0.499 0.447 3.180 0.149

In Section 12.1.4, only the case of (M,N) = (5000, 104) is examined.

In this appendix, we check whether M = 5000 and N = 104 are sufficient.

For the burn-in period M, there are some diagnostic tests, which are discussed in Geweke (1992) and
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Mengersen, Robert and Guihenneuc-Jouyaux (1999).

However, since their tests are applicable in the case of one sample path, we cannot utilize them.

Because G simulation runs are implemented in Section 12.1.4 (see p.425 for the simulation procedure),

we have G test statistics if we apply the tests.

It is difficult to evaluate G testing results at the same time.

Therefore, we consider using the alternative approach to see if M = 5000 and N = 104 are sufficient.

For choice of M and N, we consider the following two issues.

(i) Given fixed M = 5000, compare N = 5000 and N = 104.

(ii) Given fixed N = 104, compare M = 1000 and M = 5000.

(i) examines whether N = 5000 is sufficiently large, while (ii) checks whether M = 1000 is large

enough. If the case of (M,N) = (5000, 5000) is close to that of (M,N) = (5000, 104), we can conclude

that N = 5000 is sufficiently large.

Similarly, if the case of (M,N) = (1000, 104) is not too different from that of (M,N) = (5000, 104), it

might be concluded that M = 1000 is also sufficient.

The results are in Table 5, where AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and IR are shown
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for each of the regression coefficients and the heteroscedasticity parameters.

BMLE in Table 3 should be compared with Table 5.

From Tables 3 and 5, the three cases, i.e., (M,N) = (5000, 104), (1000, 104), (5000, 5000), are very

close to each other.

Therefore, we can conclude that both M = 1000 and N = 5000 are large enough in the simulation

study shown in Section 12.1.4.

We take the case of M = 5000 and N = 104 for safety in Section 12.1.4, although we obtain the results

that both M = 1000 and N = 5000 are large enough.

12.2 Autocorrelation Model

In the previous section, we have considered estimating the regression model with the heteroscedastic

error term, where the traditional estimators such as MLE and M2SE are compared with the Bayesian

estimators.

In this section, using both the maximum likelihood estimator and the Bayes estimator, we consider

the regression model with the first order autocorrelated error term, where the initial distribution of the

autocorrelated error is taken into account.
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As for the autocorrelated error term, the stationary case is assumed, i.e., the autocorrelation coefficient

is assumed to be less than one in absolute value.

The traditional estimator (i.e., MLE) is compared with the Bayesian estimator. Utilizing the Gibbs

sampler, Chib (1993) discussed the regression model with the autocorrelated error term in a Bayesian

framework, where the initial condition of the autoregressive process is not taken into account.

In this section, taking into account the initial density, we compare the maximum likelihood estimator

and the Bayesian estimator.

For the Bayes estimator, the Gibbs sampler and the Metropolis-Hastings algorithm are utilized to

obtain random draws of the parameters.

As a result, the Bayes estimator is less biased and more efficient than the maximum likelihood esti-

mator. Especially, for the autocorrelation coefficient, the Bayes estimate is much less biased than the

maximum likelihood estimate.

Accordingly, for the standard error of the estimated regression coefficient, the Bayes estimate is more

plausible than the maximum likelihood estimate.
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12.2.1 Introduction

In Section 12.2, we consider the regression model with the first order autocorrelated error term, where

the error term is assumed to be stationary, i.e., the autocorrelation coefficient is assumed to be less

than one in absolute value.

The traditional estimator, i.e., the maximum likelihood estimator (MLE), is compared with the Bayes

estimator (BE).

Utilizing the Gibbs sampler, Chib (1993) and Chib and Greenberg (1994) discussed the regression

model with the autocorrelated error term in a Bayesian framework, where the initial condition of the

autoregressive process is ignored.

Here, taking into account the initial density, we compare MLE and BE, where the Gibbs sampler and

the Metropolis-Hastings (MH) algorithm are utilized in BE.

As for MLE, it is well known that the autocorrelation coefficient is underestimated in small sample

and therefore that variance of the estimated regression coefficient is also biased.

See, for example, Andrews (1993) and Tanizaki (2000, 2001).

Under this situation, inference on the regression coefficient is not appropriate, because variance of the
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estimated regression coefficient depends on the estimated autocorrelation coefficient.

We show in Section 12.2 that BE is superior to MLE because BEs of both the autocorrelation coeffi-

cient and the variance of the error term are closer to the true values, compared with MLEs.

12.2.2 Setup of the Model

Let Xt be a 1 × k vector of exogenous variables and β be a k × 1 parameter vector.

