2．3 Count Data Model（計数データモデル）

Poisson distribution：

$$
\mathrm{P}(X=x)=f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!},
$$

for $x=0,1,2, \cdots$ ．
In the case of Poisson random variable X ，the expectation of X is：

$$
\mathrm{E}(X)=\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=1}^{\infty} \lambda \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}=\lambda \sum_{x^{\prime}=0}^{\infty} \frac{e^{-\lambda} \lambda^{x^{\prime}}}{x^{\prime}!}=\lambda .
$$

Remember that $\sum_{x} f(x)=1$ ，i．e．，$\sum_{x=0}^{\infty} e^{-\lambda} \lambda^{x} / x!=1$ ．
Therefore，the probability function of the count data y_{i} is taken as the Poisson distri－ bution with parameter λ_{i} ．

In the case where the explained variable y_{i} takes $0,1,2, \cdots$（discrete numbers）， assuming that the distribution of y_{i} is Poisson，the logarithm of λ_{i} is specified as a
linear function, i.e.,

$$
\mathrm{E}\left(y_{i}\right)=\lambda_{i}=\exp \left(X_{i} \beta\right)
$$

Note that λ_{i} should be positive.
Therefore, it is better to avoid the specification: $\lambda=X_{i} \beta$.

The joint distribution of $y_{1}, y_{2}, \cdots, y_{n}$ is:

$$
f\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i}\right)=\prod_{i=1}^{n} \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}=L(\beta)
$$

where $\lambda_{i}=\exp \left(X_{i} \beta\right)$.
The log-likelihood function is:

$$
\begin{aligned}
\log L(\beta) & =-\sum_{i=1}^{n} \lambda_{i}+\sum_{i=1}^{n} y_{i} \log \lambda_{i}-\sum_{i=1}^{n} \log y_{i}! \\
& =-\sum_{i=1}^{n} \exp \left(X_{i} \beta\right)+\sum_{i=1}^{n} y_{i} X_{i} \beta-\sum_{i=1}^{n} \log y_{i}!
\end{aligned}
$$

The first-order condition is:

$$
\frac{\partial \log L(\beta)}{\partial \beta}=-\sum_{i=1}^{n} X_{i}^{\prime} \exp \left(X_{i} \beta\right)+\sum_{i=1}^{n} X_{i}^{\prime} y_{i}=0
$$

\Longrightarrow Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization procedures) is:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\beta^{(j)}\right)}{\partial \beta}
$$

which comes from the first-order Taylor series expansion around $\beta=\beta^{*}$:

$$
0=\frac{\partial \log L(\beta)}{\partial \beta} \approx \frac{\partial \log L\left(\beta^{*}\right)}{\partial \beta}+\frac{\partial^{2} \log L\left(\beta^{*}\right)}{\partial \beta \partial \beta^{\prime}}\left(\beta-\beta^{*}\right)
$$

and β and β^{*} are replaced by $\beta^{(j+1)}$ and $\beta^{(j)}$, respectively.

An alternative nonlinear optimization procedure is known as the method of scoring, which is shown as:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\beta^{(j)}\right)}{\partial \beta},
$$

where $\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)$ is replaced by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\beta^{(j)}\right)}{\partial \beta \partial \beta^{\prime}}\right)$.

[End of Review]

In this case, we have the following iterative procedure:

$$
\beta^{(j+1)}=\beta^{(j)}-\left(-\sum_{i=1}^{n} X_{i}^{\prime} X_{i} \exp \left(X_{i} \beta^{(j)}\right)\right)^{-1}\left(-\sum_{i=1}^{n} X_{i}^{\prime} \exp \left(X_{i} \beta^{(j)}\right)+\sum_{i=1}^{n} X_{i}^{\prime} y_{i}\right)
$$

The Newton-Raphson method is equivalent to the scoring method in this count model, because any random variable is not included in the expectation.

Zero-Inflated Poisson Count Data Model: In the case of too many zeros, we have to modify the estimation procedure.

Suppose that the probability of $y_{i}=j$ is decomposed of two regimes.
\longrightarrow We have the case of $y_{i}=j$ and Regime 1, and that of $y_{i}=j$ and Regime 2.

