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1 Homework1

1

(1)

E(yi) = 0× P (yi = 0) + 1× P (yi = 1)

= P (yi = 1)

= P (y∗i > 0)

= P (Xiβ + ui > 0) = P (ui > −Xiβ)

= P (u∗
i > −Xiβ

∗) = 1− P (u∗
i ≤ −Xiβ

∗)

= 1− F (−Xiβ
∗) = F (Xiβ

∗),

where β∗ = β
σ , u

∗
i = ui

σ . Since the normal distribution is symmetric, then 1− F (−Xiβ
∗) = F (Xiβ

∗)
(2)

= P (y∗i ≤ 0)

= P (Xiβ + ui ≤ 0) = P (ui ≤ −Xiβ)

= P (u∗
i ≤ −Xiβ

∗)

= F (−Xiβ
∗) = 1− F (Xiβ

∗).

Then,

f(yi) = [P (yi = 1)]yi [P (yi = 0)]1−yi

= [F (Xiβ
∗)]yi [1− F (Xiβ

∗)]1−yi .

Therefore, the likelihood function is,

L(β∗) = f(y1, y2, ..., yn)

=

n∏
i=1

f(yi) =

n∏
i=1

[F (Xiβ
∗)]yi [1− F (Xiβ

∗)]1−yi .

(3)
We consider the log likelihood function of (2)

∂l(β∗)

∂β∗ =

n∑
i=1

(
yiX

′
if(Xiβ

∗)

F (Xiβ∗)
− (1− yi)X

′
if(Xiβ

∗)

1− F (Xiβ∗)

)

=

n∑
i=1

[yi − F (Xiβ
∗)]X ′

if(Xiβ
∗)

[1− F (Xiβ∗)]F (Xiβ∗)
= 0
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(4)
From the above equation, β∗ can be estimated, but β and σ2 can not be estimated separately.
(5)
We define as Fi = F (Xiβ

∗), fi = f(Xiβ
∗). The second derivatives is,

∂2l(β∗)

∂β∗∂β∗′ =

n∑
i=1

X ′
i
∂fi
∂β∗ (yi − Fi)

[1− Fi]Fi
+

n∑
i=1

X ′
ifi

∂(yi−Fi)
∂β∗

[1− Fi]Fi

+

n∑
i=1

X ′
ifi(yi − Fi)

∂[Fi(1− Fi)]
−1

∂β∗

=

n∑
i=1

X ′
iXif

′
i(yi − Fi)

[1− Fi]Fi
−

n∑
i=1

X ′
iXif

2
i

[1− Fi]Fi

+

n∑
i=1

X ′
ifi(yi − Fi)

xifi(1− 2Fi)]

[Fi(1− Fi)]2
.

Then the information matrix is

I(β∗) = −E

[
∂2l(β∗)

∂β∗∂β∗′

]
=

n∑
i=1

X ′
i[Xif

2
i

[1− Fi]Fi
.

Note that E(yi) = Fi. Therefore, by using the fact that,

√
n(β̂∗ − β∗) → N

(
0, lim

n→∞

(
1

n
I(β∗

)−1
)
,

so the asymptotic distribution of β∗ is

β∗ ∼ N(β∗, I(β̂∗)−1).

(6)

E(y∗i |y∗i > 0) = E(Xiβ + ui|Xiβ + ui > 0)

= Xiβ + E(ui|ui > −Xiβ)

= Xiβ +

∫ ∞

−Xiβ

ui

σ

f(ui)

1− F (−Xiβ)
dui

=

∫ ∞

−Xiβ

ui

σ

ϕ(ui

σ )

1− Φ(−Xiβ
σ )

dui

=
σϕ
(

−Xiβ
σ

)
Φ
(

−Xiβ
σ

) ,

where ϕ and Φ are the density function and the cumulative density function of the standard normal
distribution, respectively.

(7)
Before truncation, the density function of y is,

f(yi) =
1

σ
ϕ

(
yi −Xiβ

σ

)
.

and the probability of y∗i is observed is,

P (y∗i is observed) = P (yi > 0)

= P (Xiβ + ui > 0) = P (ui > −Xiβ)

= 1− P (ui ≤ −Xiβ) = P (ui ≤ Xiβ)

= Φ

(
Xiβ

σ

)
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Dealing with the truncation, the likelihood function is,

L(β, σ2) =
n∏

i=1

1
σϕ
(

yi−Xiβ
σ

)
Φ
(

Xiβ
σ

) .

Also, the log likelihood function is

l(β, σ2) =

n∑
i=1

(
log

[
1

σ
ϕ

(
yi −Xiβ

σ

)]
− log Φ

(
Xiβ

σ

))

=

n∑
i=1

{(
−1

2
log 2π − 1

2
log σ2 − 1

2σ2
(yi −Xiβ)

2

)
− log Φ

(
Xiβ

σ

)}
.

