－Convergence in Distribution（分布収束）$X_{n} \longrightarrow X$ ，i．e．，X converges in distribution to X ．The distribution of X_{n} converges to the distribution of X as n goes to infinity．

Some Formulas

X_{n} and Y_{n} ：Convergence in Probability
Z_{n} ：Convergence in Distribution
－If $X_{n} \longrightarrow a$ ，then $f\left(X_{n}\right) \longrightarrow f(a)$ ．
－If $X_{n} \longrightarrow a$ and $Y_{n} \longrightarrow b$ ，then $f\left(X_{n} Y_{n}\right) \longrightarrow f(a b)$ ．
－If $X_{n} \longrightarrow a$ and $Z_{n} \longrightarrow Z$ ，then $X_{n} Z_{n} \longrightarrow a Z$ ，i．e．，$a Z$ is distributed with mean $\mathrm{E}(a Z)=a \mathrm{E}(Z)$ and variance $\mathrm{V}(a Z)=a^{2} \mathrm{~V}(Z)$ ．
［End of Review］

8．Weak Law of Large Numbers（大数の弱法則）— Review：
n random variables $X_{1}, X_{2}, \cdots, X_{n}$ are assumed to be mutually independently and identically distributed，where $\mathrm{E}\left(X_{i}\right)=\mu$ and $\mathrm{V}\left(X_{i}\right)=\sigma^{2}<\infty$ ．

Then， $\bar{X} \longrightarrow \mu$ as $n \longrightarrow \infty$ ，which is called the weak law of large numbers．
\longrightarrow Convergence in probability
\longrightarrow Proved by Chebyshev＇s inequality

9．Some Formulas of Expectaion and Variance in Multivariate Cases
－Review：
A vector of randam variavle $X: \mathrm{E}(X)=\mu$ and $\mathrm{V}(X)\left((X-\mu)(X-\mu)^{\prime}\right)=\Sigma$
Then， $\mathrm{E}(A X)=A \mu$ and $\mathrm{V}(A X)=A \Sigma A^{\prime}$.

Proof:

$\mathrm{E}(A X)=A \mathrm{E}(X)=A \mu$

$$
\begin{aligned}
& \mathrm{V}(A X)=\mathrm{E}\left((A X-A \mu)(A X-A \mu)^{\prime}\right)=\mathrm{E}\left(A(X-\mu)(A(X-\mu))^{\prime}\right) \\
& \quad=\mathrm{E}\left(A(X-\mu)(X-\mu)^{\prime} A^{\prime}\right)=A \mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right) A^{\prime}=A \mathrm{~V}(X) A^{\prime}=A \Sigma A^{\prime}
\end{aligned}
$$

10. Asymptotic Normality of MLE - Proof:

The density (or probability) function of X_{i} is given by $f\left(x_{i} ; \theta\right)$.
The likelihood function is: $L(\theta ; x) \equiv f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$,
where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
MLE of θ results in the following maximization problem:

$$
\max _{\theta} \log L(\theta ; x)
$$

A solution of the above problem is given by MLE of θ, denoted by $\tilde{\theta}$.
That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$
\frac{\partial \log L(\theta ; x)}{\partial \theta}=\sum_{i=1}^{n} \frac{\partial \log f\left(x_{i} ; \theta\right)}{\partial \theta}=0 .
$$

Replacing x_{i} by the underlying random variable $X_{i}, \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}$ is taken as the i th random variable, i.e., X_{i} in the Central Limit Theorem II.

Consider applying Central Limit Theorem II.

In this case, we need the following expectation and variance:

$$
\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right) \quad \text { and } \quad \mathrm{V}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)
$$

Defining the variance:

$$
\mathrm{V}\left(\frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\Sigma_{i},
$$

we can rewrite the information matrix as follows:

$$
\begin{aligned}
I(\theta) & =\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right) \\
& =\sum_{i=1}^{n} \mathrm{~V}\left(\frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\sum_{i=1}^{n} \Sigma_{i}
\end{aligned}
$$

The third equality holds when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independent.

Note that $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$ and $\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=I(\theta)$.

$$
\begin{gathered}
\frac{1}{n} \frac{\partial \log L(\theta ; X)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \\
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}-\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& n \mathrm{~V}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\frac{1}{n} \mathrm{~V}\left(\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)=\frac{1}{n} \mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
= & \frac{1}{n} I(\theta) \longrightarrow \Sigma
\end{aligned}
$$

That is,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta} \longrightarrow N(0, \Sigma)
$$

where $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.

Now, consider replacing θ by $\tilde{\theta}$, i.e.,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta} ; X)}{\partial \theta}
$$

which is expanded around $\tilde{\theta}=\theta$ as follows:

$$
0=\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta} ; X)}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}+\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta)
$$

Therefore,

$$
\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta) \approx-\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta} \longrightarrow N(0, \Sigma)
$$

The left-hand side is rewritten as:

$$
\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}=\sqrt{n} \frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}(\tilde{\theta}-\theta)
$$

Then,

$$
\begin{aligned}
\sqrt{n}(\tilde{\theta}-\theta) & \approx-\left(\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \longrightarrow N\left(0, \Sigma^{-1} \Sigma \Sigma^{-1}\right)=N\left(0, \Sigma^{-1}\right)
\end{aligned}
$$

Note that

$$
\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}} \longrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\Sigma
$$

and $\left(\frac{1}{n} \frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$ has the same asymptotic distribution as $\Sigma^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$.

