[ J
Econometrics 11
(Thu., 8:50-10:20)
Room # 4 (E#RFEHRR)
e The prerequisites of this class are Special Lectures in Economics (Statistical

Analysis), 2524555 (MEHEENT)  (last semester) and Econometrics I (T3 / X

N 1) w2 X 1) (graduate level, last semester).

1



TA Session

by Sakamoto (D3 ikE& %)
and Hatakenaka (D2 &4 8)
From Oct. 4,2019

Turs. 14:40 - 16:10
Room 605 GERTFRIR)



Contents
LS
1 Maximum Likelihood Estimation (MLE, & ;%) — Review

2 Qualitative Dependent Variable (BHHEZE)
2.1 Discrete Choice Model (BHGEIRET V) . ... . ... ... ...
2.1.1 Binary Choice Model (ZfE;E#RETIN) . ... ... ...
2.2 Limited Dependent Variable Model (il [RIEEEET V) . . . ..
2.3 CountData Model GIH(T—XETIL) . ... ... ... ... ..

3 Panel Data
31 GLS—Review . . . . . ...
3.2 PanelModelBasic . . ... ... ... ... ... ... ... .
3.2.1 Fixed Effect Model (BERET V) . ... ... ... ..



3.2.2 Random Effect Model (T Y X LRIEETI) . . . ... .. 77

3.3 Hausman’s Specification Error (R biR7E) Test . . . . . . .. .. 81
3.4 Choice of Fixed Effect Model or Random Effect Model . . . . . . . 83

3.4.1 The Case where X is Correlated with u — Review . . . . . 83

3.4.2 Fixed Effect Model or Random Effect Model . . . ... .. 85
Generalized Method of Moments (GMM, —fi%{bLF&;%) 87
4.1 Method of Moments (MM, B{RIK) . ... ... ... .. ... 87
4.2  Generalized Method of Moments (GMM, — & bRE=E) . . . . .. 95
4.3  Generalized Method of Moments (GMM, —#%{t.fi2%4) II — Non-

linear Case — . . . . . . . . . . . 100
Time Series Analysis (35519 47) 117
5.1 Introduction . . . . . ... . ... ... 117



5.2 Autoregressive Model (H C.H[/#ET )V or AR ET ) . . .. . .. 122
53 MAModel . ... .. ... 151
54 ARMAModel . . . . ... .. 166
5.5 ARIMAModel . . ... ... ... ... 171
56 SARIMA Model . ... ... ... ... ... 172
5.7 Optimal Prediction . . . . . ... ... ... ... ... ..., 172
5.8 Identification . . . . ... ... ... 175
5.9 Example of SARIMA using Consumption Data . . . . . ... ... 178
Unit Root ({I18) and Cointegration (£#14) 183
6.1 Unit Root (Bf74R) Test (Dickey-Fuller (DF) Test) . . . ... ... 183
6.2 Serially Correlated Errors . . . . . . . . ... ... .. ... ..., 219

6.2.1 Augmented Dickey-Fuller (ADF) Test . . . . . .. ... .. 220
6.3 Cointegration (FLFI7?) . . . . . . ... L 223



6.4 Testing Cointegration

6.4.1 Engle-Granger Test . . . . . . .. ... .. ... ......



nk

W

1 Maximum Likelihood Estimation (MLE, s&x L)%) —

2O

Review

1. We have random variables X;, X, - - -, X,,, which are assumed to be mutually

independently and identically distributed.

2. The distribution function of {X;}?, is f(x;6), where x = (x;,x2,---,x,) and
0=(u,2).
Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(8; x) = f(x; 0).

Note that f(x;0) = []., f(x;6) when X;, X,, ---, X,, are mutually indepen-



dently and identically distributed.

The maximum likelihood estimator (MLE) of € is 8 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:

0log L(6; X)
— =0.
(a) 50
d*log L(0; X
(b) % is a negative definite matrix.