(8)

∂l(β, σ2)

∂β
=

n∑
i=1

 1

σ2
(yi −Xiβ)−

1
σϕ
(

Xiβ
σ

)
Φ
(

Xiβ
σ

)
X ′

i

=

n∑
i=1

(
1

σ2
(yi −Xiβ)−

1
σϕi

Φi

)
X ′

i = 0,

∂l(β, σ2)

∂σ2
=

n∑
i=1

− 1

2σ2
+

1

2σ4
(yi −XIβ)

2 +
Xiβ

2σ3

ϕ
(

Xiβ
σ

)
Φ
(

Xiβ
σ

)


=

n∑
i=1

(
− 1

2σ2
+

1

2σ4
(yi −Xiβ)

2 +
Xiβ

2σ3

ϕi

Φi

)
= 0,

where ϕi = ϕ
(

Xiβ
σ

)
and Φi = Φ

(
Xiβ
σ

)
.

(9)
Use the iterative method such as the Newton-Raphson method.
(10)
What are the asymptotic distributions of the estimators of β and σ2?

The second derivatives are,

∂2l(β, σ2))

∂β∂β
=

n∑
i=1

(
− 1

σ2
Xi +

Xiβ
σ2 ϕi

Φi
+

1
σ2ϕ

2
i

Φ2
i

Xi

)
X ′

i

∂2l(β, σ2))

∂β∂σ2
=

n∑
i=1

(
− 1

σ4
(yi −Xiβ) +

1

2σ3

ϕi

Φi
+

Xiβ

2σ5

ϕ

Φ
Xiβ − Xiβ

2σ4

ϕ2
i

Φ2
i

)
X ′

i

∂2l(β, σ2))

∂σ2∂β
=

n∑
i=1

(
− 1

σ4
(yi −Xiβ) +

1

2σ3

ϕi

Φi
+

Xiβ

2σ5

ϕ

Φ
Xiβ − Xiβ

2σ4

ϕ2
i

Φ2
i

)
Xi

∂2l(β, σ2))

∂σ2∂σ2
=

n∑
i=1

(
1

2σ4
− 1

σ6
(yi −Xiβ)

2 − 3Xiβ

4σ5

ϕi

Φi
+

(Xiβ)
3

4σ7

ϕi

ϕi
+

(Xiβ)
2

3σ6

ϕ2
i

Φ2
i

)
.

Therefore, the information matrix is

I(β, σ
2
) =


∑n

i=1

− 1
σ2 Xi +

Xiβ

σ2 ϕi

Φi
+

1
σ2 ϕ2

i

Φ2
i

Xi

X′
i

∑n
i=1

(
− 1

σ4 (yi − Xiβ) + 1
2σ3

ϕi
Φi

+
Xiβ

2σ5
ϕ
Φ

Xiβ − Xiβ

2σ4
ϕ2
i

Φ2
i

)
X′

i

∑n
i=1

(
− 1

σ4 (yi − Xiβ) + 1
2σ3

ϕi
Φi

+
Xiβ

2σ5
ϕ
Φ

Xiβ − Xiβ

2σ4
ϕ2
i

Φ2
i

)
Xi

∑n
i=1

(
1

2σ4 − 1
σ6 (yi − Xiβ)2 − 3Xiβ

4σ5
ϕi
Φi

+
(Xiβ)3

4σ7
ϕi
ϕi

+
(Xiβ)2

3σ6
ϕ2
i

Φ2
i

)


Then by using the fact that

√
n(θ̂ − θ) −→ N

(
0, lim

n→∞

(
1

n
I(θ)

)−1
)
,
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where θ = β, σ2, so the asymptotic distribution of θ̂ is:

θ̂ ∼ N(θ, I(θ̂)−1).

(11)

P (yi = 0) = P (y∗i ≤ 0) = P (ui ≤ −Xiβ)

= P
(

ui

σ ≤ −Xiβ
σ

)
= F

(
−Xiβ

σ

)
= 1− F

(
Xiβ
σ

)
= 1− Φ

(
−Xiβ

σ

)
.

Therefore, the likelihood function is,
where di is the indicator variable for yi > 0.

Also, the log likelihood function is,

l(β, σ2) =
∑n

i=1

{
di log

[
1
σϕi

]
+ (1− di) log(1− Φi)

}
=

∑n
i=1

{
di
(
− 1

2 log 2π − 1
2 log 2σ

2 − 1
2σ2 (yi −Xiβ)

)
+ (1− di) log(1− Φi)

}
(12)

∂l(β, σ2)

∂β
=

∑n
i=1

{
di

1
σ2 (yi −Xiβ)− (1− di)

ϕ
σ(1−Φ)

}
X ′

i = 0

∂l(β, σ2)

∂σ2
=

∑n
i=1

{
di

(
− 1

2σ2 + (yi−Xiβ)
2

2σ4

)
+ (1− di)

ϕXiβ
2σ3(1−Φ)

}
= 0

(13)
Use the iterative method such as Newton-Rapson method.
(14)
By using the second derivatives, we can get the information matrix, that is,