Consider the following regression model:

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ N(0, σ2
ε ),

for t = 1, 2, · · · , n, where ε1, ε2, · · ·, εn are assumed to be mutually independently distributed.

In this model, the parameter to be estimated is given by θ = (β, ρ, σ2
ε ).

The unconditional density of yt is:

f (yt |β, ρ, σ2
ε ) =

1√
2πσ2

ε/(1 − ρ2)
exp

(
− 1

2σ2
ε/(1 − ρ2)

(yt − Xtβ)2
)
.

Let Yt be the information set up to time t, i.e., Yt = {yt, yt−1, · · · , y1}.
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The conditional density of yt given Yt−1 is:

f (yt |Yt−1, β, ρ, σ
2
ε ) = f (yt |yt−1, β, ρ, σ

2
ε )

=
1√

2πσ2
ε

exp
(
− 1

2σ2
ε

(
(yt − ρyt−1) − (Xt − ρXt−1)β

)2
)
.

Therefore, the joint density of Yn, i.e., the likelihood function, is given by :

f (Yn|β, ρ, σ2
ε ) = f (y1|β, ρ, σ2

ε )
n∏

t=2

f (yt |Yt−1, β, ρ, σ
2
ε )

= (2πσ2
ε )
−n/2(1 − ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
, (38)

where y∗t and X∗t represent the following transformed variables:

y∗t = y∗t (ρ) =


√

1 − ρ2yt, for t = 1,

yt − ρyt−1, for t = 2, 3, · · · , n,

X∗t = X∗t (ρ) =


√

1 − ρ2Xt, for t = 1,

Xt − ρXt−1, for t = 2, 3, · · · , n,

which depend on the autocorrelation coefficient ρ.
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Maximum Likelihood Estimator: We have shown above that the likelihood function is

given by equation (38).

Maximizing equation (38) with respect to β and σ2
ε , we obtain the following expressions:

β̂ ≡ β̂(ρ) = (
n∑

t=1

X∗t
′X∗t )−1

n∑
t=1

X∗t
′y∗t ,

σ̂2
ε ≡ σ̂2

ε (ρ) =
1
n

n∑
t=1

(y∗t − X∗t β̂)
2. (39)

By substituting β̂ and σ̂2
ε into β and σ2

ε in equation (38), we have the concentrated likelihood function:

f (Yn|β̂, ρ, σ̂2
ε ) =

(
2πσ̂2

ε (ρ)
)−n/2

(1 − ρ2)1/2 exp
(
−n

2

)
, (40)

which is a function of ρ.

Equation (40) has to be maximized with respect to ρ.

In the next section, we obtain the maximum likelihood estimate of ρ by a simple grid search, in

which the concentrated likelihood function (40) is maximized by changing the parameter value of ρ

by 0.0001 in the interval between −0.9999 and 0.9999.
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Once the solution of ρ, denoted by ρ̂, is obtained, β̂(ρ̂) and σ̂2
ε (ρ̂) lead to the maximum likelihood

estimates of β and σ2
ε .

Hereafter, β̂, σ̂2
ε and ρ̂ are taken as the maximum likelihood estimates of β, σ2

ε and ρ, i.e., β̂(ρ̂) and

σ̂2
ε (ρ̂) are simply written as β̂ and σ̂2

ε .

Variance of the estimate of θ = (β′, σ2, ρ)′ is asymptotically given by: V(θ̂) = I−1(θ), where I(θ)

denotes the information matrix, which is represented as:

I(θ) = −E
(
∂2 log f (Yn|θ)
∂θ∂θ′

)
.

Therefore, variance of β̂ is given by V(β̂) = σ2(
∑n

t=1 X∗t
′X∗t )−1 in large sample, where ρ in X∗t is

replaced by ρ̂, i.e., X∗t = X∗t (ρ̂).

For example, suppose that X∗t has a tendency to rise over time t and that we have ρ > 0.

If ρ is underestimated, then V(β̂) is also underestimated, which yields incorrect inference on the re-

gression coefficient β.

Thus, unless ρ is properly estimated, the estimate of V(β̂) is also biased.

In large sample, ρ̂ is a consistent estimator of ρ and therefore V(β̂) is not biased.

However, in small sample, since it is known that ρ̂ is underestimated (see, for example, Andrews
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(1993), Tanizaki (2000, 2001)), clearly V(β̂) is also underestimated.

In addition to ρ̂, the estimate ofσ2 also influences inference of β, because we have V(β̂) = σ2(
∑n

t=1 X∗t
′X∗t )−1

as mentioned above.

If σ2 is underestimated, the estimated variance of β is also underestimated.

