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第10章 推定量の求め方

10.1 最小二乗法
・n個のデータ (実現値)： x1, x2, · · ·, xn

・背後に対応する確率変数を仮定： X1, X2, · · ·, Xn

・E(Xi) = µ，V(Xi) = σ2 を仮定
母数 (µ, σ2)を推定する。

観測データ x1, x2, · · ·, xn をもとにして，µの最小二乗推定値を求める。

min
µ

n∑
i=1

(xi − µ)2

µの解を µ̂とすると，

µ̂ =
1
n

n∑
i=1

xi

となり，µ̂ ≡ xを得る。

すなわち，

d
∑n

i=1(xi − µ)2

dµ
= 0

を µについて解く。

µの最小二乗推定量はデータ xi を対応する確率変数 Xi で置き換えて，

µ̂ =
1
n

n∑
i=1

Xi
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となり，µ̂ ≡ Xを得る (µ̂について，推定値と推定量は同じ記号を使っている)。

以上を回帰分析に応用すると，

min
α,β

n∑
i=1

(Yi − α − βXi)2

を解くことになる。

すなわち，

∂
∑n

i=1(Yi − α − βXi)2

∂α
= 0

∂
∑n

i=1(Yi − α − βXi)2

∂β
= 0

の連立方程式を α, βについて解く。

10.2 最尤法
n個の確率変数 X1, X2, · · ·, Xn は互いに独立で，同じ確率分布 f (x) ≡ f (x; θ)
とする。ただし，θは母数で，例えば，θ = (µ, σ2)である。

X1, X2, · · ·, Xn の結合分布は，互いに独立なので，

f (x1, x2, · · · , xn; θ) ≡
n∏

i=1

f (xi; θ)

と表される。

観測データ x1, x2, · · ·, xn を与えたもとで，
∏n

i=1 f (xi; θ)は θの関数として表
される。すなわち，

l(θ) =
n∏

i=1

f (xi; θ)

となる。
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l(θ)を尤度関数と呼ぶ。

max
θ

l(θ)

となる θを最尤推定値 θ̂ = θ̂(x1, x2, · · · , xn)と呼ぶ。

データ x1, x2, · · ·, xnを確率変数 X1, X2, · · ·, Xnで置き換えて，θ̂ = θ̂(X1, X2, · · · , Xn)
を最尤推定量と呼ぶ。

max
θ

l(θ)

と

max
θ

log l(θ)

の θの解はともに同じものであることに注意。log l(θ)を対数尤度関数と呼ぶ。

最尤推定量の性質： nが大きいとき，

θ̂ ∼ N(θ, σ2
θ)

ただし，

σ2
θ =

1∑n
i=1 E

[(d log f (Xi; θ)
dθ

)2]
= − 1∑n

i=1 E
[d2 log f (Xi; θ)

dθ2
]

θがベクトル (k × 1)の場合，nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ =
( n∑

i=1

E
[(∂ log f (Xi; θ)

∂θ

)(∂ log f (Xi; θ)
∂θ

)′])−1

= −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1
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例 1： 正規母集団 N(µ, σ2)からの標本値 x1, x2, · · ·, xn を用いて，
(1) σ2 が既知のとき，µの最尤推定値と最尤推定量
(2) σ2 が未知のとき，µと σ2 の最尤推定値と最尤推定量
をそれぞれ求める。

［解］N(µ, σ2)の密度関数は，

f (x; µ, σ2) =
1

√
2πσ2

exp
(
− 1

2σ2 (x − µ)2
)

となる。したがって，互いに独立な X1, X2, · · ·, Xn の結合分布は，

f (x1, x2, · · · , xn; µ, σ2) ≡
n∏

i=1

f (xi; µ, σ2)

=

n∏
i=1

1
√

2πσ2
exp

(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。

(1) σ2 が既知のとき，尤度関数 l(µ)は，

l(µ) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。
l(µ)を最大にする µと log l(µ)を最大にする µは同じになる。

したがって，対数尤度関数は，

log l(µ) = −n
2

log(2πσ2) − 1
2σ2

n∑
i=1

(xi − µ)2

となり，

d log l(µ)
dµ

=
1
σ2

n∑
i=1

(xi − µ) = 0
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となる µを求める。µの解を µ̂とすると，µの最尤推定値は，

µ̂ =
1
n

n∑
i=1

xi ≡ x

を得る。

さらに，観測値 x1, x2, · · ·, xnをその確率変数 X1, X2, · · ·, Xnで置き換えて，µ
の最尤推定量は，

µ̂ =
1
n

n∑
i=1

Xi ≡ X

となる。
µ̂の分散を求めるために，

log f (Xi; µ) = −
1
2

log(2πσ2) − 1
2σ2 (Xi − µ)2

d log f (Xi; µ)
dµ

=
1
σ2 (Xi − µ)

