2.3 Count Data Model (F18{7—% €T /L)

Poisson distribution:
e )*

PX=x) = fx) =
forx=0,1,2,---
In the case of Poisson random variable X, the expectation of X is:
00 —/l/lx—l

—/l/lx & e—/l/lx i e a e—/l/lx’
(X)= ) x—m = ) v L1 G- Z:;) 7

x=0 ! x=1

Remember that ), f(x) = 1, i.e., Yoo e *2%/x! = 1.
Therefore, the probability function of the count data y; is taken as the Poisson distri-

bution with parameter A;.

In the case where the explained variable y; takes 0, 1, 2, --- (discrete numbers),

assuming that the distribution of y; is Poisson, the logarithm of A; is specified as a
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linear function, i.e.,
E(y,) = /l,‘ = CXp(X,‘ﬂ).

Note that A; should be positive.

Therefore, it is better to avoid the specification: 1 = X;3.

The joint distribution of yy, y,, - - -, y, is:

n —A; Vi

fouya =] | fon=1] ey_,’ = L(pB),
i=1 ’

i=1 !

where 4; = exp(X;5).

The log-likelihood function is:

log L(B) = —Zn:/l,- + iyilog/li — Zn:logy,-!
i=1 i=1 i=1

= - ZH: exp(X;B) + Zn: yiXiB — an log y;!.
pay i=1 i=1

62



The first-order condition is:

dlog L(B) < O L,
== X; exp(X;p) + Xiyi =0.
D) 2,

— Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization proce-

dures) is:

& log LB\ ™" 8log L(BY)

opop’ )
which comes from the first-order Taylor series expansion around 8 = 3*:
_ dlog L(B) _ dlog L(B") . 8% log L(B")
B B 0Bop’

and 3 and B* are replaced by SY*! and B, respectively.

B(j+1) :lB(j) _ (

0

B-=B)
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An alternative nonlinear optimization procedure is known as the method of scoring,

which is shown as:

. -1 -
BUD = g _ E(52 log L(ﬁ(]))) dlog L(BY)
9BIp’ B
9”log L)\ . 0% log L(BY)
where (W) is replaced by E (W)
[End of Review]

In this case, we have the following iterative procedure:

n _1 n n
pUD = o — [— D XX, exp(x,-ﬁ<f>>) [— DX expXBD) + " Xy .
i=1 i=1 i=1

The Newton-Raphson method is equivalent to the scoring method in this count model,

because any random variable is not included in the expectation.
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Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have
to modify the estimation procedure.
Suppose that the probability of y; = j is decomposed of two regimes.

— We have the case of y; = j and Regime 1, and that of y; = j and Regime 2.

Consider P(y; = 0) and P(y; = j) separately as follows:

P(y; = 0) = P(y; = O|Regime 1)P(Regime 1) + P(y; = O|Regime 2)P(Regime 2)

P(y; = j) = P(y; = jlIRegime 1)P(Regime 1) + P(y; = jIRegime 2)P(Regime 2),

for j=1,2,---.
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Assume:
e P(y; = O|Regime 1) = 1 and P(y; = jl[Regime 1) =0for j=1,2,---,

e P(Regime 1) = F; and P(Regime 2) = 1 - F;,
—/1,’/1}"1

e P(y; = jIRegime 2) = ‘ ~ for j=0,1,2,---,

Yi:

1

where F; = F(Z;a) and A; = exp(X;8). = Z; and X, are exogenous variables.

Under the first assumption, we have the following equations:

P(y; = 0) = P(Regime 1) + P(y; = O|Regime 2)P(Regime 2)

P(y; = j) = P(y; = jl[Regime 2)P(Regime 2),

for j=1,2,---.
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Combining the above two equations, we obtain the following:
P(y; = j) = P(Regime 1)I; + P(y; = jIRegime 2)P(Regime 2),

for j=0,1,2,---,

where the indicator function /; is given by I; = 1 for y; = O and I; = O for y; # 0.
F; denotes a cumulative distribution function of Z;&. = We have to assume F;.

Including the other two assumptions, we obtain the distribution of y; as follows:
—/l,'/l_yi
Py;=j)=Fili+ —L(1-F),  j=0,12,"
Yi:

where F; = F(Z;a), A; = exp(X;B), and the indicator function /; is given by I; = 1 for
yi=0and [; = 0fory; # 0.
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Therefore, the log-likelihood function is:

n n e—/l,’/l}.’i
log L(a, ) = ) log Py = j) = ) ,log (Fill- # - F»),
i=1 i=1 '

]

where F; = F(Z;a) and A; = exp(X;0).

log L(a, B) is maximized with respect to @ and 3.
— The Newton-Raphson method or the method of scoring is utilized for maximiza-

tion.
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3 Panel Data

3.1 GLS — Review

Regression model I:

y=XB+u, u ~ N(,0°l,),
where y, X, B, u,0and I,, are n X 1,n Xk, kx1,nx 1,nx 1, and n X n, respectively.
We solve the following minimization problem:
min (y - XB)'(y — XB).
Let A be a solution of the above minimization problem.
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OLS estimator of S is given by:
B=XX)"X'y=8+XX)"X"u.

EA =5 VB =cXX)"

Regression model II:

y=XB+u, u ~ N, 0*Q),
where Q is n X n.
We solve the following minimization problem:
mﬁin - XB'Q ' (y - XB).
Let b be a solution of the above minimization problem.
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GLS estimator of S is given by:
b=X'Q'X)'XQly=8+X'Q'X)' X0 u

E(b) =B, V() = X'Q'x)™.

e We apply OLS to the following regression model:
y=XB+u, u ~ N0, Q).
OLS estimator of § is given by:
B=XX)"'Xy=8+XX)"Xu.
EB) =, VB = (X' X) ' X' QXX X) .
B is an unbiased estimator.
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The difference between two variances is:
V(B) - V(b)
= (X' X)' XXX’ X)) - X x) !
= (XXX - (X Q X' x o o(x' X)X - (X'Q-‘X)-‘X'Q-l)'
= 02AQA’

Q) is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for Q = I,, AQA’ is also a positive definite matrix.

This implies that V(3;) — V(b;) > 0 for the ith element of 3.

Accordingly, b is more efficient than j.
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3.2 Panel Model Basic

Model:
yit:Xilﬁ+Vi+uit’ i:l929“'9n’ t:1’2""’T

where i indicates individual and ¢ denotes time.

There are n observations for each ¢.

u;; indicates the error term, assuming that E(u;;) = 0, V(u;) = 02 and Cov(u;;, u i) =0

fori # jand t # s.

v; denotes the individual effect, which is fixed or random.
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3.2.1 Fixed Effect Model (EEFIRETIV)

In the case where v; is fixed, the case of v; = z;a 1s included.

yit:XilIB+vi+uit7 i:1529"',n, t:1,2,"',Ta

yi = XiB+vi+u, i=12,---,n,

T T T
1 - 1 1
where yi = T E Vits Xi = T E Xit, and ﬁi = T E Ujs.
=1 t=1

t=1

O =¥) = X = X)B+ wy —w),  i=1,2,---,n, t=12,---,T,

Taking an example of y, the left-hand side of the above equation is rewritten as:

_ 1,
Yie = Yi = Yit — TlT)’i»
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where 17 =

Thus,

,whichisa T x 1 vector, and y; =

Yit =Y
Yo = Y

Yir =i

Yit = Y
Yi2 = Y

yir = Y

=Iry; — lTyi = Iry; —

yil

yir

TlT T)’z

U — U;

Up — U;

Uit — Ui
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