σ̂2 is a consistent estimator of σ2 in large sample, but it is appropriate to consider that σ̂2 is biased in

small sample, because σ̂2 is a function of ρ̂ as in (39).

Therefore, the biased estimate of ρ gives us the serious problem on inference of β.

Bayesian Estimator: We assume that the prior density functions of β, ρ and σ2
ε are the follow-

ing noninformative priors:

fβ(β) ∝ constant, for −∞ < β < ∞, (41)

fρ(ρ) ∝ constant, for −1 < ρ < 1, (42)

fσε (σ
2
ε ) ∝

1
σ2
ε

, for 0 < σ2
ε < ∞. (43)

In equation (42), theoretically we should have −1 < ρ < 1.
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As for the prior density of σ2
ε , since we consider that logσ2

ε has the flat prior for −∞ < logσ2
ε < ∞,

we obtain fσε (σ
2
ε ) ∝ 1/σ2

ε .

Note that in Section 12.1 the first element of the heteroscedasticity parameter γ is also assumed to be

diffuse, where it is formulated as the logarithm of variance of the error term, i.e., logσ2
ε .

Combining the four densities (38) and (41) – (43), the posterior density function of β, ρ and σ2
ε ,

denoted by fβρσε (β, ρ, σ
2
ε |Yn), is represented as follows:

fβρσε (β, ρ, σ
2
ε |Yn)

∝ f (Yn|β, ρ, σ2
ε ) fβ(β) fρ(ρ) fσε (σ

2
ε )

∝ (σ2
ε )
−(n/2+1)(1 − ρ2)1/2 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
. (44)

We want to have random draws of β, ρ and σ2
ε given Yn.

However, it is not easy to generate random draws of β, ρ and σ2
ε from fβρσε (β, ρ, σ

2
ε |Yn).

Therefore, we perform the Gibbs sampler in this problem.

According to the Gibbs sampler, we can sample from the posterior density function (44), using the

three conditional distributions fβ|ρσε (β|ρ, σ2
ε ,Yn), fρ|βσε (ρ|β, σ2

ε ,Yn) and fσε |βρ(σ
2
ε |β, ρ, Yn), which are
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proportional to fβρσ(β, ρ, σ2|Yn) and are obtained as follows:

• fβ|ρσε (β|ρ, σ2
ε ,Yn) is given by:

fβ|ρσε (β|ρ, σ2
ε ,Yn)

∝ fβρσε (β, ρ, σ
2
ε |Yn) ∝ exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)

= exp
(
− 1

2σ2
ε

n∑
t=1

(
(y∗t − X∗t β̂) − Xt(β − β̂)

)2)
= exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β̂)
2 − 1

2σ2
ε

(β − β̂)′(
n∑

t=1

X∗t
′X∗t )(β − β̂)

)
∝ exp

(
−1

2
(β − β̂)′( 1

σ2
ε

n∑
t=1

X∗t
′X∗t )(β − β̂)

)
, (45)

which indicates that β ∼ N
(
β̂, σ2

ε (
∑n

t=1 X∗t
′X∗t )−1

)
, where β̂ represents the OLS estimate, i.e., β̂ =

(
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ).

Thus, (45) implies that β can be sampled from the multivariate normal distribution with mean β̂ and

variance σ2
ε (
∑n

t=1 X∗t
′X∗t )−1.
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• fρ|βσε (ρ|β, σ2
ε ,Yn) is obtained as:

fρ|βσε (ρ|β, σ2
ε ,Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ (1 − ρ2)1/2 exp
(
− 1

2σ2
ε

n∑
t=1

(
y∗t − X∗t β

)2)
, (46)

for −1 < ρ < 1, which cannot be represented in a known distribution.

Note that y∗t = y∗t (ρ) and X∗t = X∗t (ρ).

Sampling from (46) is implemented by the MH algorithm.

A detail discussion on sampling will be given later.

• fσε |βρ(σ
2
ε |β, ρ, Yn) is represented as:

fσε |βρ(σ
2
ε |β, ρ, Yn) ∝ fβρσε (β, ρ, σ

2
ε |Yn)

∝ 1
(σ2
ε )n/2+1 exp

(
− 1

2σ2
ε

n∑
t=1

(y∗t − X∗t β)
2
)
, (47)

which is written as follows: σ2
ε ∼ IG(n/2, 2/

∑n
t=1 ε

2
t ), or equivalently, 1/σ2

ε ∼ G(n/2, 2/
∑n

t=1 ε
2
t ),

where εt = y∗t − X∗t β.
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Thus, in order to generate random draws of β, ρ and σ2
ε from the posterior density fβρσε (β, ρ, σ

2
ε |Yn),

the following procedures have to be taken:

(i) Let βi, ρi and σ2
ε,i be the ith random draws of β, ρ and σ2

ε .