Consider $P\left(y_{i}=0\right)$ and $P\left(y_{i}=j\right)$ separately as follows:

$$
\begin{aligned}
& P\left(y_{i}=0\right)=P\left(y_{i}=0 \mid \text { Regime } 1\right) P(\text { Regime } 1)+P\left(y_{i}=0 \mid \text { Regime } 2\right) P(\text { Regime 2) } \\
& P\left(y_{i}=j\right)=P\left(y_{i}=j \mid \text { Regime 1) } P(\text { Regime } 1)+P\left(y_{i}=j \mid \text { Regime 2) } P(\text { Regime 2 }),\right.\right.
\end{aligned}
$$

for $j=1,2, \cdots$.

Assume:

- $P\left(y_{i}=0 \mid\right.$ Regime 1$)=1$ and $P\left(y_{i}=j \mid\right.$ Regime 1$)=0$ for $j=1,2, \cdots$,
- $P($ Regime 1$)=F_{i}$ and $P($ Regime 2$)=1-F_{i}$,
- $P\left(y_{i}=j \mid\right.$ Regime 2$)=\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}$ for $j=0,1,2, \cdots$,
where $F_{i}=F\left(Z_{i} \alpha\right)$ and $\lambda_{i}=\exp \left(X_{i} \beta\right) . \Longrightarrow Z_{i}$ and X_{i} are exogenous variables.

Under the first assumption, we have the following equations:

$$
\begin{aligned}
& P\left(y_{i}=0\right)=P(\text { Regime } 1)+P\left(y_{i}=0 \mid \text { Regime } 2\right) P(\text { Regime } 2) \\
& P\left(y_{i}=j\right)=P\left(y_{i}=j \mid \text { Regime } 2\right) P(\text { Regime } 2)
\end{aligned}
$$

for $j=1,2, \cdots$.

Combining the above two equations, we obtain the following:

$$
P\left(y_{i}=j\right)=P(\text { Regime } 1) I_{i}+P\left(y_{i}=j \mid \text { Regime } 2\right) P(\text { Regime } 2),
$$

for $j=0,1,2, \cdots$,
where the indicator function I_{i} is given by $I_{i}=1$ for $y_{i}=0$ and $I_{i}=0$ for $y_{i} \neq 0$.
F_{i} denotes a cumulative distribution function of $Z_{i} \alpha . \Longrightarrow$ We have to assume F_{i}.

Including the other two assumptions, we obtain the distribution of y_{i} as follows:

$$
P\left(y_{i}=j\right)=F_{i} I_{i}+\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\left(1-F_{i}\right), \quad j=0,1,2, \cdots
$$

where $F_{i} \equiv F\left(Z_{i} \alpha\right), \lambda_{i}=\exp \left(X_{i} \beta\right)$, and the indicator function I_{i} is given by $I_{i}=1$ for $y_{i}=0$ and $I_{i}=0$ for $y_{i} \neq 0$.

Therefore, the log-likelihood function is:

$$
\log L(\alpha, \beta)=\sum_{i=1}^{n} \log P\left(y_{i}=j\right)=\sum_{i=1}^{n} \log \left(F_{i} I_{i}+\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\left(1-F_{i}\right)\right),
$$

where $F_{i} \equiv F\left(Z_{i} \alpha\right)$ and $\lambda_{i}=\exp \left(X_{i} \beta\right)$.
$\log L(\alpha, \beta)$ is maximized with respect to α and β.
\Longrightarrow The Newton-Raphson method or the method of scoring is utilized for maximization.

3 Panel Data

3.1 GLS - Review

Regression model I:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I_{n}\right)
$$

where $y, X, \beta, u, 0$ and I_{n} are $n \times 1, n \times k, k \times 1, n \times 1, n \times 1$, and $n \times n$, respectively.

We solve the following minimization problem:

$$
\min _{\beta}(y-X \beta)^{\prime}(y-X \beta)
$$

Let $\hat{\beta}$ be a solution of the above minimization problem.

OLS estimator of β is given by:

$$
\begin{aligned}
& \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u . \\
& \mathrm{E}(\hat{\beta})=\beta, \quad \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} .
\end{aligned}
$$

Regression model II:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right),
$$

where Ω is $n \times n$.

We solve the following minimization problem:

$$
\min _{\beta}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta) .
$$

Let b be a solution of the above minimization problem.