(d log f (Xi; µ)
dµ

)2
=

1
σ4 (Xi − µ)2

E
[(d log f (Xi; µ)

dµ

)2]
=

1
σ4 E[(Xi − µ)2] =

1
σ2

と計算される。

最尤推定量の性質から，nが大きいとき，

µ̂ ∼ N(µ, σ2
µ)

ただし，

σ2
µ =

1∑n
i=1 E

[(d log f (Xi; µ)
dµ

)2] = σ2

n
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この場合は，nの大きさに関わらず，µ̂ ∼ N(µ, σ2
µ)が成り立つ。

(2) σ2 が未知のとき，µと σ2 の尤度関数は，

l(µ, σ2) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

となる。
対数尤度関数は，

log l(µ, σ2) = −n
2

log(2π) − n
2

logσ2

− 1
2σ2

n∑
i=1

(xi − µ)2

と表される。
µと σ2 について，最大化するためには，

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑
i=1

(xi − µ) = 0

∂ log l(µ, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(xi − µ)2 = 0

の連立方程式を解く。

µ, σ2 の解を µ̂, σ̂2 とすると，最尤推定値は，

µ̂ =
1
n

n∑
i=1

xi ≡ x

σ̂2 =
1
n

n∑
i=1

(xi − µ̂) ≡
1
n

n∑
i=1

(xi − x)

となる。
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観測値 x1, x2, · · ·, xn をその確率変数 X1, X2, · · ·, Xn で置き換えて，µ, σ2 の最
尤推定量は，

µ̂ =
1
n

n∑
i=1

Xi ≡ X

σ̂2 =
1
n

n∑
i=1

(Xi − µ̂) ≡
1
n

n∑
i=1

(Xi − X)

となる。

σ2の最尤推定量 σ̂2は，σ2の不偏推定量 S 2 =
1

n − 1

n∑
i=1

(Xi − X)2とは異なる

ことに注意。

θ = (µ, σ2)′ とする。nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ = −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1

log f (Xi; θ) = −
1
2

log(2π) − 1
2

log(σ2) − 1
2σ2 (Xi − µ)2

∂ log f (Xi; θ)
∂θ

=


∂ log f (Xi; θ)

∂µ
∂ log f (Xi; θ)
∂σ2


=


1
σ2 (Xi − µ)

− 1
2σ2 +

1
2σ4 (Xi − µ)2


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∂2 log f (Xi; θ)
∂θ∂θ′

=


∂2 log f (Xi; θ)

∂µ2

∂2 log f (Xi; θ)
∂µ∂σ2

∂2 log f (Xi; θ)
∂σ2∂µ

∂2 log f (Xi; θ)
∂(σ2)2


=

 − 1
σ2 − 1

σ4 (Xi − µ)

− 1
σ4 (Xi − µ)

1
2σ4 −

1
σ6 (Xi − µ)2


E
[∂2 log f (Xi; θ)

∂θ∂θ′

]
=

 − 1
σ2 − 1

σ4 E(Xi − µ)

− 1
σ4 E(Xi − µ)

1
2σ4 −

1
σ6 E[(Xi − µ)2]


=

−
1
σ2 0

0 − 1
2σ4


よって，

Σθ = −
( n∑

i=1

E
[∂2 log f (Xi; θ)

∂θ∂θ′

])−1

=


σ2

n
0

0
2σ4

n


まとめると，µ，σ2 の最尤推定量 µ̂ = (1/n)

∑n
i=1 Xi，σ̂2 = (1/n)

∑n
i=1(Xi − X)2

の分布は，nが大きいとき，(
µ̂

σ̂2

)
∼ N

( (
µ

σ2

)
,


σ2

n
0

0
2σ4

n


)

となる。
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例 2： X1, Xn, · · ·, Xnは互いに独立で，それぞれパラメータ pを持ったベルヌ
イ分布に従うものとする。すなわち，Xi の確率関数は，

f (x; p) = px(1 − p)1−x x = 0, 1

となる。

このとき尤度関数は，

l(p) =
n∏

i=1

f (xi; p) =
n∏

i=1

pxi(1 − p)1−xi

となり，対数尤度関数は，

log l(p) =
n∑

i=1

log f (xi; p)

= log(p)
n∑

i=1

xi + log(1 − p)
n∑

i=1

(1 − xi)

= log(p)
n∑

i=1

xi + log(1 − p)(n −
n∑

i=1

xi)