Take the initial values of (β, ρ, σ2
ε ) as (β−M , ρ−M , σ2

ε,−M).

(ii) From equation (45), generate βi given ρi−1, σ2
ε,i−1 and Yn, using β ∼ N

(
β̂, σ2

ε,i−1(
∑n

t=1 X∗t
′X∗t )−1

)
,

where β̂ = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ), y∗t = y∗t (ρi−1) and X∗t = X∗t (ρi−1).

(iii) From equation (46), generate ρi given βi, σ2
ε,i−1 and Yn.

Since it is not easy to generate random draws from (45), the Metropolis-Hastings algorithm is

utilized, which is implemented as follows:

(a) Generate ρ∗ from the uniform distribution between −1 and 1, which implies that the

sampling density of ρ is given by f∗(ρ|ρi−1) = 1/2 for −1 < ρ < 1.

Compute the acceptance probability ω(ρi−1, ρ
∗), which is defined as:

ω(ρi−1, ρ
∗) = min

 fρ|βσε (ρ
∗|βi, σ

2
ε,i−1,Yn)/ f∗(ρ∗|ρi−1)

fρ|βσε (ρi−1|βi, σ
2
ε,i−1,Yn)/ f∗(ρi−1|ρ∗)

, 1


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= min

 fρ|βσε (ρ
∗|βi, σ

2
ε,i−1,Yn)

fρ|βσε (ρi−1|βi, σ
2
ε,i−1,Yn)

, 1

 .
(b) Set ρi = ρ

∗ with probability ω(ρi−1, ρ
∗) and ρi = ρi−1 otherwise.

(iv) From equation (47), generate σ2
ε,i given βi, ρi and Yn, using 1/σ2

ε ∼ G(n/2, 2/
∑n

t=1 u2
t ), where

ut = y∗t − X∗t β, y∗t = y∗t (ρi) and X∗t = X∗t (ρi).

(v) Repeat Steps (ii) – (iv) for i = −M + 1,−M + 2, · · · ,N, where M indicates the burn-in period.

Repetition of Steps (ii) – (iv) corresponds to the Gibbs sampler.

For sufficiently large M, we have the following results:

1
N

N∑
i=1

g(βi) −→ E
(
g(β)

)
,

1
N

N∑
i=1

g(ρi) −→ E
(
g(ρ)

)
,

1
N

N∑
i=1

g(σ2
ε,i) −→ E

(
g(σ2

ε )
)
,

where g(·) is a function, typically g(x) = x or g(x) = x2.
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We define the Bayesian estimates of β, ρ and σ2
ε as β̃ ≡ (1/N)

∑N
i=1 βi, ρ̃ ≡ (1/N)

∑N
i=1 ρi and σ̃2

ε ≡

(1/N)
∑N

i=1 σ
2
ε,i, respectively.

Thus, using both the Gibbs sampler and the MH algorithm, we have shown that we can sample from

fβρσε (β, ρ, σ
2
ε |Yn).

See, for example, Bernardo and Smith (1994), Carlin and Louis (1996), Chen, Shao and Ibrahim

(2000), Gamerman (1997), Robert and Casella (1999) and Smith and Roberts (1993) for the Gibbs

sampler and the MH algorithm.

12.2.3 Monte Carlo Experiments

For the exogenous variables, again we take the data used in Section 12.1, in which the true data

generating process (DGP) is presented in Judge, Hill, Griffiths and Lee (1980, p.156).

As in equation (36), the DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, ut = ρut−1 + εt, (48)

where εt, t = 1, 2, · · · , n, are normally and independently distributed with E(εt) = 0 and E(ε2t ) = σ2
ε .

As in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to be (β1, β2, β3) = (10, 1, 1).
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Figure 8: The Arithmetic Average from the 104 MLE’s of AR(1) Coeff.
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We utilize x2,t and x3,t given in Judge, Hill, Griffiths and Lee (1980, pp.156), which is shown in Table

2, and generate G samples of yt given the Xt for t = 1, 2, · · · , n.

That is, we perform G simulation runs for each estimator, where G = 104 is taken.

