
• Convergence in Distribution (分布収束) Xn −→ X, i.e., X converges in

distribution to X. The distribution of Xn converges to the distribution of X as n

goes to infinity.

Some Formulas

Xn and Yn : Convergence in Probability

Zn : Convergence in Distribution

• If Xn −→ a, then f (Xn) −→ f (a).

• If Xn −→ a and Yn −→ b, then f (XnYn) −→ f (ab).

• If Xn −→ a and Zn −→ Z, then XnZn −→ aZ, i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a2V(Z).

[End of Review]
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8. Weak Law of Large Numbers (
たいすう

大数の弱法則) — Review:

n random variables X1, X2, · · ·, Xn are assumed to be mutually independently

and identically distributed, where E(Xi) = µ and V(Xi) = σ2 < ∞.

Then, X −→ µ as n −→ ∞, which is called the weak law of large numbers.

−→ Convergence in probability

−→ Proved by Chebyshev’s inequality

9. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:

A vector of randam variavle X: E(X) = µ and V(X)((X − µ)(X − µ)′) = Σ

Then, E(AX) = Aµ and V(AX) = AΣA′.
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Proof:

E(AX) = AE(X) = Aµ

V(AX) = E((AX − Aµ)(AX − Aµ)′) = E(A(X − µ)(A(X − µ))′)

= E(A(X − µ)(X − µ)′A′) = AE((X − µ)(X − µ)′)A′ = AV(X)A′ = AΣA′

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of Xi is given by f (xi; θ).

The likelihood function is: L(θ; x) ≡ f (x; θ) =
∏n

i=1 f (xi; θ),

where x = (x1, x2, · · · , xn).

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

22



A solution of the above problem is given by MLE of θ, denoted by θ̃.

That is, θ̃ is given by the θ which satisfies the following equation:

∂ log L(θ; x)
∂θ

=

n∑
i=1

∂ log f (xi; θ)
∂θ

= 0.

Replacing xi by the underlying random variable Xi,
∂ log f (Xi; θ)

∂θ
is taken as

the ith random variable, i.e., Xi in the Central Limit Theorem II.

Consider applying Central Limit Theorem II.

In this case, we need the following expectation and variance:

E
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
and V

(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
.

Defining the variance:

V
(∂ log f (Xi; θ)

∂θ

)
= Σi,
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we can rewrite the information matrix as follows:

I(θ) = V
(∂ log L(θ; X)

∂θ

)
= V
( n∑

i=1

∂ log f (Xi; θ)
∂θ

)
=

n∑
i=1

V
(∂ log f (Xi; θ)

∂θ

)
=

n∑
i=1

Σi

The third equality holds when X1, X2, · · · , Xn are mutually independent.

Note that E
(∂ log L(θ; X)

∂θ

)
= 0 and V

(∂ log L(θ; X)
∂θ

)
= I(θ).

1
n
∂ log L(θ; X)
∂θ

=
1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

√
n

1n
n∑

i=1

∂ log f (Xi; θ)
∂θ

− E
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

) −→ N(0,Σ),
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where

nV
(1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
( n∑

i=1

∂ log f (Xi; θ)
∂θ

)
=

1
n

V
(∂ log L(θ; X)

∂θ

)
=

1
n

I(θ) −→ Σ.

That is,
1
√

n
∂ log L(θ; X)
∂θ

−→ N(0,Σ),

where X = (X1, X2, · · · , Xn).

Now, consider replacing θ by θ̃, i.e.,

1
√

n
∂ log L(θ̃; X)
∂θ

,

which is expanded around θ̃ = θ as follows:

0 =
1
√

n
∂ log L(θ̃; X)
∂θ

≈ 1
√

n
∂ log L(θ; X)
∂θ

+
1
√

n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ).
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Therefore,

1
√

n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ) ≈ − 1
√

n
∂ log L(θ; X)
∂θ

−→ N(0,Σ).

The left-hand side is rewritten as:

1
√

n
∂2 log L(θ; X)
∂θ∂θ′

=
√

n
1
n
∂2 log L(θ; X)
∂θ∂θ′

(θ̃ − θ).

Then,

√
n(θ̃ − θ) ≈ −

(1
n
∂2 log L(θ; X)
∂θ∂θ′

)−1( 1
√

n
∂ log L(θ; X)
∂θ

)
−→ N(0,Σ−1ΣΣ−1) = N(0,Σ−1).
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Note that

1
n
∂2 log L(θ; X)
∂θ∂θ′

−→ lim
n→∞

1
n

E
(∂2 log L(θ; X)

∂θ∂θ′

)
= Σ,

and
(1
n
∂2 log L(θ; X)
∂θ∂θ′

)−1( 1
√

n
∂ log L(θ; X)
∂θ

)
has the same asymptotic distribu-

tion as Σ−1
( 1
√

n
∂ log L(θ; X)
∂θ

)
.
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