となる。
log l(p)を最大にする pを求める。

d log l(p)
dp

=
1
p

n∑
i=1

xi −
1

1 − p
(n −

n∑
i=1

xi) = 0

したがって，pについて解くと，pの最尤推定値 p̂は，

p̂ =
1
n

n∑
i=1

xi

となる。

さらに，xi を Xi で置き換えて，pの最尤推定量 p̂は，

p̂ =
1
n

n∑
i=1

Xi



152 第 10章 推定量の求め方

となる。

p̂の分布を求める。

log f (Xi; p) = Xi log(p) + (1 − Xi) log(1 − p)

d log f (Xi; p)
dp

=
Xi

p
− 1 − Xi

1 − p
=

Xi − p
p(1 − p)

E
[(d log f (Xi; p)

dp

)2]
=

E[(Xi − p)2]
p2(1 − p)2

E[(Xi − p)2] =
1∑

xi=0

(xi − p)2 f (xi; p)

=

1∑
xi=0

(xi − p)2 pxi(1 − p)1−xi

= p2(1 − p) + (1 − p)2 p = p(1 − p)

1∑n
i=1 E

[(d log f (Xi; p)
dp

)2] = p(1 − p)
n

したがって，

p̂ ∼ N(p,
p(1 − p)

n
)

を得る。

例 3： X1, Xn, · · ·, Xnは互いに独立で，それぞれパラメータ λを持ったポアソ
ン分布に従うものとする。すなわち，Xi の確率関数は，

f (x; λ) =
λxe−λ

x!
x = 0, 1, 2, · · ·

となる。
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このとき尤度関数は，

l(λ) =
n∏

i=1

f (xi; λ) =
n∏

i=1

λxie−λ

xi!

となり，対数尤度関数は，

log l(λ) =
n∑

i=1

log f (xi; λ)

= log(λ)
n∑

i=1

xi − nλ −
n∑

i=1

log(xi!)

となる。
log l(λ)を最大にする pを求める。

d log l(λ)
dλ

=
1
λ

n∑
i=1

xi − n = 0

したがって，λについて解くと，λの最尤推定値 λ̂は，

λ̂ =
1
n

n∑
i=1

xi

となる。

さらに，xi を Xi で置き換えて，λの最尤推定量 λ̂は，

λ̂ =
1
n

n∑
i=1

Xi

となる。

λ̂の分布を求める。

log f (Xi; λ) = Xi log(λ) − λ − log(Xi!)

d log f (Xi; λ)
dλ

=
Xi

λ
− 1
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d2 log f (Xi; λ)
dλ2 = −Xi

λ2

E
(d2 log f (Xi; λ)

dλ2

)
=

E(Xi)
λ2

E(Xi) =
∞∑

x=0

x f (x; λ)

=

∞∑
x=0

x
λxe−λ

x!

=

∞∑
x=1

x
λxe−λ

x!

=

∞∑
x=1

λ
λx−1e−λ

(x − 1)!

=

∞∑
x=0

λ
λxe−λ

x!

= λ

− 1∑n
i=1 E

(d2 log f (Xi; λ)
dλ2

) = λn
したがって，

λ̂ ∼ N(λ,
λ

n
)

を得る。

例 4： X1, Xn, · · ·, Xnは互いに独立で，それぞれパラメータ λを持った指数分
布に従うものとする。すなわち，Xi の密度関数は，

f (x; λ) = λe−λx x > 0

となる。
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このとき尤度関数は，

l(λ) =
n∏

i=1

f (xi; λ) =
n∏

i=1

λe−λxi

となり，対数尤度関数は，

log l(λ) =
n∑

i=1

log f (xi; λ)

= n log λ − λ
n∑

i=1

xi

となる。
log l(λ)を最大にする pを求める。

d log l(λ)
dλ

=
n
λ
−

n∑
i=1

xi = 0

したがって，λについて解くと，λの最尤推定値 λ̂は，

λ̂ =
n∑n

i=1 xi

となる。

さらに，xi を Xi で置き換えて，λの最尤推定量 λ̂は，

λ̂ =
n∑n

i=1 Xi

となる。

λ̂の分布を求める。

log f (Xi; λ) = log λ − λXi

d log f (Xi; λ)
dλ

=
1
λ
− Xi

d2 log f (Xi; λ)
dλ2 = − 1

λ2
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− 1∑n
i=1 E

(d2 log f (Xi; λ)
dλ2

) = λ2

n

したがって，

λ̂ ∼ N(λ,
λ2

n
)

を得る。

10.2.1 変数変換

確率変数 X の密度関数を f (x)，分布関数を F(x) ≡ P(X < x) とする。Y =
aX + bとするとき，Y の密度関数 g(y)を求める。

Y の分布関数を G(y)として，次のように変形できる。

G(y) = P(Y < y) = P(aX + b < y)