The simulation procedure is as follows:

(i) Given ρ, generate random numbers of ut for t = 1, 2, · · · , n, based on the assumptions: ut =
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Figure 9: The Arithmetic Average from the 104 BE’s of AR(1) Coeff.——— M = 5000 and N = 104 ———
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Table 3: MLE: n = 20 and ρ = 0.9
Parameter β1 β2 β3 ρ σ2

ε
True Value 10 1 1 0.9 1
AVE 10.012 0.999 1.000 0.559 0.752
SER 3.025 0.171 0.053 0.240 0.276
RMSE 3.025 0.171 0.053 0.417 0.372
Skewness 0.034 −0.045 −0.008 −1.002 0.736
Kurtosis 2.979 3.093 3.046 4.013 3.812

5% 5.096 0.718 0.914 0.095 0.363
10% 6.120 0.785 0.933 0.227 0.426
25% 7.935 0.883 0.965 0.426 0.550
50% 10.004 0.999 1.001 0.604 0.723
75% 12.051 1.115 1.036 0.740 0.913
90% 13.913 1.217 1.068 0.825 1.120
95% 15.036 1.274 1.087 0.863 1.255
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Table 4: BE with M = 5000 and N = 104: n = 20 and ρ = 0.9
Parameter β1 β2 β3 ρ σ2

ε
True Value 10 1 1 0.9 1
AVE 10.010 0.999 1.000 0.661 1.051
SER 2.782 0.160 0.051 0.188 0.380
RMSE 2.782 0.160 0.051 0.304 0.384
Skewness 0.008 −0.029 −0.022 −1.389 0.725
Kurtosis 3.018 3.049 2.942 5.391 3.783

5% 5.498 0.736 0.915 0.285 0.515
10% 6.411 0.798 0.934 0.405 0.601
25% 8.108 0.891 0.966 0.572 0.776
50% 10.018 1.000 1.001 0.707 1.011
75% 11.888 1.107 1.036 0.799 1.275
90% 13.578 1.205 1.067 0.852 1.555
95% 14.588 1.258 1.085 0.875 1.750

Table 5: BE with M = 5000 and N = 5000: n = 20 and ρ = 0.9
Parameter β1 β2 β3 ρ σ2

ε
True Value 10 1 1 0.9 1
AVE 10.011 0.999 1.000 0.661 1.051
SER 2.785 0.160 0.051 0.189 0.380
RMSE 2.785 0.160 0.052 0.305 0.384
Skewness 0.004 −0.027 −0.022 −1.390 0.723
Kurtosis 3.028 3.056 2.938 5.403 3.776

5% 5.500 0.736 0.915 0.285 0.514
10% 6.402 0.797 0.934 0.405 0.603
25% 8.117 0.891 0.966 0.572 0.775
50% 10.015 1.000 1.001 0.707 1.011
75% 11.898 1.107 1.036 0.799 1.277
90% 13.612 1.205 1.066 0.852 1.559
95% 14.600 1.257 1.085 0.876 1.747

Table 6: BE with M = 1000 and N = 104: n = 20 and ρ = 0.9
Parameter β1 β2 β3 ρ σ2

ε
True Value 10 1 1 0.9 1
AVE 10.010 0.999 1.000 0.661 1.051
SER 2.783 0.160 0.051 0.188 0.380
RMSE 2.783 0.160 0.051 0.304 0.384
Skewness 0.008 −0.029 −0.021 −1.391 0.723
Kurtosis 3.031 3.055 2.938 5.404 3.774

5% 5.495 0.736 0.915 0.284 0.514
10% 6.412 0.797 0.935 0.404 0.602
25% 8.116 0.891 0.966 0.573 0.774
50% 10.014 1.000 1.001 0.706 1.011
75% 11.897 1.107 1.036 0.799 1.275
90% 13.587 1.204 1.067 0.852 1.558
95% 14.588 1.257 1.085 0.876 1.746
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ρut−1 + εt and εt ∼ N(0, 1).

(ii) Given β, (x2,t, x3,t) and ut for t = 1, 2, · · · , n, we obtain a set of data yt, t = 1, 2, · · · , n, from

equation (48), where (β1, β2, β3) = (10, 1, 1) is assumed.

(iii) Given (yt, Xt) for t = 1, 2, · · · , n, obtain the estimates of θ = (β, ρ, σ2
ε ) by the maximum likeli-

hood estimation (MLE) and the Bayesian estimation (BE) discussed in Sections 12.2.2, which

are denoted by θ̂ and θ̃, respectively.

(iv) Repeat (i) – (iii) G times, where G = 104 is taken.

(v) From G estimates of θ, compute the arithmetic average (AVE), the standard error (SER), the

root mean square error (RMSE), the skewness (Skewness), the kurtosis (Kurtosis), and the 5,

10, 25, 50, 75, 90 and 95 percent points (5%, 10%, 25%, 50%, 75%, 90% and 95%) for each

estimator.