GLS estimator of β is given by:

$$
\begin{aligned}
& b=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u . \\
& \mathrm{E}(b)=\beta, \quad \mathrm{V}(b)=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} .
\end{aligned}
$$

- We apply OLS to the following regression model:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right) .
$$

OLS estimator of β is given by:

$$
\begin{aligned}
& \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u . \\
& \mathrm{E}(\hat{\beta})=\beta, \quad \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} .
\end{aligned}
$$

$\hat{\beta}$ is an unbiased estimator.

The difference between two variances is:

$$
\begin{aligned}
& \mathrm{V}(\hat{\beta})-\mathrm{V}(b) \\
= & \sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
= & \sigma^{2}\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \Omega\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
= & \sigma^{2} A \Omega A^{\prime}
\end{aligned}
$$

Ω is the variance-covariance matrix of u, which is a positive definite matrix. Therefore, except for $\Omega=I_{n}, A \Omega A^{\prime}$ is also a positive definite matrix.

This implies that $\mathrm{V}\left(\hat{\beta}_{i}\right)-\mathrm{V}\left(b_{i}\right)>0$ for the i th element of β.
Accordingly, b is more efficient than $\hat{\beta}$.

3.2 Panel Model Basic

Model:

$$
y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T
$$

where i indicates individual and t denotes time.

There are n observations for each t.
$u_{i t}$ indicates the error term, assuming that $\mathrm{E}\left(u_{i t}\right)=0, \mathrm{~V}\left(u_{i t}\right)=\sigma_{u}^{2}$ and $\operatorname{Cov}\left(u_{i t}, u_{j s}\right)=0$ for $i \neq j$ and $t \neq s$.
v_{i} denotes the individual effect, which is fixed or random.

3．2．1 Fixed Effect Model（固定効果モデル）

In the case where v_{i} is fixed，the case of $v_{i}=z_{i} \alpha$ is included．

$$
\begin{aligned}
& y_{i t}=X_{i t} \beta+v_{i}+u_{i t}, \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T, \\
& \bar{y}_{i}=\bar{X}_{i} \beta+v_{i}+\bar{u}_{i}, \quad i=1,2, \cdots, n,
\end{aligned}
$$

where $\bar{y}_{i}=\frac{1}{T} \sum_{t=1}^{T} y_{i t}, \bar{X}_{i}=\frac{1}{T} \sum_{t=1}^{T} X_{i t}$ ，and $\bar{u}_{i}=\frac{1}{T} \sum_{t=1}^{T} u_{i t}$ ．

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(X_{i t}-\bar{X}_{i}\right) \beta+\left(u_{i t}-\bar{u}_{i}\right), \quad i=1,2, \cdots, n, \quad t=1,2, \cdots, T,
$$

Taking an example of y ，the left－hand side of the above equation is rewritten as：

$$
y_{i t}-\bar{y}_{i}=y_{i t}-\frac{1}{T} 1_{T}^{\prime} y_{i},
$$

where $1_{T}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$, which is a $T \times 1$ vector, and $y_{i}=\left(\begin{array}{c}y_{i 1} \\ y_{i 2} \\ \vdots \\ y_{i T}\end{array}\right)$.

$$
\left(\begin{array}{c}
y_{i 1}-\bar{y}_{i} \\
y_{i 2}-\bar{y}_{i} \\
\vdots \\
y_{i T}-\bar{y}_{i}
\end{array}\right)=I_{T} y_{i}-1_{T} \bar{y}_{i}=I_{T} y_{i}-\frac{1}{T} 1_{T} 1_{T}^{\prime} y_{i}=\left(I_{T}-\frac{1}{T} 1_{T} 1_{T}^{\prime}\right) y_{i}
$$

Thus,

$$
\left(\begin{array}{c}
y_{i 1}-\bar{y}_{i} \\
y_{i 2}-\bar{y}_{i} \\
\vdots \\
y_{i T}-\bar{y}_{i}
\end{array}\right)=\left(\begin{array}{c}
X_{i 1}-\bar{X}_{i} \\
X_{i 2}-\bar{X}_{i} \\
\vdots \\
X_{i T}-\bar{X}_{i}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{i 1}-\bar{u}_{i} \\
u_{i 2}-\bar{u}_{i} \\
\vdots \\
u_{i T}-\bar{u}_{i}
\end{array}\right), \quad i=1,2, \cdots, n,
$$

