
TA session2# 10

Jun Sakamoto

December 12,2018

Contents

1 Robust standard error 1

2 Method of moment 4

3 IV; Instrumental variable methods 4

4 2SLS; 2 steps least square 6

1 Robust standard error

Huber-White standard error

We will see that OLS estimators are unbiased and consistent in the presence of heteroskedasticity, but they are
not efficient and the estimated standard errors are inconsistent, so test statistics using the standard error are
not valid. Huber-White standard error is one of the most popular robust standard error.
We consider the following model.

yi = Xiβ + ϵi

E(ϵi) = 0

V (ϵi) = σ2
i

Cov(ϵi, ϵj) = 0

So, the variance covariance matrix is
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Σ = E[ϵiϵ
′
i] =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
... · · ·

. . .
...

0 · · · · · · σ2
n


Above matrix is a true variance covariance matrix. However, as in many other problems, Σ is unknown. One
common way to solve this problem is to estimate Σ empirically: First, estimate an OLS model, second, obtain
residuals, and third, estimate Σ

Σ̂ =


u2
1 0 · · · 0
0 û2

2 · · · 0
... · · ·

. . .
...

0 · · · · · · û2
n


Therefore, we can estimate the variances of OLS estimators (and standard errors) by using Σ̂

V ar(β̂) = (X ′X)−1X ′Σ̂X(X ′X)−1

(1)

Standard errors based on this procedure are called (heteroskedasticity) robust standard errors or White-Huber
standard errors. Or it is also known as the sandwich estimator of variance

Cluster robust standard error

Sometimes, we may impose assumptions on the structure of the heteroskedasticity. For instance, if we suspect
that the variance is homoskedastic within a group but not across groups, then we obtain residuals for all
observations and calculate average residuals for each group.
Consider the following regression.

yig = x′
iβ + uig

uig = vg + eig

E[eig|X] = 0

V [eig|X] = σ2
e

Cov[eig, ejg|X] = 0

E[vg|X] = 0

V [vg|X] = σ2
v

Cov[eig, vg|X] = 0
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The resulting variance-covariance structure within each cluster g is then

Σ̂ = V [ug|Xg] = σ2
uΩg = σ2

u(ρu11
′ + (1− ρ)I) = σ2

u


1 ρu · · · ρu
ρu 1 · · · ρu
... · · ·

. . .
...

ρu · · · · · · 1

 (2)

where σ2
u = σ2

g + σ2
e , ρu =

σ2
g

σ2
g+σ2

e
.

See the empirical example.

Empirical Example

”Do girl peers improve your academic performance?” F.Hu (2015) Economic letters 137 pp54-58.

This article study gender peer effects on students academic performance in China by exploiting the random
within-grade-by-school variation in the share of females in the classroom.
Hu estimates the following model across subjects and separately for boys and girls

Yicgs = β0 + β1Peericgs + β2Xicgs + eicgs (3)

where Yicgs denotes the mid-term test scores in the three compulsory subjects (math, Chinese, and English)
for student i in class c of grade g of school s. Peericgs measures the proportion of female students (excluding
self) in the classroom in decimals. The covariate vector Xicgs contains background characteristics that are
important determinants of students ’academic performance, including students ’age, ethnic minority status,
and agricultural hukou status, parents ’ education levels, number of siblings, and household income level.
Throughout the analysis, I cluster the standard errors at the school level to allow for heteroskedasticity and
arbitrary serial correlation across students within each school.

Table2 is result.
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No controls in the first column, but control for school fixed effects in the second column and grade-by-school
fixed effects in the other three columns. In the fourth and fifth columns, I additionally control for individual
and household characteristics.
The results show that female peers have positive effects on students’academic performance, especially for boys.

2 Method of moment

Moment condition is satisfied as below

E[g(X; θ)] = 0 (4)

where g() is function vector with dimensional k. X = X1, X2, ..., Xn is sample. Then moment estimator θ is
defined as the paramater which satisfies below equation.

1

n
Σig(X; θ) = 0. (5)

3 IV; Instrumental variable methods

Some regression model has endgenous problem. Let z correlate with explanatory variable x and orthogonal with
error u. Then we can estimate consistent paramator by IV.(z is called as instrumental variable.) We consider
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a regression model as below.

y = Xβ + u (6)

E[zixi] = Mzxisregular. (7)

E[ziui] = 0 (8)

ui, xi, zihas forth order moment

IV estimator β̂IV is obtained by method of moment.