=


P
(
X <

y − b
a

)
, a > 0のとき

P
(
X >

y − b
a

)
, a < 0のとき

=


P
(
X <

y − b
a

)
, a > 0のとき

1 − P
(
X <

y − b
a

)
, a < 0のとき

=


F
(y − b

a

)
, a > 0のとき

1 − F
(y − b

a

)
, a < 0のとき

分布関数と密度関数との関係は，

dF(x)
dx

= f (x)
dG(x)

dx
= g(x)

であるので，Y の密度関数は，

g(y) =
dG(y)

dy
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=


1
a

f
(y − b

a

)
, a > 0のとき

−1
a

f
(y − b

a

)
, a < 0のとき

=
∣∣∣∣1a ∣∣∣∣ f (y − b

a

)
と表される。

一般に，確率変数 Xの密度関数を f (x)とする。単調変換 X = h(Y)とすると
き，Y の密度関数 g(y)は，

g(y) = |h′(y)| f (h(y))

となる。

10.2.2 回帰分析への応用

回帰モデル

Yi = α + βXi + ui i = 1, 2, · · · , n

u1, u2, · · ·, un は互いに独立で，すべての iについて ui ∼ N(0, σ2)を仮定する。

ui の密度関数は，

f (ui) =
1

√
2πσ2

exp
(
− 1

2σ2 u2
i

)
となる。

Yi の密度関数 g(Yi)は，

g(Yi) = |h′(Yi)| f (h(Yi))

によって求められる。
この場合，h(Yi) = Yi − α − βXi なので，h′(Yi) = 1となる。
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したがって，Yi の密度関数は，

g(Yi) = |h′(Yi)| f (h(Yi))

= f (h(Yi))

=
1

√
2πσ2

exp
(
− 1

2σ2 (Yi − α − βXi)2
)

となる。

u1, u2, · · ·, unは互いに独立であれば，Y1, Y2, · · ·, Ynも互いに独立になるので，
Y1, Y2, · · ·, Yn の結合密度関数は，

g(Y1,Y2, · · · ,Yn) =
n∏

i=1

g(Yi)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(Yi − α − βXi)2
)

となる。これは α, β, σ2 の関数となっている。

よって，尤度関数は，

l(α, β, σ2) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(Yi − α − βXi)2
)

となる。
対数尤度関数は，

log l(α, β, σ2) = −n
2

log(2π) − n
2

log(σ2)

− 1
2σ2

n∑
i=1

(Yi − α − βXi)2

となる。

log l(α, β, σ2)を最大にするために，

∂ log l(α, β, σ2)
∂α

=
1
σ2

n∑
i=1

(Yi − α − βXi) = 0
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∂ log l(α, β, σ2)
∂β

=
1
σ2

n∑
i=1

Xi(Yi − α − βXi) = 0

∂ log l(α, β, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(Yi − α − βXi)2 = 0

の連立方程式を解く。
上 2つの式は σ2に依存していない。α，βの最尤推定量は最小二乗推定量と
同じになる。
すなわち，

β̂ =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2

α̂ = Y − β̂X

σ2 の最尤推定量は，

σ̂2 =
1
n

n∑
i=1

(Yi − α̂ − β̂Xi)2

となり，s2 とは異なる。

θ̂ = (α̂, β̂, σ̂2)′，θ = (α, β, σ2)′ とする。nが大きいとき，

θ̂ ∼ N(θ,Σθ)

ただし，

Σθ =
( n∑

i=1

E
[(∂ log g(Yi; θ)

∂θ

)(∂ log g(Yi; θ)
∂θ

)′])−1

= −
( n∑

i=1

E
[∂2 log g(Yi; θ)

∂θ∂θ′

])−1

Yi の密度関数 g(Yi; θ)の対数は，

log g(Yi; θ) = −
1
2

log(2π) − 1
2

log(σ2)

− 1
2σ2 (Yi − α − βXi)2
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となる。

∂ log g(Yi; θ)
∂θ

=


∂ log g(Yi; θ)
∂α

∂ log g(Yi; θ)
∂β

∂ log g(Yi; θ)
∂σ2



=


1
σ2 (Yi − α − βXi)
1
σ2 Xi(Yi − α − βXi)

− 1
2σ2 +

1
2σ4 (Yi − α − βXi)2


∂2 log g(Yi; θ)
∂θ∂θ′

=



∂2 log g(Yi; θ)
∂α2

∂2 log g(Yi; θ)
∂α∂β

∂2 log g(Yi; θ)
∂α∂σ2

∂2 log g(Yi; θ)
∂β∂α

∂2 log g(Yi; θ)
∂β2

∂2 log g(Yi; θ)
∂β∂σ2

∂2 log g(Yi; θ)
∂σ2∂α

∂2 log g(Yi; θ)
∂σ2∂β

∂2 log g(Yi; θ)
∂(σ2)2



=


− 1
σ2 − Xi

σ2 − ui

σ4

− Xi

σ2 −
X2

i

σ2 −Xiui

σ4

− ui

σ4 −Xiui

σ4

1
2σ4 −

u2
i

σ6


ただし，ui = Yi − α − βXi

期待値をとると，

E
(∂2 log g(Yi; θ)

