11. Optimization (最適化):

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

We often have the case where the solution of θ is not derived in closed form.

⇒ Optimization procedure

$$0 = \frac{\partial \log L(\theta; x)}{\partial \theta} = \frac{\partial \log L(\theta^*; x)}{\partial \theta} + \frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'} (\theta - \theta^*).$$

Solving the above equation with respect to θ , we obtain the following:

$$\theta = \theta^* - \left(\frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^*; x)}{\partial \theta}.$$

Replace the variables as follows:

$$\theta \longrightarrow \theta^{(i+1)}, \qquad \qquad \theta^* \longrightarrow \theta^{(i)}.$$

Then, we have:

$$\theta^{(i+1)} = \theta^{(i)} - \left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}.$$

⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing $\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}$ by $E\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)$, we obtain the following optimization algorithm:

$$\theta^{(i+1)} = \theta^{(i)} - \left(E\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}$$
$$= \theta^{(i)} + \left(I(\theta^{(i)}) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}$$

⇒ Method of Scoring (スコア法)

2 Qualitative Dependent Variable (質的従属変数)

- 1. Discrete Choice Model (離散選択モデル)
- 2. Limited Dependent Variable Model (制限従属変数モデル)
- 3. Count Data Model (計数データモデル)

Usually, the regression model is given by:

$$y_i = X_i \beta + u_i, \qquad u_i \sim N(0, \sigma^2), \qquad i = 1, 2, \dots, n,$$

where y_i is a continuous type of random variable within the interval from $-\infty$ to ∞ .

When y_i is discrete or truncated, what happens?

2.1 Discrete Choice Model (離散選択モデル)

2.1.1 Binary Choice Model (二値選択モデル)

Example 1: Consider the regression model:

$$y_i^* = X_i \beta + u_i, \qquad u_i \sim (0, \sigma^2), \qquad i = 1, 2, \dots, n,$$

where y_i^* is unobserved, but y_i is observed as 0 or 1, i.e.,

$$y_i = \begin{cases} 1, & \text{if } y_i^* > 0, \\ 0, & \text{if } y_i^* \le 0. \end{cases}$$

Consider the probability that y_i takes 1, i.e.,

$$P(y_i = 1) = P(y_i^* > 0) = P(u_i > -X_i\beta) = P(u_i^* > -X_i\beta^*) = 1 - P(u_i^* \le -X_i\beta^*)$$
$$= 1 - F(-X_i\beta^*) = F(X_i\beta^*), \quad \text{(if the dist. of } u_i^* \text{ is symmetric.)},$$

where $u_i^* = \frac{u_i}{\sigma}$, and $\beta^* = \frac{\beta}{\sigma}$ are defined.

(*) β^* can be estimated, but β and σ^2 cannot be estimated separately (i.e., β and σ^2 are not identified).

The distribution function of u_i^* is given by $F(x) = \int_{-\infty}^{\infty} f(z) dz$.

If u_i^* is standard normal, i.e., $u_i^* \sim N(0, 1)$, we call **probit model**.

$$F(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-\frac{1}{2}z^2) dz, \qquad f(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2).$$

If u_i^* is logistic, we call **logit model**.

$$F(x) = \frac{1}{1 + \exp(-x)}, \qquad f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}.$$

We can consider the other distribution function for u_i^* .

Likelihood Function: y_i is the following Bernoulli distribution:

$$f(y_i) = (P(y_i = 1))^{y_i} (P(y_i = 0))^{1 - y_i} = (F(X_i \beta^*))^{y_i} (1 - F(X_i \beta^*))^{1 - y_i}, \qquad y_i = 0, 1.$$

[Review — Bernoulli Distribution (ベルヌイ分布)]

Suppose that X is a Bernoulli random variable. the distribution of X, denoted by f(x), is:

$$f(x) = p^{x}(1-p)^{1-x},$$
 $x = 0, 1.$

The mean and variance are:

$$\mu = E(X) = \sum_{x=0}^{1} x f(x) = 0 \times (1-p) + 1 \times p = p,$$

$$\sigma^2 = V(X) = E((X - \mu)^2) = \sum_{n=0}^{\infty} (x - \mu)^2 f(x) = (0 - p)^2 (1 - p) + (1 - p)^2 p = p(1 - p).$$

[End of Review]

The likelihood function is given by:

$$L(\beta^*) = f(y_1, y_2, \dots, y_n) = \prod_{i=1}^n f(y_i) = \prod_{i=1}^n (F(X_i \beta^*))^{y_i} (1 - F(X_i \beta^*))^{1-y_i},$$