. Fisher’s information matrix (7 1 ¥ ¥ —D1&E#H175) is defined as:

0% log L(6; X))

1(6) = -E
© ( 06000’
where we have the following equality:

P log L(6; X)\ _ _ 0log L(6; X) dlog L(6; X)\  Olog L(6; X)
—E( 9000’ ) =E( 90 o0 )=V 90 )
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(0;
f ;%) dr=0
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(6; x)
06

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6;x)dx =0,

1.e.,
E(@log L(6; X)) _o.
00
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Again, differentiating the above with respect to 6, we obtain:

»logL(O;x) dlog L(6; x) OL(6; x)
f 2e08 L(6; x)dx + f e 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(H; x)
= — = (6
f doog DA f 26 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
—F(—=2 ") 4 E = 0.
(e )+ B2 o)

L(6; x)dx

Therefore, we can derive the following equality:

9

- 0% log L(6; X) 5 dlog L(6; X) 0log L(6; X) _v dlog L(6; X)
0600’ B 90 00’ B 00

dlog L(6; X)) _0

where the second equality utilizes E ( 50
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4. Cramer-Rao Lower Bound (7 2 X —JL - S A D TFIR): (1(6))!
Suppose that an unbiased estimator of 8 is given by s(X).

Then, we have the following:
V(s(X)) > (1(0)”"

Proof:

The expectation of s(X) is:
E(s(X)) = f s(x)L(6; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) _ oLO;x) , dlog L(6;x)
50 - f s(x) 50 dx = f s(x)—ae’ L(6; x)dx

_ Cov (s(X), dlog L(6; X))

00

11



For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog LG; X)\\ dlog L(6; X)
2500y s, 2oLy 2o2000)
< V(s(X))V(—a log ;‘9(9; X)),

dlog L(6; X) .
—— " ie

where p denotes the correlation coefficient between s(X) and 0

Cov (S(X), dlog L(6; X))

06

p:

\/\W\/ 610gL(9 X))

Note that |p| < 1.
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Therefore, we have the following inequality:

((9E(S(X))

06

2 .
) < V(5(X) V ([ﬂog L(6; X)) ’

06

i.e.,
(aE(s(X)>)2
00

V(X)) 2 V(alog L(; X))

00
Especially, when E(s(X)) = 6,

1 _ -1
V(s(X)) - ( T X)) = U®)".
062

Even in the case where s(X) is a vector, the following inequality holds.
V(s(X)) = (1(©)",

13



where 1(0) is defined as:

0% log L(6; X)
16) = _E( ageae' )
_E dlog L(0; X) dlog L(6; X)\ _ v 0log L(6; X)
- 90 00 B 90 '

The variance of any unbiased estimator of 6 is larger than or equal to (1(6))~".
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5. Asymptotic Normality of MLE:
Let 6 be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N(O, lim (?) )

. . (1
where it is assumed that lim ((—) converges.

n—oo n
That is, when 7 is large, 6 is approximately distributed as follows:
d~N(0.a©) ™).

Suppose that s(X) = 8.

When # is large, V(s(X)) is approximately equal to (/ (6’))_1.
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Practically, we utilize the following approximated distribution:
d~N(0.a@)™").
Then, we can obtain the significance test and the confidence interval for 6

. Central Limit Theorem: Let X;, X5, ---, X,, be mutually independently dis-

tributed random variables with mean E(X;) = x and variance V(X;) = 0% < oo

fori=1,2,---,n.

Define X = (1/n) Y-, X;.

Then, the central limit theorem is given by:
X-EX) X-pu

W@ o/n

Note that E(X) = u and V(X) = o%/n.

— N, 1).
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That is,

VaX ) = —= ) (X =) — NO.0).
i=1

1
i -

Note that E(X) = u and nV(X) = o2

In the case where X; is a vector of random variable with mean u and variance

Y < oo, the central limit theorem is given by:

V(X —p) = P

Note that E(X) = u and nV(X) = 2.

L Z(X,- — ) — N(,3).
i=1
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7. Central Limit Theorem II: Let X;, X5, ---, X, be mutually independently
distributed random variables with mean E(X;) = u and variance V(X;) = 0'1.2 for

i=1,2,---,n.

Assume:

Define X = (1/n) Y-, X;.
The central limit theorem is given by:

_ 1 &
VaX —p) = —= > (Xi=p) — NO.0?),
i=1

n -

Note that E(X) = u and nV(X) — o>
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In the case where X; is a vector of random variable with mean u and variance

%, the central limit theorem is given by:

_ 1 <&
V(X —p) = —= > (X;— @) — N(0,),
i=1

i 4

n

1
where £ = lim — 2 < oo,
n—oo n

i=1
Note that E(X) = p and nV(X) — X.

[Review of Asymptotic Theories]

¢ Convergence in Probability (FEZIX®R) X, — a, i.e., X converges in

probability to a, where a is a fixed number.
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