For the maximum likelihood estimator (MLE), we compute:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE =

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)2

)1/2
,

for j = 1, 2, · · · , 5, where θ j denotes the jth element of θ and θ̂(g)
j represents the jth element of
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θ̂ in the gth simulation run.

For the Bayesian estimator (BE), θ̂ in the above equations is replaced by θ̃, and AVE and RMSE

are obtained.

(vi) Repeat (i) – (v) for ρ = −0.99, −0.98, · · ·, 0.99.

Thus, in Section 12.2.3, we compare the Bayesian estimator (BE) with the maximum likelihood esti-

mator (MLE) through Monte Carlo studies.

In Figures 8 and 9, we focus on the estimates of the autocorrelation coefficient ρ.

In Figure 8 we draw the relationship between ρ and ρ̂, where ρ̂ denotes the arithmetic average of

the 104 MLEs, while in Figure 9 we display the relationship between ρ and ρ̃, where ρ̃ indicates the

arithmetic average of the 104 BEs.

In the two figures the cases of n = 10, 15, 20 are shown, and (M,N) = (5000, 104) is taken in Figure 9

(we will discuss later about M and N).

If the relationship between ρ and ρ̂ (or ρ̃) lies on the 45◦ degree line, we can conclude that MLE (or

BE) of ρ is unbiased.

However, from the two figures, both estimators are biased.
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Take an example of ρ = 0.9 in Figures 8 and 9.

When the true value is ρ = 0.9, the arithmetic averages of 104 MLEs are given by 0.142 for n = 10,

0.422 for n = 15 and 0.559 for n = 20 (see Figure 8), while those of 104 BEs are 0.369 for n = 10,

0.568 for n = 15 and 0.661 for n = 20 (see Figure 9).

As n increases the estimators are less biased, because it is shown that MLE gives us the consistent

estimators.

Comparing BE and MLE, BE is less biased than MLE in the small sample, because BE is closer to

the 45◦ degree line than MLE.

Especially, as ρ goes to one, the difference between BE and MLE becomes quite large.

Tables 3 – 6 represent the basic statistics such as arithmetic average, standard error, root mean square

error, skewness, kurtosis and percent points, which are computed from G = 104 simulation runs,

where the case of n = 20 and ρ = 0.9 is examined.

Table 3 is based on the MLEs while Tables 4 – 6 are obtained from the BEs.

To check whether M and N are enough large, Tables 4 – 6 are shown for BE.

Comparison between Tables 4 and 5 shows whether N = 5000 is large enough and we can see from

Tables 4 and 6 whether the burn-in period M = 1000 is large enough.
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Figure 10: Empirical Distributions of β1

MLE

0 5 10 15 20

BE

0 5 10 15 20
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Figure 11: Empirical Distributions of β2
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Figure 12: Empirical Distributions of β3

MLE

0.8 0.9 1.0 1.1 1.2

BE

0.8 0.9 1.0 1.1 1.2

470



Figure 13: Empirical Distributions of ρ
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Figure 14: Empirical Distributions of σ2
ε
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We can conclude that N = 5000 is enough if Table 4 is very close to Table 5 and that M = 1000 is

enough if Table 4 is close to Table 6.

The difference between Tables 4 and 5 is at most 0.034 (see 90% in β1) and that between Tables 4 and

6 is less than or equal to 0.013 (see Kurtosis in β1).

Thus, all the three tables are very close to each other.

Therefore, we can conclude that (M,N) = (1000, 5000) is enough.

For safety, hereafter we focus on the case of (M,N) = (5000, 104).

We compare Tables 3 and 4.

Both MLE and BE give us the unbiased estimators of regression coefficients β1, β2 and β3, because

the arithmetic averages from the 104 estimates of β1, β2 and β3, (i.e., AVE in the tables) are very close

to the true parameter values, which are set to be (β1, β2, β3) = (10, 1, 1).

However, in the SER and RMSE criteria, BE is better than MLE, because SER and RMSE of BE are

smaller than those of MLE. From Skewness and Kurtosis in the two tables, we can see that the empir-

ical distributions of MLE and BE of (β1, β2, β3) are very close to the normal distribution. Remember

that the skewness and kurtosis of the normal distribution are given by zero and three, respectively.

As for σ2
ε , AVE of BE is closer to the true value than that of MLE, because AVE of MLE is 0.752 (see
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Table 3) and that of BE is 1.051 (see Table 4).

However, in the SER and RMSE criteria, MLE is superior to BE, since SER and RMSE of MLE are

given by 0.276 and 0.372 (see Table 3) while those of BE are 0.380 and 0.384 (see Table 4).