I(β, σ2) =

∑n
i=1

(
− 1

σ2 (Xiβϕi −
[

ϕ2

1−ϕi

]
− Φi)X

′
iXi

) ∑n
i=1

(
− 1

2σ3 ((Xiβ)
2ϕi + ϕ−

[
Xiβϕ

2

1−ϕi

]
)X ′

i

)
∑n

i=1

(
− 1

2σ3 ((Xiβ)
2ϕi + ϕ−

[
Xiβϕ

2

1−ϕi

]
)X ′

i

) ∑n
i=1

(
− 1

4σ4 ((Xiβ)
3ϕi + (Xiβ)ϕ−

[
Xiβϕ

2

1−ϕi
− 2Φi

))
Then, by using the fact that,

√
n(θ̂ − θ) → N

(
0, lim

n→∞

(
1

n
I(θ)

)−1
)

where θ = β, σ2, so the asymptotic distribution of θ̂ is

θ̂ ∼ N(θ, I(θ̂)−1)

2

(15)

E(yi) =

∞∑
yi=1

yi
e−λiλyi

i

yi!

=

∞∑
yi=1

e−λiλyi

i

(yi − 1)!

= λie
−λi

∞∑
yi=1

λyi−1
i

(yi − 1)!

= λi
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Note that
∑∞

yi=1
λ
yi−1

i

(yi−1)! = eλ from the Taylor expansion.

(16)
The likelihood function is

L(β) =

n∏
i=1

e−λiλyi

i

yi!
.

Then, the log likelihood function is

l(β) =

n∑
i=1

log
e−λiλyi

i

yi!

=

n∑
i=1

(−eXiβ + yiXiβ − log yi!)

(17)

∂l(β)

∂β
=

n∑
i=1

(yi − eXiβ)Xi = 0

(18)
Use the iterative method such as Newton-Rapson method.
(19)
The Hessian of log likelihood function is

∂2l(β)

∂β∂β′ = −
n∑

i=1

eXiβXiX
′

i

Then the information matrix is

I(β̂) =
∂2l(β)

∂β∂β′ = −
n∑

i=1

eXiβXiX
′

i

Then by using the fact that

√
n(θ̂ − θ) −→ N

(
0, lim

n→∞

(
1

n
I(θ)

)−1
)
,

where θ = β, so the asymptotic distribution of θ̂ is:

θ̂ ∼ N(θ, I(θ̂)−1).

2 Homework 2

(1)
Define ei := (ei1, ei2, · · · , eiT )′. Then we get

Σ := E[eie
′
i] =


σ2
v + σ2

u σ2
v · · · σ2

v

σ2
v σ2

v + σ2
u · · · σ2

v
...

...
. . .

...
σ2
v σ2

v · · · σ2
v + σ2

u

 (T × T ).

In addition, we also define e := (e1, e2, · · · , eN ). Then we get

Ω = E[ee′] =


Σ 0 0 0
0 Σ 0 0

0 0
. . . 0

0 0 0 Σ

 (NT ×NT ).
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(2)
Since Ω is a symmetric real matrix, there exists P such that

P−1ΩP ==


λ1 O

λ2

. . .

O λn

 = Λ(PP ′ = In),

where λi is a eigen value. Thus we get

Ω = PΛP−1

= PΛP ′

= CC ′(C := PΛ1/2).

Using above results, we can rewrite the model as

C−1y = C−1Xβ + C−1v + C−1u

↔ y∗ = X∗β + v∗ + u∗,

where X := (X1, X2, · · · , XN )′, (NK ×K + 1). Thus GLS is given by

b = (X ′Ω−1X)−1X ′Ω−1y.

(3)
Just apply transformation of random variables for y. Then we get u+ v ∼ N(0,Ω).

(4)
The log-likelihood function is given by

l(β, σ2
u, σ

2
v) =

−nT

2
log(2π)− − 1

2
log |Ω| − 1

2
(y −Xβ)′Ω−1(y −Xβ).

Thus β is given by
β = (X ′Ω−1X)−1X ′Ω−1y.

(5)
Clearly the are same.

(6)
Since β is MLE, it is consistent and efficient estimator. In addition, since β = b and b is also unbiased

β is also unbiased.

(7)

β̂ is given by

β̂ =

{∑
i

∑
t

(xit − xi)(xit − xi)
′

}−1∑
i

∑
t

(xit − xi)(yit − yi).

(8)
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Define

ỹit := yit − yi,

x̃it := xit − xi,

ỹi :=
∑
t

ỹit,

x̃i :=
∑
t

x̃it.

Then β̂ can be written as

β̂ = (
∑

x̃′
ix̃i)

−1
∑
i

x̃′
iỹi :

= (
∑

x̃′
ix̃i)

−1
∑
i

x̃′
i(x̃β + ũi)

= β + (
∑

x̃′
ix̃i)

−1
∑
i

x̃′
iũi.

Since E[(
∑

x̃′
ix̃i)

−1
∑

i x̃
′
iũi] = 0, ∀i, LLM gives β̂ →p β.

(9)

Under H0, β is consistent and efficient. Thus we should use β. Note that β̂ is also consistent and not
efficient.

(10)

Under H1, only β̂ is consistent. Thus we should use β̂.

7