E[ziui] = E[zi(yi − x′
iβ)] = 0 (9)

is assumed.(moment condition) Moment estimator is

1

n
Σi[zi(yi − x′

iβ)] = 0 (10)

β̂IV = [Σix
′
i]
−1Σizixi (11)

= (Z ′X)−1Z ′Y (12)

Consistency

β̂IV = (Z ′X)−1Z ′Y (13)

= (Z ′X)−1Z ′(Xβ + u) (14)

= β + (Z ′X)−1Z ′u (15)

= β + (
1

n
Σizix

′
i)

−1 1

n
Σiziui (16)

By assumption and LLN,

1

n
Σizix

′
i →p E[zixi] = Mzx < ∞ (17)

1

n
Σiziui →p E[ziui] = 0 (18)

So we can get,

β̂IV →p β (19)
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Asymptotic normality

√
n(β̂IV − β) =

√
n(Z ′X)−1Z ′u (20)

= (
1

n
Σizix

′
i)

−1 1

n
Σiziui (21)

We use E[ziui] = 0 and V [ziui] = E[u2
i ziz

′
i] = S < ∞ from assumption. Then by CLT and normality

√
n(β̂IV − β) →d M−1

xx N(0, S) = N(0,M−1
xx SM−1

xx ) (22)

4 2SLS; 2 steps least square

We consider the case of multiple endogenous variables, exogenous variable and IV.

y = X1β1 +X2β2 + u (23)

where X1:matrix of endogenous variables, X2:exogenous variable and Z:IV. l is the number of IV and k is a
number of endogenous variables. We can consider 3 cases.

l > k:over identified
l = k:just identified
l < k:under identified

Now we consider the case of over identified. Thus if IV are more than endogenous variables, Then we use 2SLS.
First we estimate a below equation.

X1 = Z1δ1 +X2δ2 + v (24)

We generate predict values X̂1 by parameters of above equation. This equation is called as reduced form. We
use this values in second step regression as below.

y = X̂1β1 +X2β2 + u (25)

Estimator of above equation is same as IV estimator which employ X̂1 and X2 as IV. Next we define below.

X:A matrix of all variables.((endogenous variables)+(exogenous variables))
Z:A matrix of all exogenous variables.

6



X̂:A matrix of (X̂1, X2)

Predict value X̂ is obtained by,

X̂ = Z(Z ′Z)−1Z ′X (26)

The coefficients of reduced form are written as below.

δ = (Z ′Z)−1Z ′X (27)

Thus β̂2SLS is

β̂2SLS = (X̂ ′X̂)−1X̂ ′y (28)

= ((Z(Z ′Z)−1Z ′X)′Z(Z ′Z)−1Z ′X)−1(Z(Z ′Z)−1Z ′X)−1y (29)

= (X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y (30)

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y (31)

Next we define some assumptions to confirm asymptotic properties of 2SLS.

E[zix
′
i] = Mzxis regular. (32)

E[z′z] = Mzzis regular. (33)

E[ziui] = 0 (34)

ui, xi, zihas forth order moment

Consistency

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y (35)

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′(Xβ + u) (36)

= β + (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′u (37)

= β + (
1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1

n
Σizix

′
i)

−1 1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1

n
Σiziui (38)

By LLN and assumption,
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1

n
Σixiz

′
i →p E[xiz

′
i] = M ′

zx < ∞ (39)

1

n
Σiziz

′
i →p E[ziz

′
i] = Mzz < ∞ (40)

1

n
Σizix

′
i →p E[zix

′
i] = Mzx < ∞ (41)

1

n
Σiziui →p E[ziui] = 0 (42)

By the continuous mapping theorem,

(
1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1

n
Σizix

′
i)

−1 →p (M ′
zxM

−1
zz Mzx) < ∞ (43)

(
1

n
Σiziz

′
i)

−1 →p E[ziz
′
i]
−1 = M−1

zz < ∞ (44)

So, we can get,

β̂2SLS →p β (45)

Asymptotic normarity

√
n(β̂2SLS − β) = (

1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1

n
Σizix

′
i)

−1 1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1√
n
Σiziui (46)

By the LLN,

(
1

n
Σixiz

′
i(
1

n
Σiziz

′
i)

−1 1

n
Σizix

′
i)

−1 →p (M ′
zxM

−1
zz Mzx)

−1 (47)

1

n
Σizix

′
i →p Mzx (48)

(
1

n
Σiziz

′
i)

−1 →p E[ziz
′
i]
−1 = M−1

zz (49)

E[ziui] = 0, E[u2
i ziz

′
i] < ∞ and by the CLT,

1√
n
Σiziui →d N(0, E[u2

i ziz
′
i]) = N(0,Ω) (50)
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Thus, by the CLT,

√
n(β̂2SLS − β) →d (M ′

zxM
−1
zz Mzx)

−1MzxM
−1
zz N(0,Ω) (51)

= N(0, (M ′
zxM

−1
zz Mzx)

−1MzxM
−1
zz ΩM−1

zz Mzx(M
′
zxM

−1
zz Mzx)

−1) (52)

= N(0, V ) (53)
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