
2.3 Count Data Model (計数データモデル)

Poisson distribution:

P(X = x) = f (x) =
e−λλx

x!
,

for x = 0, 1, 2, · · ·.

In the case of Poisson random variable X, the expectation of X is:

E(X) =
∞∑

x=0

x
e−λλx

x!
=

∞∑
x=1

x
e−λλx

x!
=

∞∑
x=1

λ
e−λλx−1

(x − 1)!
= λ

∞∑
x′=0

e−λλx′

x′!
= λ.

Remember that
∑

x f (x) = 1, i.e.,
∑∞

x=0 e−λλx/x! = 1.

Therefore, the probability function of the count data yi is taken as the Poisson distri-

bution with parameter λi.

In the case where the explained variable yi takes 0, 1, 2, · · · (discrete numbers),

assuming that the distribution of yi is Poisson, the logarithm of λi is specified as a

61



linear function, i.e.,

E(yi) = λi = exp(Xiβ).

Note that λi should be positive.

Therefore, it is better to avoid the specification: λ = Xiβ.

The joint distribution of y1, y2, · · ·, yn is:

f (y1, y2, · · · , yn) =
n∏

i=1

f (yi) =
n∏

i=1

e−λiλ
yi
i

yi!
= L(β),

where λi = exp(Xiβ).

The log-likelihood function is:

log L(β) = −
n∑

i=1

λi +

n∑
i=1

yi log λi −
n∑

i=1

log yi!

= −
n∑

i=1

exp(Xiβ) +
n∑

i=1

yiXiβ −
n∑

i=1

log yi!.
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The first-order condition is:

∂ log L(β)
∂β

= −
n∑

i=1

X′i exp(Xiβ) +
n∑

i=1

X′i yi = 0.

=⇒ Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization proce-

dures) is:

β( j+1) = β( j) −
(
∂2 log L(β( j))
∂β∂β′

)−1
∂ log L(β( j))
∂β

,

which comes from the first-order Taylor series expansion around β = β∗:

0 =
∂ log L(β)
∂β

≈ ∂ log L(β∗)
∂β

+
∂2 log L(β∗)
∂β∂β′

(β − β∗),

and β and β∗ are replaced by β( j+1) and β( j), respectively.
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An alternative nonlinear optimization procedure is known as the method of scoring,

which is shown as:

β( j+1) = β( j) −
(
E
(∂2 log L(β( j))
∂β∂β′

))−1
∂ log L(β( j))
∂β

,

where
(
∂2 log L(β( j))
∂β∂β′

)
is replaced by E

(
∂2 log L(β( j))
∂β∂β′

)
.

[End of Review]

In this case, we have the following iterative procedure:

β( j+1) = β( j) −
− n∑

i=1

X′i Xi exp(Xiβ
( j))

−1 − n∑
i=1

X′i exp(Xiβ
( j)) +

n∑
i=1

X′i yi

 .
The Newton-Raphson method is equivalent to the scoring method in this count model,

because any random variable is not included in the expectation.
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Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have

to modify the estimation procedure.

Suppose that the probability of yi = j is decomposed of two regimes.

−→ We have the case of yi = j and Regime 1, and that of yi = j and Regime 2.

Consider P(yi = 0) and P(yi = j) separately as follows:

P(yi = 0) = P(yi = 0|Regime 1)P(Regime 1) + P(yi = 0|Regime 2)P(Regime 2)

P(yi = j) = P(yi = j|Regime 1)P(Regime 1) + P(yi = j|Regime 2)P(Regime 2),

for j = 1, 2, · · ·.
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Assume:

• P(yi = 0|Regime 1) = 1 and P(yi = j|Regime 1) = 0 for j = 1, 2, · · ·,

• P(Regime 1) = Fi and P(Regime 2) = 1 − Fi,

• P(yi = j|Regime 2) =
e−λiλ

yi
i

yi!
for j = 0, 1, 2, · · ·,

where Fi = F(Ziα) and λi = exp(Xiβ). =⇒ Zi and Xi are exogenous variables.

Under the first assumption, we have the following equations:

P(yi = 0) = P(Regime 1) + P(yi = 0|Regime 2)P(Regime 2)

P(yi = j) = P(yi = j|Regime 2)P(Regime 2),

for j = 1, 2, · · ·.
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Combining the above two equations, we obtain the following:

P(yi = j) = P(Regime 1)Ii + P(yi = j|Regime 2)P(Regime 2),

for j = 0, 1, 2, · · ·,

where the indicator function Ii is given by Ii = 1 for yi = 0 and Ii = 0 for yi , 0.