∂θ∂θ′

)
= E


− 1
σ2 − Xi

σ2 − ui

σ4

− Xi

σ2 −
X2

i

σ2 −Xiui

σ4

− ui

σ4 −Xiui

σ4

1
2σ4 −

u2
i

σ6


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=


− 1
σ2 − Xi

σ2 0

− Xi

σ2 −
X2

i

σ2 0

0 0 − 1
2σ4


となる。

Σθ = −
( n∑

i=1

E
[∂2 log g(Yi; θ)

∂θ∂θ′

])−1

=


n
σ2

∑n
i=1 Xi

σ2 0∑n
i=1 Xi

σ2

∑n
i=1 X2

i

σ2 0

0 0
n

2σ4


−1

=

σ
2

(
n

∑n
i=1 Xi∑n

i=1 Xi
∑n

i=1 X2
i

)−1

0

0
2σ4

n


したがって，(
α̂

β̂

)
∼ N

( (
α

β

)
, σ2

(
n

∑n
i=1 Xi∑n

i=1 Xi
∑n

i=1 X2
i

)−1 )
となる。
−→最小二乗推定量の分布と同じ。

10.2.3 自己回帰モデルの最尤推定法

p次の自己回帰モデル，すなわち，AR(p)モデル (AutoRegressive model)：

Yi = φ1Yi−1 + φ2Yi−2 + · · · + φpYi−p + ui

AR(1)モデル:

Yi = φ1Yi−1 + ui, ui ∼ N(0, σ2)



162 第 10章 推定量の求め方

where |φ1| < 1が仮定される。

Y1,Y2, · · · ,Ynの結合密度関数 f (yn, yn−1, · · · , y1)は次のように分解される。

f (yn, yn−1, · · · , y1) = f (y1)
n∏

i=2

f (yi|yi−1, · · · , y1).

条件付き密度関数 f (yi|yi−1, · · · , y1)と条件なしの密度関数 f (y1)の積からなる。
Yi = φ1Yi−1 + uiから，条件付き Yiの平均と分散は，

E(Yi|Yi−1, · · · ,Y1) = φ1Yi−1, and V(Yi|Yi−1, · · · ,Y1) = σ2

として得られる。

条件付き分布 f (yi|yi−1, · · · , y1)は，

f (yi|yi−1, · · · , y1) =
1

√
2πσ2

exp
(
− 1

2σ2 (yi − φ1yi−1)2
)
.

Yiの条件なしの密度関数 f (yi)を求めるために，Yiを次のように書き換える。

yi = φ1yi−1 + ui

= φ2
1yi−2 + ui + φ1ui−1

...

= φ
j
1yi− j + ui + φ1ui−1 + · · · + φ j

1ui− j

...

= ui + φ1ui−1 + φ
2
1ui−2 + · · · , jが無限大になるとき，

The unconditional expectation and variance of Yiの条件なしの平均と分散は，

E(Yi) = 0， V(Yi) = σ2(1 + φ2
1 + φ

4
1 + · · ·) =

σ2

1 − φ2
1

.

Therefore, the unconditional distribution of Yiの条件なし分布は，

f (yi) =
1√

2πσ2/(1 − φ2
1)

exp
(
− 1

2σ2/(1 − φ2
1)

y2
i

)
.

となる。
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よって，Y1,Y2, · · · ,Ynの結合密度関数は，

f (yn, yn−1, · · · , y1) = f (y1)
n∏

i=2

f (yi|yi−1, · · · , y1)

=
1√

2πσ2/(1 − φ2
1)

exp
(
− 1

2σ2/(1 − φ2
1)

y2
1

)

×
n∏
i2

1
√

2πσ2
exp

(
− 1

2σ2 (yiφ1yi−1)2
)

したがって，尤度関数は，

log L(φ1, σ
2; yi, yi−1, · · · , y1) = −1

2
log(2πσ2/(1 − φ2

1)) − 1
2σ2/(1 − φ2

1)
y2

1

−n − 1
2

log(2πσ2) − 1
2σ2

n∑
i=2

(yi − φ1yi−1)2.

