Econometrics II

(Thu., 8:50-10:20)

Room # 4 (法経講義棟)

• The prerequisites of this class are **Special Lectures in Economics (Statistical Analysis)**, 経済学特論(統計解析) (last semester) and **Econometrics I** (エコノメトリックス **I**) (graduate level, last semester).

TA Session

by Sakamoto (D3 坂本 淳)

and Hatakenaka (D2 畠中 賢治)

From Oct. 4, 2019

Turs. 14:40 - 16:10

Room 605 (法経研究棟)

Contents

1	Max	ximum Likelihood Estimation (MLE, 最尤法) — Review	7	
2	Qualitative Dependent Variable (質的従属変数)			
	2.1	Discrete Choice Model (離散選択モデル)	29	
		2.1.1 Binary Choice Model (二値選択モデル)	29	
2.2 Limited Dependent Variable Model (制)		Limited Dependent Variable Model (制限従属変数モデル)	50	
	2.3	Count Data Model (計数データモデル)	59	
3 Panel Data		el Data	67	
	3.1	GLS — Review	67	
	3.2	Panel Model Basic	68	
		3.2.1 Fixed Effect Model (固定効果モデル)	69	

		3.2.2	Random Effect Model (ランダム効果モデル)	77		
	3.3	3 Hausman's Specification Error (特定化誤差) Test				
	3.4	6.4 Choice of Fixed Effect Model or Random Effect Model				
		3.4.1	The Case where X is Correlated with u — Review	83		
		3.4.2	Fixed Effect Model or Random Effect Model	85		
4	Con	aralizad	l Method of Moments (GMM, 一般化積率法)	87		
•	Gen	ci alizcu	Tylethod of Moments (Givin), MX (GIQ +/A)	07		
	4.1	Method of Moments (MM, 積率法)				
	4.2	Generalized Method of Moments (GMM, 一般化積率法)				
	4.3	Generalized Method of Moments (GMM, 一般化積率法) II — Non-				
		linear (Case —	100		
5	Tim	e Series	Analysis (時系列分析)	117		
J	1 1111	Colles	Triming (LANCANI)	11/		
	5.1	Introdu	action	117		

	5.2	Autoregressive Model (自己回帰モデル or AR モデル)	122
	5.3	MA Model	151
	5.4	ARMA Model	166
	5.5	ARIMA Model	171
	5.6	SARIMA Model	172
	5.7	Optimal Prediction	172
	5.8	Identification	175
	5.9	Example of SARIMA using Consumption Data	178
6	Unit Root (単位根) and Cointegration (共和分)		183
	6.1	Unit Root (単位根) Test (Dickey-Fuller (DF) Test)	183
	6.2	Serially Correlated Errors	219
		6.2.1 Augmented Dickey-Fuller (ADF) Test	220
	6.3	Cointegration (共和分)	223

6.4	Testing Cointegration					
	6.4.1	Engle-Granger Test	240			

1 Maximum Likelihood Estimation (MLE, 最党法) —

Review

- 1. We have random variables X_1, X_2, \dots, X_n , which are assumed to be mutually independently and identically distributed.
- 2. The distribution function of $\{X_i\}_{i=1}^n$ is $f(x;\theta)$, where $x=(x_1,x_2,\cdots,x_n)$ and $\theta=(\mu,\Sigma)$.

Note that *X* is a vector of random variables and *x* is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

Note that $f(x;\theta) = \prod_{i=1}^n f(x_i;\theta)$ when X_1, X_2, \dots, X_n are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$\max_{\theta} \ L(\theta; X). \qquad \Longleftrightarrow \qquad \max_{\theta} \ \log L(\theta; X).$$

MLE satisfies the following two conditions:

(a)
$$\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.$$

- (b) $\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$ is a negative definite matrix.
- 3. **Fisher's information matrix** (フィッシャーの情報行列) is defined as:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),\,$$

where we have the following equality:

$$-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta; X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

Proof of the above equality:

$$\int L(\theta; x) \mathrm{d}x = 1$$

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} \mathrm{d}x = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

Again, differentiating the above with respect to θ , we obtain:

$$\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial' \theta} dx$$

$$= \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$

$$= E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0.$$

Therefore, we can derive the following equality:

$$-\mathrm{E}\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

4. Cramer-Rao Lower Bound (クラメール・ラオの下限): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

$$V(s(X)) \ge (I(\theta))^{-1}$$

Proof:

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\frac{\partial E(s(X))}{\partial \theta'} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta'} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$
$$= Cov \left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta} \right)$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} = \left(\mathrm{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^{2} = \rho^{2} \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

$$\leq \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)} \sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^2 \le \mathrm{V}(s(X)) \; \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$,

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1}$$

where $I(\theta)$ is defined as:

$$\begin{split} I(\theta) &= -\mathrm{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \\ &= \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right). \end{split}$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right)$ converges.

That is, when *n* is large, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$\tilde{\theta} \sim N\left(\theta, (I(\tilde{\theta}))^{-1}\right).$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

The central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) $X_n \longrightarrow a$, i.e., X converges in probability to a, where a is a fixed number.