Fi denotes a cumulative distribution function of Ziα. =⇒We have to assume Fi.

Including the other two assumptions, we obtain the distribution of yi as follows:

P(yi = j) = FiIi +
e−λiλ

yi
i

yi!
(1 − Fi), j = 0, 1, 2, · · ·

where Fi ≡ F(Ziα), λi = exp(Xiβ), and the indicator function Ii is given by Ii = 1 for

yi = 0 and Ii = 0 for yi , 0.
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Therefore, the log-likelihood function is:

log L(α, β) =
n∑

i=1

log P(yi = j) =
n∑

i=1

log
(
FiIi +

e−λiλ
yi
i

yi!
(1 − Fi)

)
,

where Fi ≡ F(Ziα) and λi = exp(Xiβ).

log L(α, β) is maximized with respect to α and β.

=⇒ The Newton-Raphson method or the method of scoring is utilized for maximiza-

tion.
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3 Panel Data

3.1 GLS — Review

Regression model I:

y = Xβ + u, u ∼ N(0, σ2In),

where y, X, β, u, 0 and In are n × 1, n × k, k × 1, n × 1, n × 1, and n × n, respectively.

We solve the following minimization problem:

min
β

(y − Xβ)′(y − Xβ).

Let β̂ be a solution of the above minimization problem.
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OLS estimator of β is given by:

β̂ = (X′X)−1X′y = β + (X′X)−1X′u.

E(β̂) = β, V(β̂) = σ2(X′X)−1.

Regression model II:

y = Xβ + u, u ∼ N(0, σ2Ω),

where Ω is n × n.

We solve the following minimization problem:

min
β

(y − Xβ)′Ω−1(y − Xβ).

Let b be a solution of the above minimization problem.
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GLS estimator of β is given by:

b = (X′Ω−1X)−1X′Ω−1y = β + (X′Ω−1X)−1X′Ω−1u.

E(b) = β, V(b) = σ2(X′Ω−1X)−1.

• We apply OLS to the following regression model:

y = Xβ + u, u ∼ N(0, σ2Ω).

OLS estimator of β is given by:

β̂ = (X′X)−1X′y = β + (X′X)−1X′u.

E(β̂) = β, V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1.

β̂ is an unbiased estimator.
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The difference between two variances is:

V(β̂) − V(b)

= σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Ω is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.

This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.
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3.2 Panel Model Basic

Model:

yit = Xitβ + vi + uit, i = 1, 2, · · · , n, t = 1, 2, · · · ,T

where i indicates individual and t denotes time.

There are n observations for each t.

uit indicates the error term, assuming that E(uit) = 0, V(uit) = σ2
u and Cov(uit, u js) = 0

for i , j and t , s.

vi denotes the individual effect, which is fixed or random.
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3.2.1 Fixed Effect Model (固定効果モデル)

In the case where vi is fixed, the case of vi = ziα is included.

yit = Xitβ + vi + uit, i = 1, 2, · · · , n, t = 1, 2, · · · ,T,

yi = Xiβ + vi + ui, i = 1, 2, · · · , n,

where yi =
1
T

T∑
t=1

yit, Xi =
1
T

T∑
t=1

Xit, and ui =
1
T

T∑
t=1

uit.

(yit − yi) = (Xit − Xi)β + (uit − ui), i = 1, 2, · · · , n, t = 1, 2, · · · ,T,

Taking an example of y, the left-hand side of the above equation is rewritten as:

yit − yi = yit −
1
T

1′T yi,
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where 1T =


1

1
...

1


, which is a T × 1 vector, and yi =


yi1

yi2
...

yiT


.


yi1 − yi

yi2 − yi
...

yiT − yi


= IT yi − 1T yi = IT yi −

1
T

1T 1′T yi = (IT −
1
T

1T 1′T )yi

Thus, 
yi1 − yi

yi2 − yi
...

yiT − yi


=


Xi1 − Xi

Xi2 − Xi

...

XiT − Xi


β +


ui1 − ui

ui2 − ui

...

uiT − ui


, i = 1, 2, · · · , n,

75