φ1とσ2について，尤度関数 log Lを最大化する。

最大化問題：
• ニュートン・ラプソン法 (Newton-Raphson Method)やスコアリング法

(Method of Scoring)
• 単純探査法 (Simple Grid Search)，すなわち，−1 < φ1 < 1の範囲内で

様々な φ1の値について尤度関数を計算し最大になるものを見つける。

10.2.4 誤差項に系列相関がある場合

回帰モデル

Yi = α + βXi + ui

ui = ρui−1 + εi

ε1, ε2, · · ·, εn は互いに独立で，すべての iについて εi ∼ N(0, σ2)を仮定する。

ui を消去すると，

(Yi − α − βXi) = ρ(Yi−1 − α − βXi−1) + εi
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または

(Yi − ρYi−1) = α(1 − ρ) + β(Xi − ρXi−1) + εi

と書き直すことが出来る。

θ = (α, β, σ2, ρ)とする。条件付き密度関数 f (Yi|Yi−1,Yi−2, · · · ,Y1; θ)は，

log f (Yi|Yi−1,Yi−2, · · · ,Y1; θ)

= −1
2

log(2πσ2) − 1
2σ2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

となる。なぜなら，E(Yi|Yi−1,Yi−2, · · · ,Y1) = ρYi−1 + α(1 − ρ) + β(Xi − ρXi−1)，
V(Yi|Yi−1,Yi−2, · · · ,Y1) = σ2となる。

条件なし密度関数 f (Yi; θ)は，

log f (Yi; θ) = −
1
2

log(2πσ2/(1 − ρ2)) − 1
2σ2/(1 − ρ2)

(Yi − α − βXi)2

となる。なぜなら，E(Yi) = α + βXi，V(Yi) = σ2/(1 − ρ2)となる。E(ui) = 0，
V(ui) = σ2/(1 − ρ2)に注意。

よって，尤度関数は，

log l(θ) = log f (Y1; θ) +
n∑

i=2

log f (Yi|Yi−1,Yi−2, · · · ,Y1; θ)

= −1
2

log(2πσ2/(1 − ρ2)) − 1
2σ2/(1 − ρ2)

(Yi − α − βXi)2

−n − 1
2

log(2π) − n − 1
2

log(σ2)

− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

= −n
2

log(2π) − n
2

log(σ2) +
1
2

log(1 − ρ2)

− 1
2σ2/(1 − ρ2)

(Yi − α − βXi)2
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− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

= −n
2

log(2π) − n
2

log(σ2) +
1
2

log(1 − ρ2)

− 1
2σ2 (Yi

√
1 − ρ2 − α

√
1 − ρ2 − βXi

√
1 − ρ2)2

− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

= −n
2

log(2π) − n
2

log(σ2) +
1
2

log(1 − ρ2)

− 1
2σ2

n∑
i=1

(Y∗i − αzi − βX∗i )2

となる。ただし，

Y∗i = Yi

√
1 − ρ2, zi =

√
1 − ρ2, X∗i = Xi

√
1 − ρ2, i = 1のとき，

Y∗i = Yi − ρYi−1, zi = 1 − ρ, X∗i = Xi − ρXi−1, i , 1のとき，

とする。

尤度関数をそれぞれ α，β，σ2，ρについて微分し，ゼロとおく。

∂ log l(θ)
∂α

=
1
σ2

n∑
i=1

zi(Y∗i − αzi − βX∗i ) = 0 (10.1)

∂ log l(θ)
∂β

=
1
σ2

n∑
i=1

X∗i (Y∗i − αzi − βX∗i ) = 0 (10.2)

∂ log l(θ)
∂σ2 = − n

2σ2 +
1

2σ4

n∑
i=1

(Y∗i − αzi − βX∗i )2 = 0 (10.3)

∂ log l(θ)
∂ρ

= − ρ

1 − ρ2 −
1

2σ2

n∑
i=1

∂(Y∗i − αzi − βX∗i )2

∂ρ
= 0 (10.4)
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ただし，

∂(Y∗i − αzi − βX∗i )2

∂ρ
=

 (−Yi + α + βXi)
ρ√

1 − ρ2
, i = 1のとき

−Yi−1 + α + βXi−1, i = 2, 3, · · · , nのとき

とする。

4つの連立方程式を解いて，最尤推定量 α̂，β̂，σ̂2，ρ̂が得られる。
−→ 下記のように収束計算によって求める。

(i) 初期段階では，ρ = 0とする。

(ii) (10.1)と (10.2)から，
(
α

β

)
=

( ∑n
i=1 z2

i
∑n

i=1 ziX∗i∑n
i=1 ziX∗i

∑n
i=1 X∗2i

)−1 ( ∑n
i=1 ziY∗i∑n

i=1 X∗i Y∗i

)
を計算

すれば，αと βが求められる。

(iii) ステップ (ii)で求めた αと βと (10.3)から，σ2 =
1
n

n∑
i=1

(Y∗i − αzi − βX∗i )2

によって，σ2が求まる。

(iv) ステップ (ii)，(iii)で求めたα，β，σ2を代入して，(10.4)を満たす ρを求
める。すなわち，非線形方程式を解く。

(v) ステップ (ii)～ (iv)を，収束するまで繰り返し計算する。収束先が最尤
推定量 α̂，β̂，σ̂2，ρ̂となる。

10.3 尤度比検定
n個の確率変数 X1, X2, · · ·, Xn は互いに独立で，同じ確率分布 f (x) ≡ f (x; θ)
とする。
尤度関数は，

l(θ) =
n∏

i=1

f (xi; θ)