The log-likelihood function is:

$$\log L(\beta^*) = \sum_{i=1}^{n} (y_i \log F(X_i \beta^*) + (1 - y_i) \log(1 - F(X_i \beta^*))),$$

Solving the maximization problem of $\log L(\beta^*)$ with respect to β^* , the first order condition is:

$$\frac{\partial \log L(\beta^*)}{\partial \beta^*} = \sum_{i=1}^n \left(\frac{y_i X_i' f(X_i \beta^*)}{F(X_i \beta^*)} - \frac{(1 - y_i) X_i' f(X_i \beta^*)}{1 - F(X_i \beta^*)} \right)
= \sum_{i=1}^n \frac{X_i' f(X_i \beta^*) (y_i - F(X_i \beta^*))}{F(X_i \beta^*) (1 - F(X_i \beta^*))} = \sum_{i=1}^n \frac{X_i' f_i (y_i - F_i)}{F_i (1 - F_i)} = 0,$$

where $f_i \equiv f(X_i\beta^*)$ and $F_i \equiv F(X_i\beta^*)$. Remember that $f(x) \equiv \frac{dF(x)}{dx}$.

The second order condition is:

$$\begin{split} \frac{\partial^2 \log L(\beta^*)}{\partial \beta^* \partial \beta^{*'}} &= \sum_{i=1}^n \frac{X_i' \frac{\partial f_i}{\partial \beta^*} (y_i - F_i)}{F_i (1 - F_i)} + \sum_{i=1}^n \frac{X_i' f_i \frac{\partial (f_i - F_i)}{\partial \beta^*}}{F_i (1 - F_i)} \\ &+ \sum_{i=1}^n X_i' f_i (y_i - F_i) \frac{\partial (F_i (1 - F_i))^{-1}}{\partial \beta^*} \\ &= \sum_{i=1}^n \frac{X_i' X_i f_i' (y_i - F_i)}{F_i (1 - F_i)} - \sum_{i=1}^n \frac{X_i' X_i f_i^2}{F_i (1 - F_i)} + \sum_{i=1}^n X_i' f_i (y_i - F_i) \frac{X_i f_i (1 - 2F_i)}{(F_i (1 - F_i))^2} \end{split}$$

is a negative definite matrix.

For maximization, the method of scoring is given by:

$$\beta^{*(j+1)} = \beta^{*(j)} + \left(-E\left(\frac{\partial^2 \log L(\beta^{*(j)})}{\partial \beta^* \partial \beta^{*'}}\right)\right)^{-1} \frac{\partial \log L(\beta^{*(j)})}{\partial \beta^*}$$

$$= \beta^{*(j)} + \left(\sum_{i=1}^n \frac{X_i' X_i (f_i^{(j)})^2}{F_i^{(j)} (1 - F_i^{(j)})}\right)^{-1} \sum_{i=1}^n \frac{X_i' f_i^{(j)} (y_i - F_i^{(j)})}{F_i^{(j)} (1 - F_i^{(j)})},$$

where $F_{i}^{(j)} = F(X_{i}\beta^{*(j)})$ and $f_{i}^{(j)} = f(X_{i}\beta^{*(j)})$. Note that

$$I(\beta^*) = -\mathrm{E}\left(\frac{\partial^2 \log L(\beta^*)}{\partial \beta^* \partial \beta^{*\prime}}\right) = \sum_{i=1}^n \frac{X_i' X_i f_i^2}{F_i (1 - F_i)}.$$

because of $E(y_i) = F_i$.

It is known that

$$\sqrt{n}(\hat{\beta}^* - \beta^*) \longrightarrow N\left(0, \lim_{n \to \infty} \left(-\frac{1}{n} E\left(\frac{\partial^2 \log L(\beta^*)}{\partial \beta^* \partial \beta^{*'}}\right)\right)^{-1}\right),$$

where $\hat{\beta}^* \equiv \lim_{i \to \infty} \beta^{*(j)}$ denotes MLE of β^* .

Practically, we use the following normal distribution:

$$\hat{\beta}^* \sim N(\beta^*, I(\hat{\beta}^*)^{-1}),$$

where
$$I(\hat{\beta}^*) = -\mathbb{E}\left(\frac{\partial^2 \log L(\hat{\beta}^*)}{\partial \beta^* \partial \beta^{*'}}\right) = \sum_{i=1}^n \frac{X_i' X_i \hat{f}_i^2}{\hat{F}_i (1 - \hat{F}_i)}, \ \hat{f}_i = f(X_i \hat{\beta}^*) \text{ and } \hat{F}_i = F(X_i \hat{\beta}^*).$$

Thus, the significance test for β^* and the confidence interval for β^* can be constructed.