The empirical distribution obtained from 104 estimates of σ2
ε is skewed to the right (Skewness is

positive for both MLE and BE) and has a larger kurtosis than the normal distribution because Kurtosis

is greater than three for both tables.

For ρ, AVE of MLE is 0.559 (Table 3) and that of BE is given by 0.661 (Table 4).

As it is also seen in Figures 8 and 9, BE is less biased than MLE from the AVE criterion.

Moreover, SER and RMSE of MLE are 0.240 and 0.417, while those of BE are 0.188 and 0.304.

Therefore, BE is more efficient than MLE.

Thus, in the AVE, SER and RMSE criteria, BE is superior to MLE with respect to ρ.

The empirical distributions of MLE and BE of ρ are skewed to the left because Skewness is negative,

which value is given by −1.002 in Table 3 and −1.389 in Table 4.

We can see that MLE is less skewed than BE.

For Kurtosis, both MLE and BE of ρ are greater than three and therefore the empirical distributions of

the estimates of ρ have fat tails, compared with the normal distribution.
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Since Kurtosis in Table 4 is 5.391 and that in Table 3 is 4.013, the empirical distribution of BE has

more kurtosis than that of MLE.

Figures 10 – 14 correspond to the empirical distributions for each parameter, which are constructed

from the G estimates used in Tables 3 and 4.

As we can see from Skewness and Kurtosis in Tables 3 and 4, β̂i and β̃i, i = 1, 2, 3, are very similar to

normal distributions in Figures 10 – 12.

For βi, i = 1, 2, 3, the empirical distributions of MLE have the almost same centers as those of BE, but

the empirical distributions of MLE are more widely distributed than those of BE.

We can also observe these facts from AVEs and SERs in Tables 3 and 4.

In Figure 13, the empirical distribution of ρ̂ is quite different from that of ρ̃.

ρ̃ is more skewed to the left than ρ̂ and ρ̃ has a larger kurtosis than ρ̂.

Since the true value of ρ is 0.9, BE is distributed at the nearer place to the true value than MLE.

Figure 14 displays the empirical distributions of σ2
ε . MLE σ̂2

ε is biased and underestimated, but it has

a smaller variance than BE σ̃2
ε .

In addition, we can see that BE σ̃2
ε is distributed around the true value.
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12.2.4 Summary

In Section 12.2, we have compared MLE with BE, using the regression model with the autocorrelated

error term.

Chib (1993) applied the Gibbs sampler to the autocorrelation model, where the initial density of the

error term is ignored.

Under this setup, the posterior distribution of ρ reduces to the normal distribution.

Therefore, random draws of ρ given β, σ2
ε and (yt, Xt) can be easily generated.

However, when the initial density of the error term is taken into account, the posterior distribution of

ρ is not normal and it cannot be represented in an explicit functional form.

Accordingly, in Section 12.2, the Metropolis-Hastings algorithm have been applied to generate ran-

dom draws of ρ from its posterior density.

The obtained results are summarized as follows.

Given β′ = (10, 1, 1) and σ2 = 1, in Figure 8 we have the relationship between ρ and ρ̂, and ρ̃

corresponding to ρ is drawn in Figure 9.

In the two figures, we can observe:
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(i) both MLE and BE approach the true parameter value as n is large, and

(ii) BE is closer to the 45◦ degree line than MLE and accordingly BE is superior to MLE.

Moreover, we have compared MLE with BE in Tables 3 and 4, where β′ = (10, 1, 1), ρ = 0.9 and

σ2 = 1 are taken as the true values.

As for the regression coefficient β, both MLE and BE gives us the unbiased estimators.

However, we have obtained the result that BE of β is more efficient than MLE. For estimation of σ2,

BE is less biased than MLE.

In addition, BE of the autocorrelation coefficient ρ is also less biased than MLE.

Therefore, as for inference on β, BE is superior to MLE, because it is plausible to consider that the

estimated variance of β̂ is biased much more than that of β̃.

Remember that variance of β̂ depends on both ρ and σ2.