となる。
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θの制約つき最尤推定量を θ̃，制約無し最尤推定量を θ̂とする。
制約の数を G個とする。

l(̃θ)
l(θ̂)
を尤度比と呼ぶ

検定方法 1： 尤度比がある値より小さいときに，帰無仮説を棄却する。すな
わち，

l(̃θ)
l(θ̂)
< c

となるときに，帰無仮説を棄却する。この場合，cを次のようにして求める必
要がある。∫

· · ·
∫ n∏

i=1

f (xi; θ̃)dx1 · · · dxn = α

ただし，αは有意水準（帰無仮説が正しいときに，帰無仮説を棄却する確率）
を表す。

検定方法 2（大標本検定）： または，n −→ ∞のとき，

−2 log
l(̃θ)
l(θ̂)

−→ χ2(G)

となる。
この検定を尤度比検定と呼ぶ。

例 1： 正規母集団 N(µ, σ2)からの標本値 x1, x2, · · ·, xn を用いて，σ2 が既知
のとき，帰無仮説 H0 : µ = µ0，H1 : µ , µ0 の尤度比検定を行う。

σ2 が既知のとき，尤度関数 l(µ)は，

l(µ) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
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となる。
l(µ)を最大にする µと log l(µ)を最大にする µは同じになる。

µの最尤推定量は，

µ̂ =
1
n

n∑
i=1

Xi ≡ X

となる。
尤度比検定統計量は，

l(µ0)

l(X)
=

exp
(
− 1

2σ2

n∑
i=1

(Xi − µ0)2
)

exp
(
− 1

2σ2

n∑
i=1

(Xi − X)2
)

= exp
(
− 1

2σ2/n
(X − µ0)2

)
< c

となる cを求める。
H0 が正しいときに，

√
n(X − µ0)/σ ∼ N(0, 1)となるので，

P
(∣∣∣∣X − µ0

σ/
√

n

∣∣∣∣ > zα/2
)
= α

すなわち，

P
(
exp

(
− 1

2σ2/n
(X − µ0)2

)
< exp

(
−1

2
z2
α/2

))
= α

と変形できる。したがって，

c = exp
(
−1

2
z2
α/2

)
とすればよい。
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例 2： X1, Xn, · · ·, Xnは互いに独立で，それぞれパラメータ pを持ったベルヌ
イ分布に従うものとする。すなわち，Xi の確率関数は，

f (x; p) = px(1 − p)1−x x = 0, 1

となる。

このとき尤度関数は，

l(p) =
n∏

i=1

f (xi; p) =
n∏

i=1

pxi(1 − p)1−xi

となる。
pの最尤推定量 p̂は，

p̂ =
1
n

n∑
i=1

Xi

である。

次の仮説検定を考える。

H0 : p = p0 H1 : p , p0

→制約数は 1つ。(G = 1)
尤度比は，

l(p0)
l(p̂)

=

∏n
i=1 pXi

0 (1 − p0)1−Xi∏n
i=1 p̂Xi(1 − p̂)1−Xi

したがって，n −→ ∞のとき，

−2 log
l(p0)
l(p̂)

= −2 log
p0

p̂

n∑
i=1

Xi − 2 log
1 − p0

1 − p̂

n∑
i=1

(1 − Xi)

−→ χ2(1)
χ2(1)分布の上側 100 α%点を χ2

α(1)とするとき，

−2 log
l(p0)
l( p̂)

> χ2
α(1)

のとき，帰無仮説 H0 : p = p0 を棄却する。
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例 3： 回帰モデル

Yi = β1X1i + β2X2i + · · · + βkXki + ui

ui ∼ N(0, σ2) i = 1, 2, · · · , n

について，β1, · · ·, βk に関する仮説の尤度比検定を行う。
例えば，

H0 : β1 = 0

H0 : β1 + β2 = 1

H0 : β1 = β2 = β3 = 0

などのような仮説検定

θ = (β1, · · · , βk, σ
2)とする。

尤度関数は，

l(θ) =
n∏

i=1

f (Yi; θ)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(Yi − β1X1i − · · · − βkXki)2
)

となる。
H0の制約つき最尤推定量を θ̃ = (β̃1, · · · , β̃k, σ̃

2)とする。この仮設に含まれる
制約数を Gとする。
制約なし最尤推定量を θ̂ = (β̂1, · · · , β̂k, σ̂

2)とする。
尤度比

l(̃θ)
l(θ̂)
=

(2πσ̃2)−
n
2 exp

(
− 1

2σ̃2

n∑
i=1

(Yi − β̃1X1i − · · · − β̃kXki)2
)

