
Another Interpretation: This maximization problem is equivalent to the nonlin-

ear least squares estimation problem from the following regression model:

yi = F(Xiβ
∗) + ui,

where ui = yi − Fi takes ui = 1 − Fi with probability P(yi = 1) = F(Xiβ
∗) = Fi and

ui = −Fi with probability P(yi = 0) = 1 − F(Xiβ
∗) = 1 − Fi.

Therefore, the mean and variance of ui are:

E(ui) = (1 − Fi)Fi + (−Fi)(1 − Fi) = 0,

σ2
i = V(ui) = E(u2

i ) − (E(ui))2 = (1 − Fi)2Fi + (−Fi)2(1 − Fi) = Fi(1 − Fi).

The weighted least squares method solves the following minimization problem:

min
β∗

n∑
i=1

(yi − F(Xiβ
∗))2

σ2
i

.
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The first order condition is:

n∑
i=1

X′i f (Xiβ
∗)(yi − F(Xiβ

∗))
σ2

i

=

n∑
i=1

X′i fi(yi − Fi)
Fi(1 − Fi)

= 0,

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: E(yi) = 0 × (1 − Fi) + 1 × Fi = Fi ≡ F(Xiβ
∗).

Example 2: Consider the two utility functions: U1i = Xiβ1+ε1i and U2i = Xiβ2+ε2i.

A linear utility function is problematic, but we consider the linear function for sim-

plicity of discussion.

We purchase a good when U1i > U2i and do not purchase it when U1i < U2i.
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We can observe yi = 1 when we purchase the good, i.e., when U1i > U2i, and yi = 0

otherwise.

P(yi = 1) = P(U1i > U2i) = P(Xi(β1 − β2) > −ε1i + ε2i)

= P(−Xiβ
∗ > ε∗i ) = P(−Xiβ

∗∗ > ε∗∗i ) = 1 − F(−Xiβ
∗∗) = F(Xiβ

∗∗)

where β∗ = β1 − β2, ε∗i = ε1i − ε2i, β∗∗ =
β∗

σ∗
and ε∗∗i =

ε∗i
σ∗

.

We can estimate β∗∗, but we cannot estimate ε∗i and σ∗, separately.

Mean and variance of ε∗∗i are normalized to be zero and one, respectively.

If the distribution of ε∗∗i is symmetric, the last equality holds.

We can estimate β∗∗ by MLE as in Example 1.
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Example 3: Consider the questionnaire:

yi =


1, if the ith person answers YES,

0, if the ith person answers NO.

Consider estimating the following linear regression model:

yi = Xiβ + ui.

When E(ui) = 0, the expectation of yi is given by:

E(yi) = Xiβ.

Because of the linear function, Xiβ takes the value from −∞ to∞.

However, E(yi) indicates the ratio of the people who answer YES out of all the people,

because of E(yi) = 1 × P(yi = 1) + 0 × P(yi = 0) = P(yi = 1).
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That is, E(yi) has to be between zero and one.

Therefore, it is not appropriate that E(yi) is approximated as Xiβ.

The model is written as:

yi = P(yi = 1) + ui,

where ui is a discrete type of random variable, i.e., ui takes 1 − P(yi = 1) with

probability P(yi = 1) and −P(yi = 1) with probability 1 − P(yi = 1) = P(yi = 0).

Consider that P(yi) is connected with the distribution function F(Xiβ) as follows:

P(yi = 1) = F(Xiβ),

where F(·) denotes a distribution function such as normal dist., logistic dist., and so

on. −→ probit model or logit model.
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The probability function of yi is:

f (yi) = F(Xiβ)yi(1 − F(Xiβ))1−yi ≡ Fyi
i (1 − Fi)1−yi , yi = 0, 1.

The joint distribution of y1, y2, · · ·, yn is:

f (y1, y2, · · · , yn) =
n∏

i=1

f (yi) =
n∏

i=1

Fyi
i (1 − Fi)1−yi ≡ L(β),

which corresponds to the likelihood function. −→ MLE
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Example 4: Ordered probit or logit model:

Consider the regression model:

y∗i = Xiβ + ui, ui ∼ (0, 1), i = 1, 2, · · · , n,

where y∗i is unobserved, but yi is observed as 1, 2, · · · ,m, i.e.,

yi =



1, if −∞ < y∗i ≤ a1,

2, if a1 < y∗i ≤ a2,

...,

m, if am−1 < y∗i < ∞,

where a1, a2, · · ·, am−1 are assumed to be known.
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Consider the probability that yi takes 1, 2, · · ·, m, i.e.,

P(yi = 1) = P(y∗i ≤ a1) = P(ui ≤ a1 − Xiβ)

= F(a1 − Xiβ),

P(yi = 2) = P(a1 < y∗i ≤ a2) = P(a1 − Xiβ < ui ≤ a2 − Xiβ)

= F(a2 − Xiβ) − F(a1 − Xiβ),

P(yi = 3) = P(a2 < y∗i ≤ a3) = P(a2 − Xiβ < ui ≤ a3 − Xiβ)

= F(a3 − Xiβ) − F(a2 − Xiβ),

...

P(yi = m) = P(am−1 < y∗i ) = P(am−1 − Xiβ < ui)

= 1 − F(am−1 − Xiβ).
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Define the following indicator functions:

Ii1 =

1, if yi = 1,

0, otherwise.
Ii2 =

1, if yi = 2,

0, otherwise.
· · · Iim =

1, if yi = m,

0, otherwise.

More compactly,

P(yi = j) = F(a j − Xiβ) − F(a j−1 − Xiβ),

for j = 1, 2, · · · ,m, where a0 = −∞ and am = ∞.

Ii j =

1, if yi = j,

0, otherwise,

for j = 1, 2, · · · ,m.
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Then, the likelihood function is:

L(β) =
n∏

i=1

(
F(a1 − Xiβ)

)Ii1
(
F(a2 − Xiβ) − F(a1 − Xiβ)

)Ii2 · · ·
(
1 − F(am−1 − Xiβ)

)Iim

=

n∏
i=1

m∏
j=1

(
F(a j − Xiβ) − F(a j−1 − Xiβ)

)Ii j
,

where a0 = −∞ and am = ∞. Remember that F(−∞) = 0 and F(∞) = 1.

The log-likelihood function is:

log L(β) =
n∑

i=1

m∑
j=1

Ii j log
(
F(a j − Xiβ) − F(a j−1 − Xiβ)

)
.

The first derivative of log L(β) with respect to β is:

∂ log L(β)
∂β

=

n∑
i=1

m∑
j=1

−Ii jX′i
(

f (a j − Xiβ) − f (a j−1 − Xiβ)
)

F(a j − Xiβ) − F(a j−1 − Xiβ)
= 0.

Usually, normal distribution or logistic distribution is chosen for F(·).
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