Thus, from the simulation studies, we can conclude that BE performs much better than MLE.
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12.3 Marginal Likelihood, Convergence Diagnostic and so on
12.3.1 Marginal Likelihood (周辺尤度)

Model Selection =⇒Marginal Likelihood

fy(y) =
∫

fy|θ(y|θ) fθ(θ)dθ

Evaluation of Marginal Likelihood =⇒ Proper Prior
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(i) Importance Sampling: Use of Prior Distribution

fy(y) = Eθ( fy|θ(y|θ)) ≈
1
N

N∑
i=1

fy|θ(y|θi),

where θi is the ith random draw generated from the prior distribution fθ(θ).
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(ii) Importance Sampling: Use of the Appropriate Importance Distribution

fy(y) =
∫

fy|θ(y|θ) fθ(θ)
g(θ)

g(θ)dθ = E
( fy|θ(y|θ) fθ(θ)

g(θ)

)
≈ 1

N

N∑
i=1

fy|θ(y|θi) fθ(θi)
g(θi)

,

where θi is the ith random draw generated from the appropriately chosen importance distribution g(θ).
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(iii) Harmonic Mean =⇒ Gelfand and Dey (1994) and Newton and Raftery (1994)

1
fy(y)

=

∫
g(θ)
fy(y)

dθ =
∫

g(θ)
fy(y) fθ|y(θ|y)

fθ|y(θ|y)dθ

=

∫
g(θ)

fy|θ(y|θ) fθ(θ)
fθ|y(θ|y)dθ ≈ 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

,

where θi is the ith random draw generated from the posterir distribution fθ|y(θ|y).

Thus, the marginal distribution is evaluated by:

fy(y) ≈
 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

−1

, =⇒ Gelfand and Dey (1994).

When g(θ) = fθ(θ) is taken, the marginal distribution is given by:

fy(y) ≈
 1

N

N∑
i=1

1
fy|θ(y|θi)

−1

, =⇒ Newton and Raftery (1994).

(iv) Chib (1995) and Chib and Jeliazkov (2001)

fy(y) =
fy|θ(y|θ) fθ(θ)

fθ|y(θ|y)
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log fy(y) = log fy|θ(y|θ̂) + log fθ(θ̂) − log fθ|y(θ̂|y),

where θ̂ denotes the Bayes estimates.

We need to evaluate log fθ|y(θ̂|y), using the Gibbs sampler or the MH algorithm.

12.3.2 Convergence Diagnostic (収束判定)

We need to check whether the burn-in period is enough and whether MCMC converges to the in-

variant distribution (不変分布).

Geweke (1992)

Divide the sample path into three periods, excluding the burn-in period..

Test whether the first period is different from the third period.

Suppose that we have the MCMC sequence, i.e., θ−M+1, · · ·, θ0, θ1, · · ·, θN .

The burn-in period is denoted by θ−M+1, · · ·, θ0.

θ1, · · ·, θN are divided by three periods.

The first period is given by θ1, · · ·, θN1 .

The second period is given by θN1+1, · · ·, θN2 .
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The third period is given by θN2+1, · · ·, θN .

Consider a function g(·).

Define g1 =
1

N1

N1∑
i=1

g(θi) and g3 =
1

N3

N∑
i=N1+N2+1

g(θi) for N3 = N − N2 − N1.

Estimate
1

N1
V(

N1∑
i=1

g(θi)) and
1

N3
V(

N∑
i=N1+N2+1

g(θi)),

which are denoted by s2
1 and s2

3, respectively.

By the central limit theorem,

g1 − E(g1)
s1/
√

N1
−→ N(0, 1) and

g3 − E(g3)

s3/
√

N3
−→ N(0, 1).

Therefore, under the null hypothesis H0 : E(g1) = E(g3),

g1 − g3√
s2

1/N1 + s2
3/N3

−→ N(0, 1).

The case of g(θi) = θi =⇒ Testing whether the two means (i.e., first-moments) are equal.
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The case of g(θi) = θ2i =⇒ Testing whether the two second-moments are equal.

Computation of s2
1 and s2

3 has to be careful, because g(θ1), · · ·, g(θN) are serially correlated.

=⇒ Long-run variance.

Take an example of s2
1, which is an estimate of

1
N1

V(
N1∑
i=1

g(θi)).
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1
N1

V(
N1∑
i=1

g(θi)) =
1

N1

N1∑
i=1

N1∑
j=1

Cov(g(θi), g(θ j))

=
1

N1
(N1γ(0) + 2(N1 − 1)γ(1) + 2(N1 − 2)γ(2) + · · · + 2γ(N1 − 1))

= γ(0) + 2
N1−1∑
τ=1

k(
τ

N1
)γ(τ), =⇒ Bartlett Kernel (Newy-West Est.)

where γ(τ) = Cov(g(θi), g(θi+τ)).

We may choose the other kernels (for example, Parzen kernel or second-order spectrum kernel; see

p.166-167) for k(x).

Thus, s2
1 is estimated by:

s2
1 = γ̂(0) + 2

q∑
τ=1

k(
τ

q + 1
)γ̂(τ),

for q ≤ N1 − 1. =⇒ Choice of q and k(·).
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