(2πσ̂2)−
n
2 exp

(
− 1

2σ̂2

n∑
i=1

(Yi − β̂1X1i − · · · − β̂kXki)2
)

=

(σ̃2)−
n
2 exp

(
−n −G

2

)
(σ̂2)−

n
2 exp

(
−n − k

2

)
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=


1

n −G

n∑
i=1

ũ2
i

1
n − k

n∑
i=1

û2
i



−n/2

exp
(
−k −G

2

)

= exp
(
−k −G

2

) ( n − k
n −G

)−n/2 (∑n
i=1 ũ2

i∑n
i=1 û2

i

)−n/2

= exp
(
−k −G

2

) ( n − k
n −G

)−n/2

×
(
1 +

∑n
i=1 ũ2

i −
∑n

i=1 û2
i∑n

i=1 û2
i

)−n/2

= exp
(
−k −G

2

) ( n − k
n −G

)−n/2

×
(
1 +

G
n − k

(
∑n

i=1 ũ2
i −

∑n
i=1 û2

i )/G∑n
i=1 û2

i /(n − k)

)−n/2

< c

のとき仮説を棄却する。
(
∑n

i=1 ũ2
i −

∑n
i=1 û2

i )/G∑n
i=1 û2

i /(n − k)
∼ F(G, n − k)

を利用すると cが求まる。

ただし，途中で以下を利用

σ̃2 =
1

n −G

n∑
i=1

(Yi − β̃1X1i − · · · − β̃kXki)2

=
1

n −G

n∑
i=1

ũ2
i

σ̂2 =
1

n − k

n∑
i=1

(Yi − β̂1X1i − · · · − β̂kXki)2

=
1

n − k

n∑
i=1

û2
i
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近似的には，

−2 log
l(̃θ)
l(θ̂)
= −2 log

(σ̃2)−
n
2 exp

(
−n −G

2

)
(σ̂2)−

n
2 exp

(
−n − k

2

)
= n log

(σ̃2

σ̂2

)
+ (k −G)

−→ χ2(G)

例 4： 回帰モデル

Yi = α + βXi + ui

ui = ρui−1 + εi

εi ∼ N(0, σ2) i = 2, 3, · · · , n

について，H0 : ρ = 0，H1 : ρ , 0の尤度比検定を行う。

θ = (α, β, σ2, ρ)とする。対数尤度関数は，

log l(θ) =
n∑

i=2

log f (Yi; θ) = −
n − 1

2
log(2π) − n − 1

2
log(σ2)

− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

となる。
対数尤度関数をそれぞれ α，β，σ2，ρについて微分し，ゼロとおく。4本の
連立方程式を解いて，制約なし最尤推定量 θ̂ = (α̂，β̂，σ̂2，ρ̂)が得られる。

ρ = 0と制約をおく。θ = (α, β, σ2, 0)とする。対数尤度関数は，

log l(θ) = log f (Y1) +
n∑

i=2

log f (Yi|Yi−1,Yi−2, · · · ,Y1; θ)

= −n
2

log(2π) − n
2

log(σ2) +
1
2

log(1 − ρ2)
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− 1
2σ2/(1 − ρ2)

(Yi − α − βXi)2

− 1
2σ2

n∑
i=2

(
(Yi − ρYi−1) − α(1 − ρ) − β(Xi − ρXi−1)

)2

= −n
2

log(2π) − n
2

log(σ2) +
1
2

log(1 − ρ2)

− 1
2σ2

n∑
i=1

(Y∗i − αzi − βX∗i )2

となる。ただし，

Y∗i = Yi

√
1 − ρ2, zi =

√
1 − ρ2, X∗i = Xi

√
1 − ρ2, i = 1のとき，

Y∗i = Yi − ρYi−1, zi = 1 − ρ, X∗i = Xi − ρXi−1, i , 1のとき，

とする。

上記の対数尤度関数をそれぞれ α，β，σ2 について微分し，ゼロとおく。3
本の連立方程式を解いて，ρ = 0の制約付き最尤推定量 θ̃ = (α̃，β̃，σ̃2，0)が
得られる。

すなわち，

max
α,β,σ2

l(α, β, σ2, 0)

max
α,β,σ2,ρ

l(α, β, σ2, ρ)
=

l(α̃, β̃, σ̃2, 0)
l(α̂, β̂, σ̂2, ρ̂)

=
l(̃θ)
l(θ̂)

したがって，尤度比検定統計量

−2 log
l(̃θ)
l(θ̂)

は，nが大きくなると，χ2(1)分布に近づく。


