
Example 5: Multinomial logit model:

The ith individual has m + 1 choices, i.e., j = 0, 1, · · · ,m.

P(yi = j) =
exp(Xiβ j)∑m
j=0 exp(Xiβ j)

≡ Pi j,

for β0 = 0. The case of m = 1 corresponds to the bivariate logit model (binary

choice).

Note that

log
Pi j

Pi0
= Xiβ j

The log-likelihood function is:

log L(β1, · · · , βm) =
n∑

i=1

m∑
j=0

di j ln Pi j,

where di j = 1 when the ith individual chooses jth choice, and di j = 0 otherwise.
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Example 6: Nested logit model:

(i) In the 1st step, choose YES or NO. Each probability is PY and PN = 1 − PY .

(ii) Stop if NO is chosen in the 1st step. Go to the next if YES is chosen in the 1st

step.

(iii) In the 2nd step, choose A or B if YES is chosen in the 1st step. Each probability

is PA|Y and PB|Y .

For simplicity, usually we assume the logistic distribution.

So, we call the nested logit model.

The probability that the ith individual chooses NO is:

PN,i =
1

1 + exp(Xiβ)
.

The probability that the ith individual chooses YES and A is:

PA|Y,iPY,i = PA|Y,i(1 − PN,i) =
exp(Ziα)

1 + exp(Ziα)
exp(Xiβ)

1 + exp(Xiβ)
.
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The probability that the ith individual chooses YES and B is:

PB|Y,iPY,i = (1 − PA|Y,i)(1 − PN,i) =
1

1 + exp(Ziα)
exp(Xiβ)

1 + exp(Xiβ)
.

In the 1st step, decide if the ith individual buys a car or not.

In the 2nd step, choose A or B.

Xi includes annual income, distance from the nearest station, and so on.

Zi are speed, fuel-efficiency, car company, color, and so on.

The likelihood function is:

L(α, β) =
n∏

i=1

PI1i
N,i

(
((1 − PN,i)PA|Y,i)I2i((1 − PN,i)(1 − PA|Y,i))1−I2i

)1−I1i

=

n∏
i=1

PI1i
N,i(1 − PN,i)1−I1i

(
PI2i

A|Y,i(1 − PA|Y,i)1−I2i
)1−I1i
,
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where

I1i =

1, if the ith individual decides not to buy a car in the 1st step,

0, if the ith individual decides to buy a car in the 1st step,

I2i =

1, if the ith individual chooses A in the 2nd step,

0, if the ith individual chooses B in the 2nd step,
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Remember that E(yi) = F(Xiβ
∗), where β∗ =

β

σ
.

Therefore, size of β∗ does not mean anything.

The marginal effect is given by:

∂E(yi)
∂Xi

= f (Xiβ
∗)β∗.

Thus, the marginal effect depends on the height of the density function f (Xiβ
∗).
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2.2 Limited Dependent Variable Model (制限従属変数モデル)

Truncated Regression Model: Consider the following model:

yi = Xiβ + ui, ui ∼ N(0, σ2) when yi > a, where a is a constant,

for i = 1, 2, · · · , n.

Consider the case of yi > a (i.e., in the case of yi ≤ a, yi is not observed).

E(ui|Xiβ + ui > a) =
∫ ∞

a−Xiβ

ui
f (ui)

1 − F(a − Xiβ)
dui.

Suppose that ui ∼ N(0, σ2), i.e.,
ui

σ
∼ N(0, 1).

Using the following standard normal density and distribution functions:

φ(x) = (2π)−1/2 exp(−1
2

x2),

Φ(x) =
∫ x

−∞
(2π)−1/2 exp(−1

2
z2)dz =

∫ x

−∞
φ(z)dz,
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