Example 5: Multinomial logit model:
The i th individual has $m+1$ choices, i.e., $j=0,1, \cdots, m$.

$$
P\left(y_{i}=j\right)=\frac{\exp \left(X_{i} \beta_{j}\right)}{\sum_{j=0}^{m} \exp \left(X_{i} \beta_{j}\right)} \equiv P_{i j}
$$

for $\beta_{0}=0$. The case of $m=1$ corresponds to the bivariate logit model (binary choice).

Note that

$$
\log \frac{P_{i j}}{P_{i 0}}=X_{i} \beta_{j}
$$

The log-likelihood function is:

$$
\log L\left(\beta_{1}, \cdots, \beta_{m}\right)=\sum_{i=1}^{n} \sum_{j=0}^{m} d_{i j} \ln P_{i j},
$$

where $d_{i j}=1$ when the i th individual chooses j th choice, and $d_{i j}=0$ otherwise.

Example 6: Nested logit model:

(i) In the 1st step, choose YES or NO. Each probability is P_{Y} and $P_{N}=1-P_{Y}$.
(ii) Stop if NO is chosen in the 1st step. Go to the next if YES is chosen in the 1st step.
(iii) In the 2nd step, choose A or B if YES is chosen in the 1st step. Each probability is $P_{A \mid Y}$ and $P_{B \mid Y}$.

For simplicity, usually we assume the logistic distribution.
So, we call the nested logit model.
The probability that the i th individual chooses NO is:

$$
P_{N, i}=\frac{1}{1+\exp \left(X_{i} \beta\right)} .
$$

The probability that the i th individual chooses YES and A is:

$$
P_{A \mid Y, i} P_{Y, i}=P_{A \mid Y, i}\left(1-P_{N, i}\right)=\frac{\exp \left(Z_{i} \alpha\right)}{1+\exp \left(Z_{i} \alpha\right)} \frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)} .
$$

The probability that the i th individual chooses YES and B is:

$$
P_{B \mid Y, i} P_{Y, i}=\left(1-P_{A \mid Y, i}\right)\left(1-P_{N, i}\right)=\frac{1}{1+\exp \left(Z_{i} \alpha\right)} \frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)} .
$$

In the 1 st step, decide if the i th individual buys a car or not.
In the 2nd step, choose A or B.
X_{i} includes annual income, distance from the nearest station, and so on.
Z_{i} are speed, fuel-efficiency, car company, color, and so on.
The likelihood function is:

$$
\begin{aligned}
L(\alpha, \beta) & =\prod_{i=1}^{n} P_{N, i}^{I_{i j}}\left(\left(\left(1-P_{N, i}\right) P_{A \mid Y, i}\right)^{L_{i} i}\left(\left(1-P_{N, i}\right)\left(1-P_{A \mid Y, i}\right)\right)^{1-I_{2 i} i}\right)^{1-I_{1 i}} \\
& =\prod_{i=1}^{n} P_{N, i}^{I_{i}}\left(1-P_{N, i}\right)^{1-I_{1 i}}\left(P_{A \mid Y, i}^{L_{i}}\left(1-P_{A \mid Y, i}\right)^{1-L_{2 i}}\right)^{1-I_{1 i}},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1 i}= \begin{cases}1, & \text { if the } i \text { th individual decides not to buy a car in the } 1 \text { st step, }, \\
0, & \text { if the } i \text { th individual decides to buy a car in the } 1 \text { st step, },\end{cases} \\
& I_{2 i}= \begin{cases}1, & \text { if the } i \text { th individual chooses A in the } 2 \text { nd step, } \\
0, & \text { if the } i \text { th individual chooses B in the } 2 \text { nd step, }\end{cases}
\end{aligned}
$$

Remember that $\mathrm{E}\left(y_{i}\right)=F\left(X_{i} \beta^{*}\right)$, where $\beta^{*}=\frac{\beta}{\sigma}$.
Therefore, size of β^{*} does not mean anything.

The marginal effect is given by:

$$
\frac{\partial \mathrm{E}\left(y_{i}\right)}{\partial X_{i}}=f\left(X_{i} \beta^{*}\right) \beta^{*}
$$

Thus, the marginal effect depends on the height of the density function $f\left(X_{i} \beta^{*}\right)$.

2．2 Limited Dependent Variable Model（制限従属変数モデル）

Truncated Regression Model：Consider the following model：

$$
y_{i}=X_{i} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right) \text { when } y_{i}>a, \text { where } a \text { is a constant, }
$$

for $i=1,2, \cdots, n$ ．
Consider the case of $y_{i}>a$（i．e．，in the case of $y_{i} \leq a, y_{i}$ is not observed）．

$$
\mathrm{E}\left(u_{i} \mid X_{i} \beta+u_{i}>a\right)=\int_{a-X_{i} \beta}^{\infty} u_{i} \frac{f\left(u_{i}\right)}{1-F\left(a-X_{i} \beta\right)} \mathrm{d} u_{i} .
$$

Suppose that $u_{i} \sim N\left(0, \sigma^{2}\right)$ ，i．e．，$\frac{u_{i}}{\sigma} \sim N(0,1)$ ．
Using the following standard normal density and distribution functions：

$$
\begin{aligned}
& \phi(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} x^{2}\right), \\
& \Phi(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z=\int_{-\infty}^{x} \phi(z) \mathrm{d} z
\end{aligned}
$$

