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Therefore, the likelihood function is,
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We consider the log likelihood function of (2)
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From the above equation, 5* can be estimated, but § and 2 can not be estimated separately.
(5)

We define as F; = F(X;5%), fi = f(X;8*). The second derivatives is,
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Then the information matrix is
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Note that E(y;) = F;. Therefore, by using the fact that,
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so the asymptotic distribution of 5* is

B* ~ N(B*, I(B%)7H).
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_x R A CO
_XlﬁJr/Xtﬁ o 1-F(x.p5)™

_ oy ¢(%) dus
= 51 —XaBy Ui

-x;p 01— O(=5)
()
(552)

g

where ¢ and ® are the density function and the cumulative density function of the standard normal
distribution, respectively.
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Before truncation, the density function of y is,
1
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and the probability of y; is observed is,
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Dealing with the truncation, the likelihood function is,
n 1 é (yi*Xiﬂ )
L(B,0*) =2 S
(67 g ) 1];[1 > (X,ﬁ)

(

Also, the log likelihood function is
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(9)
Use the iterative method such as the Newton-Raphson method.
(10)
What are the asymptotic distributions of the estimators of 3 and ¢2?
The second derivatives are,
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where 8 = 3,02, so the asymptotic distribution of 0 is:
6~ N@OI6O)).
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Therefore, the likelihood function is,
where d; is the indicator variable for y; > 0.
Also, the log likelihood function is,
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Use the iterative method such as Newton-Rapson method.
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By using the second derivatives, we can get the information matrix, that is,
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Note that Z -1 (2 —Ty7 = = e from the Taylor expansion.
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The likelihood function is
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Use the iterative method such as Newton-Rapson method.
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The Hessian of log likelihood function is
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Then the information matrix is

Then by using the fact that
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2 Homework 2

(1)
Define e; := (e;1, €42, - ,e;r). Then we get
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Since €2 is a symmetric real matrix, there exists P such that
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Using above results, we can rewrite the model as
Cly = C'XB+C v+ C
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where X := (X1, X2, , Xn)/, (NK x K +1). Thus GLS is given by
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Just apply transformation of random variables for y. Then we get u + v ~ N(0, ).
(4)
The log-likelihood function is given by
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Thus f is given by B
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Clearly the are same.

(6)
_ Since 3 is MLE, it is consistent and efficient estimator. In addition, since 8 = b and b is also unbiased
[ is also unbiased.
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B is given by

8= {Z Z(ﬂ?zt — T ) (@i — mi)/} Z Z(xlt —T)(yit — 7;)-



Define
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Tit Tyt — T4,

gi : Zgitu
t

fi’i = Z.’%n
t

Then 8 can be written as
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Since E[(Y. &)~ Y, &) = 0, Vi, LLM gives § —, f.

(9)

Under Hy, /3 is consistent and efficient. Thus we should use 3. Note that B is also consistent and not

efficient.

(10)
Under Hy, only f is consistent. Thus we should use 3.



